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Abstract

Temporal data explicitly stored in a temporal database are often associated with certain seman-
tic assumptions. Each assumption can be viewed as a way of deriving implicit information from the
explicitly stored data. Rather than leaving the task of deriving (possibly in�nite) implicit data to
application programs, as is the case currently, it is desirable that this be handled by the database
management systems. To achieve this, this paper formalizes and studies two types of semantic as-
sumptions: point-based and interval-based. The point-based assumptions include those assumptions
that use interpolation methods, while the interval-based assumptions include those that involve dif-
ferent temporal types (time granularities). In order to incorporate semantic assumptions into query
evaluation, this paper introduces a translation procedure that converts a user query into a system
query such that the answer of this system query over the explicit data is the same as that of the user
query over the explicit and the implicit data. The paper also investigates the �niteness (safety) of
user queries and system queries.

1 Introduction

A prominent feature of temporal information is its richness in semantics associated with its temporal
domain. When querying a temporal database, a user naturally assumes some \usual" semantics on
stored temporal data. For instance, she expects that her bank account balance persists, i.e., the balance
stays the same unless a transaction|deposit, withdrawal or accrual of interest|is performed. Therefore,
if she wishes to �nd the balance at a particular time and no balance amount is stored for that time, she
looks for the balance of the last transaction that was performed before the time in question. Semantic
assumptions may also involve di�erent temporal types (time granularities). For example, when the user
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asks for the account holder of a certain account in a particular month and account holders are stored
in terms of days, she naturally assumes that the answer is someone who is the account holder of that
account on all the days within that month.

Researchers have long realized such richness of semantics in temporal data [CT85, SS87, Tan87] and
provided various operators in di�erent query languages for the users to code the semantic assumptions
into queries [SS87, Tan87]. For the aforementioned balance query, the user would use a \last" (or
similar) operator in her query to retrieve the appropriate balance.

We argue, however, that temporal semantics should be an integral part of temporal databases
and users should not be burdened with having to incorporate these semantics in their queries. In the
account balance example, the user should be able to query the database directly about the balance at
any particular time, instead of having to code the semantics of the balance into the query. The system
should be able to answer the query appropriately according to the semantics. To provide such an ability,
the system has to

� include a precise formalization of the temporal semantics, and

� evaluate queries according to these semantics.

In this paper, we provide a framework to incorporate temporal semantics into temporal databases and
investigate a method to evaluate queries with semantics.

Consider the bank account example in more detail. Assume the temporal relation ACCOUNTS records
account numbers (AcctNo), account holder (AccHol), account balance (Balance), annual interest rate
(AnIntRate), and the associated time (Time), i.e., the time when the reported values become true. We
can assume that new tuples are added to this relation when an event occurs such as the opening of
an account, a deposit, a withdrawal, or a change in interest rates. The values of Time are timestamps
consisting of the date (month/day/year) concatenated with the time of the day (up to seconds). (Here
and in the rest of the paper timestamps represent valid time; extensions to include transaction time and
other temporal dimensions are not considered.)

An instance of the ACCOUNTS relation is shown in Figure 1.

AcctNo AccHol Balance AnIntRate Time

1001 J.Smith 1000 3.00 3/3/93:09:01:00
1001 J.Smith 3500 4.00 3/4/93:10:01:55
1500 A.Brady 2000 3.00 3/4/93:11:00:00
2034 T.Ford 500 2.50 3/4/93:12:19:03
1500 A.Brady 1500 3.00 3/4/93:18:00:00
1001 J.Smith 4000 4.00 7/3/93:09:00:00

Figure 1: An instance of the relation ACCOUNTS

Since we store new tuples only when some of the attribute values change, the relation does not
contain an explicit tuple for every second of each day for an account. However, if asked about the
balance of Mr. Smith's account at noon of March 4, 1993, we could answer without hesitation that the
balance was $3,500. This is because we assume that nothing has changed for that account since the last
transaction before that time. Here we say that the attribute Balance satis�es a semantic assumption
called persistence for each account. Another example of persistence is given by the attribute AccHol

that is intuitively persistent for each account.
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Other assumptions apply when di�erent temporal types (or granularities) are considered. For
example, the attribute AnIntRate can be classi�ed as liquid, meaning that it satis�es the following
properties:

It is downward-hereditary: If the value of AnIntRate is 3.00 for a month, we can assume that its
value is 3.00 for each day of that month.

It is upward-hereditary: If the value of AnIntRate is 3.00 for each day of a month, we can assume
that its value is 3.00 for that month.

The terms \liquid" and \downward/upward hereditary" are borrowed from the temporal reasoning
community [Sho87].

Note that not all attributes are persistent and/or liquid. For example, consider a relation with
the attributes hAcctNo, Amount, secondi that stores the time and the amount of each deposit or
withdrawal to a certain account. The Amount attribute is obviously neither persistent nor liquid.

The aforementioned semantic assumptions, namely persistence and liquidity, are among the most
common ones that have been identi�ed by the temporal reasoning community. There are other semantic
assumptions that arise quite naturally in databases. For example, if a database stores annual salaries
of the employees, the monthly salary can easily be determined by dividing the annual salary by 12.

Contribution of the paper

Recognizing and formalizing that a group of attributes satis�es some semantic assumption is very useful
in answering queries about values of attributes at times (of same or di�erent temporal types) for which
a value is not explicitly stored. One of the contributions of this paper is to formalize the notion of
semantic assumptions for the purpose of query evaluation.

In this paper, each semantic assumption is viewed as a function for deriving implicit information
from explicit information by applying one or more information generation procedures. Such generation
procedures are formally captured by our notion of assumption methods. Intuitively, an assumption
method derives implicit information using some speci�c rule. For example, \persistence" can be regarded
as one such rule that uses the latest stored value as the current value for an attribute. In Figure 1,
by applying the persistence method on the Balance attribute, we obtain $1,000 to be the balance at
the time 3/3/93:09:01:01, 3/3/93:09:01:02, 3/3/93:09:01:03, 3/3/93:09:01:04, and so on. The function
for a semantic assumption that uses possibly di�erent methods to generate information for di�erent
attributes, is then a \composition" of the rules of the appropriate assumption methods.

We denote by DB the database and by DB the database that contains, in addition to DB, the
data generated by applying all semantic assumptions. A user query on a database DB is viewed as a
query on DB. If the query asks for the balance of account 1001 at noon of March 4, 1993, it retrieves
values from DB, and gives $3,500 as the answer.

However, it is usually impractical for the database to store and manage DB. Indeed, consider the
attribute AnIntRate in Figure 1. Since AnIntRate is liquid, it is possible to derive values for AnIntRate
for each calendar unit. Not only an enormous e�ort is required to manage all these derived values, but
this e�ort may be wasted since users may not be interested in knowing the interest rate for all possible
calendar units. A similar problem exists for the Balance attribute.

Our solution is to translate the user query into a query that incorporates the semantic assumptions.
As shown in Figure 2, a user query Q is viewed as a query on DB. Instead of using the semantic
assumptions to build DB, we use them to translate the query Q into another query Q0 such that the
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new query evaluated on the stored database (Q0[DB]) is the same as the answer of the user query Q
over DB (Q[DB]). In formula, we require that

?

HH

HH

HH

HH

HH

HH

HH

HH

HH

HH

HHj-

DB

DB

Q0: system query

Q: user query Query result

Semantic
assumptions

Figure 2: Does there exist a Q0 such that Q0[DB] = Q[DB]?

Q0[DB] = Q[DB]:

Obviously, whether there always exists a Q0 for each Q largely depends on the languages used. In this
paper, we use a single language MQLF for the semantic assumptions, for user queries Q, as well as for
system queries Q0. MQLF is an extension of the query language introduced in [WJS93] as a general query
language on temporal databases. We show that MQLF is a reasonably powerful language for specifying
semantic assumptions. Furthermore, we show that the aforementioned system query Q0 always exists if
all semantic assumptions are speci�ed by MQLF and all user queries are in MQLF. We provide automatic
derivation of Q0.

Another contribution of the paper is in its analysis of safety issues of the temporal database query
language MQLF. Persistence, and other semantic assumptions, naturally gives rise to in�nite information.
For example, the persistence of the Balance attribute dictates that the relation in Figure 1 generates
in�nitely many tuples: For account 1001, there will be one tuple for each second after 7/3/93:09:00:00.
There are an in�nite number of seconds. Such in�niteness, called eventual uniformity in this paper, has
been accommodated by researchers by using speci�c data models (e.g., the tuple timestamp [1;1] of
[Sno84]). However, it is not analyzed formally in a general setting. In this paper, we study the safety
requirement of query languages that yields only eventually uniform results and other general safety
criteria.

In summary, the contribution of the paper is three-fold: (1) Semantic assumptions are formalized
for the purpose of database query evaluation; (2) A paradigm for query evaluation is introduced to
incorporate semantic assumptions; and (3) Safety issues are analyzed in this more general setting.

Related research

As mentioned earlier, some of our terms used for semantic assumptions are borrowed from the temporal
reasoning community. In particular, the term liquidity is from [Sho87], while the term persistence has
been extensively used in temporal reasoning for planning (e.g., [AKPT91]). The notion of persistence
has also been used in the context of temporal databases in [DM87] to make predictions about unknown
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facts in the database; however, the emphasis of [DM87] is on consistency maintenance of a logical
database containing uncertain temporal information about events. Logical databases and uncertain
information are beyond the scope of this paper. Instead, we consider general classes of assumptions
including persistence and assumptions involving multiple granularities. Our focus is on relational-like
databases and query evaluation on these databases.

Various semantic assumptions in temporal database settings were perhaps recognized �rst by Clif-
ford and Warren [CW83]. The earliest systematic study was however performed by Segev and Shoshani
[SS87]. They recognized various properties of time sequences, such as \stepwise constant" and \contin-
uous", and provided a number of functions to be used in user query languages to accommodate these
properties. A larger set of sophisticated operators for the same purpose were proposed by Tansel in
[Tan87]. By using these operators, many semantic assumptions can be coded into user queries. These
works di�er in two respects from the current one. First, in this paper, we formalize the notion of seman-
tic assumption, while in these earlier studies, no general de�nition is given. Second, we assume that the
user queries the database with the assumptions built in, instead of having to code them into queries.
Thus, in this study, the query language for the user is a simple extension of the relational calculus (the
extension is for incorporating the temporal dimension, not for semantic assumptions).

Other researchers [CT85, WJL91, CI94] also recognized the importance of semantic assumptions
in temporal databases. Cli�ord [CT85] pointed out the use of interpolation in temporal databases;
however, the query evaluation was not formalized. Cli�ord and Isakowitz [CI94] dealt with formalizing
the semantics of variables that many temporal data models employ to denote various intuitive semantic
assumptions. The work clari�ed many vague, although intuitive, notions. However, [CI94] did not
address how user queries are evaluated on databases with such variables.

Regarding the safety of temporal queries, the problem is sometimes avoided by assuming a �nite time
domain and the safety problem reduces to that of standard relational query languages. A recent paper
by Cli�ord, Croker and Tuzhilin [CCT94] mentioned a syntactic safety requirement based on [Ull88] for
a logic based temporal query language. However, it is not clear what properties this syntactic restriction
leads to.

Organization

The rest of the paper is divided into 8 sections. Section 2 de�nes our temporal data model. In Section 3,
we introduce the notion of a general class of semantic assumption: point-based semantic assumptions.
Persistence is a special case of the point-based assumptions. Several important properties of point-
based assumptions, and the persistence assumption in particular, are investigated. Query evaluation
with respect to point-based assumptions is discussed in Section 4. Interval-based assumptions that
include the liquidity assumption are formalized in Section 5 and query evaluation with respect to such
assumptions is studied in Section 6. In Section 7, the above two kinds of assumptions are combined in
evaluating queries. Safety issues are discussed in Section 8. Finally, the paper is concluded with some
remarks on the results of the paper and on future research directions in Section 9.

2 Data Model

The data model used in this paper is based on that introduced in [WJS93, WBBJ94] as a uni�ed interface
for accessing di�erent underlying temporal information systems. It is believed that the concepts and
the results of this paper are readily translated to other temporal data models.
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2.1 Temporal types

We start with de�ning temporal types that model typical (and atypical) calendar units. We assume
there is an underlying notion of absolute time, represented by the set N of all positive integers.

De�nition Let IN be the set of all intervals on N , i.e., IN = f[i; j] j i; j 2 N and i � jg[f[i;1] j i 2
Ng.1 A temporal type is a mapping � from the set of the positive integers (the time ticks) to the set
IN [ f;g (i.e., all intervals on N plus the empty set) such that for each positive integer i, all following
conditions are satis�ed:

(1) if �(i) = [k; l] and �(i+ 1) = [m;n], then m = l+ 1.

(2) �(i) = ; implies �(i+ 1) = ;.

(3) there exists j such that �(j) = [k; l] with k � i � l.

Condition (1) states that the mapping must be monotonic and that the intervals corresponding to
consecutive ticks should not have a gap between them. Condition (2) disallows a temporal type to map
a certain time tick to the empty set unless it maps all subsequent time ticks to the empty set. Condition
(3) requires that each positive integer must be contained in the interval corresponding to a tick of the
temporal type. A tick i of type � is said to be empty if �(i) = ;. One particular consequence of the
above three conditions is that the last non-empty tick (if it exists) must be mapped to an interval of
the form [i;1].

Typical calendar units such as day, month, week and year can be de�ned as temporal types. As
an example, suppose the underlying time is measured in terms of seconds. Then the calendar unit day
(assuming it starts on the �rst day of 1900) is a mapping such that day(1) is the set of all the seconds
that comprise the �rst day of 1990, and day(2) maps to all the seconds of the second day of 1990, and
so on.

There is a natural \�ner-than" relation among temporal types. The temporal type � is said to be
�ner than the temporal type � if for each tick of �, the corresponding time interval is \entirely covered"
by the time interval of some tick of �. Thus, for example, day is �ner than week and month is �ner than
year. Formally, we have:

De�nition Let �1 and �2 be temporal types. Then �1 is said to be �ner than �2, denoted �1 � �2, if
for each i, there exists j such that �1(i) � �2(j).

It is easily seen that � is a partial order. However, it is not a total order since, for example, week
and month are incomparable (i.e., week is not �ner than month, and month is not �ner than week). In
fact, the set of all temporal types is a complete lattice with respect to the �ner-than relation [WJS93].

Another important relation regarding temporal types involves time ticks. For example, we would
like to say that a particular month is within a particular year. For this purpose, we assume there is a
binary (interpreted) predicate IntSec�;� for each pair of temporal types � and �:

De�nition For temporal types � and �, let IntSec�;� be the binary predicate on positive integers
such that IntSec�;�(i; j) is TRUE if �(i) \ �(j) 6= ;, and IntSec�;�(i; j) is FALSE otherwise.

1An interval [i; j] ([i;1], resp.) is viewed as the set of all integers k such that i � k � j (k � i, resp.).
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In other words, IntSec�;�(i; j) is TRUE i� the intersection of the corresponding absolute time
intervals of tick i of � and tick j of � is not empty. Thus, for example, IntSecmonth;year(i; j) is true i�
the month i falls within the year j.

It is important to emphasize that a realistic system can treat in�nite temporal types2 and their
corresponding IntSec relations only if these in�nite types have �nite representations. Various periodical
descriptions, e.g., [KSW90, NS92], are possible but outside the scope of this paper.

2.2 Temporal module schemes and temporal modules

The temporal modules were presented in [WJS93, WBBJ94] as a uni�ed interface for accessing di�erent
underlying temporal information systems. They can be viewed as \abstract temporal databases" [Cho94]
or a \conceptual data model" [JSS93]. It is believed that the concepts and the results of this paper are
readily translated in terms of other temporal data models.

We assume that there is a set of attributes and a set of values called the data domain. Each �nite
set R of attributes is called a relation scheme. A relation scheme R = fA1; : : : ; Ang is usually written as
hA1; : : : ; Ani. For relation scheme R, let Tup(R) denote the set of all mappings, called tuples, from R

to the data domain. A tuple � of relation scheme hA1; : : : ; Ani is usually written as ha1; : : : ; ani, where
ai = �(i) for each 1 � i � n.

De�nition A temporal module scheme is a pair (R; �) where R is a relation scheme and � a temporal
type. A temporal module is a triple (R; �; ') where (R; �) is a temporal module scheme and ' is a
mapping, called a time windowing function, from N to 2Tup(R) such that '(i) = ; if �(i) = ; for each
i, and

S
i�1 '(i) is a �nite set.

Intuitively, the time windowing function ' in a temporal module (R; �; ') gives the tuples (facts)
that hold at non-empty time tick i of temporal type �. This is a generalization of many temporal models
in the literature.

A temporal database is a �nite set of temporal modules. Throughout this paper, we assume a �xed
set of temporal module schemes, which is the database scheme. A temporal database thus is only a
di�erent instantiation of the windowing functions of the �xed temporal module schemes. Furthermore,
each temporal scheme is assigned a unique name. For each temporal module scheme M, we shall use RM

and �M to denote the relation scheme and temporal type, respectively. We also use 'M to denote the
\current" instantiation of the windowing function of scheme M. We use M as the name of the current
instantiation of M. For convenience, in temporal module examples, instead of the positive integers we will
sometimes use an equivalent domain. For instance, the set of expressions of the form 3/3/93:09:01:00
(month/day/year:hour:minute:second) will serve as such a domain.

Example 1 We view the temporal relation ACCOUNTS given in the introduction as a temporal module
with (ACCOUNTS, second), where ACCOUNTS = hAcctNo, AccHol, Balance, AnIntRatei, as its scheme.
The relation in Figure 1 corresponds to the time windowing function ' de�ned as follows:

'(3/3/93:09:01:00)=fh1001, J.Smith, 1000, 3.00ig
'(3/4/93:10:01:55)=fh1001, J.Smith, 3500, 4.00ig
'(3/4/93:11:00:00)=fh1500, A.Brady, 2000, 3.00ig
'(3/4/93:12:19:03)=fh2034, T.Ford, 500, 2.50ig
'(3/4/93:18:00:00)=fh1500, A.Brady, 1500, 3.00ig
'(7/3/93:09:00:00)=fh1001, J.Smith, 4000, 4.00ig

2A temporal type is said to be in�nite if it has an in�nite number of non-empty ticks.
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Note that the above windowing function only re
ects the (explicit) data stored in the relation. We will
use semantic assumptions in Section 3 to give implicit data. 2

Finally, we de�ne the project and select operations on temporal modules that will be used in later
sections. Let M be a temporal module and W � RM. Then �

T
W (M) is the temporal module (W;�M; '

0)
such that '0(i) = �W ('(i)) for each i � 1. Note that �W is the standard project operation. Similarly,
�TF (M) is the temporal module (RM; �M; '

0) such that '0(i) = �F ('(i)) for each i � 1. Note that �F is
the standard select operation.

2.3 The query language MQLF

We specify the query language on temporal modules using a multi-sorted �rst-order logic: One sort is
a generic (non-temporal) data domain, while the other sorts are temporal ones corresponding to the
temporal types that we consider. Each temporal type we use gives rise to a distinct temporal sort.
We shall use \temporal type" and \temporal sort" interchangeably when no confusion arises. Also,
we allow certain scalar functions [EMHJ93], such as +;�; =; � , on the data domain. These functions
are not intended as functions interpreted in the logic, but rather as external calls to the system with
�xed interpretations. The formulas of this multi-sorted logic are called MQLF formulas and the query
language we build using the logic is called MQLF (Multi-sorted Query Language with Functions).

The range of each data variable is the data domain and the range of each temporal sort variable is
N . The data terms of MQLF formulas are of the form x0 or f(x1; : : : ; xk), where each x0 is a variable
name or a constant of the (non-temporal) data sort, each xi (1 � i � k) is a term of the data sort,
and f is a function of arity k. Thus, functions can be nested and are only for the data sort. Atomic
MQLF formulas are of the following four types: (a) x1 = x2 where x1 and x2 are data terms; (b)
IntSec�;�(t1; t2), where t1 and t2 are variables or constants respectively of sorts � and �; (c) t1 < t2 or
t1 = t2, where t1 and t2 are variables or constants of the same temporal sort; and (d) M(x1; : : : ; xn; t)
where M is a temporal module scheme name of the database with n being the arity of RM, each xi is
a non-temporal variable name or constant and t a temporal variable or constant. An MQLF formula
is formed by boolean connectives and the existential and universal quanti�ers in a usual way. As a
syntactic sugar, we change the quanti�cation of temporal sorts to the form 9t:� and 8t:�, where t is of
sort �. This syntactic sugar allows us to tell the sorts of bounded variables from the formula itself. The
predicates IntSec are interpreted as in the previous subsection, < is interpreted as the integer order,
and = is the standard equality.

An MQLF query is of the form

fx1 : : :xk; t:� j  (x1; : : : ; xk; t)g

where x1 : : : xk are variable names or constants of the non-temporal sort, t is a temporal variable of
type �, and  (x1; : : : ; xk; t) is an MQLF formula whose only free variables are among x1; : : : ; xk; t. The
formula  can obviously contain temporal variables of sorts di�erent from �, provided they are bounded.
The following is an example MQLF query on the ACCOUNTS temporal module:

fx; t:month j 9y; z; w 9s:second (ACCOUNTS(x; y; z; w; s) ^ z � 2000 ^ IntSecmonth;second(t; s))g

This query asks for the months in which an account has a balance over $2,000 for at least one second.

An MQLF query is correctly typed if for all subformula M(x1; : : : ; xn; t) appearing in it, the temporal
sort of t is �M, namely the temporal type of M. The above example query is correctly typed since the
temporal type of the temporal module ACCOUNTS is second. With each correctly typed MQLF query
Q = fx1; : : : ; xk; t :� j  g, we associate an answer, denoted Q[DB], in the form of a temporal module
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(R; �; '), where R is a relation scheme of arity k and ' is given as follows: ha1; : : : ; aki is in '(m) if
and only if  is TRUE when the free variables x1, : : : , xk and t are substituted with the constants
a1, : : : , ak and m. Note that the truth value of the atomic formula M(y1; : : : ; yn; s) is TRUE i�
hy1; : : : ; yni is in 'M(s). If we consider the aforementioned example query on a DB containing the
temporal module ACCOUNTS of Example 1, its answer is the temporal module (AcctNo; month; ') with
'(3=93) = f1001; 1500g, '(7=93) = f1001g, and '(i) = ; for each i corresponding to a month di�erent
from March and July of 1993.

If a query is not correctly typed, there is no answer associated with the query. In Section 6, we will
show how to answer incorrectly typed queries by using interval-based semantic assumptions.

If an MQLF formula only has a single temporal sort, we call it a 
at-MQLF formula. Alternatively,
we view 
at-MQLF as a 2-sorted fragment of MQLF, where all temporal variables and temporal constants
are of the same temporal type. Since there is a single type �, the only predicate of the form IntSec is
IntSec�;�, and IntSec�;� is equivalent to =. Hence, in a 
at-MQLF formula, we assume that IntSec
predicates do not appear. A 
at-MQLF query is an MQLF query in which the formula is a 
at-MQLF for-
mula. If a 
at-MQLF query is correctly typed, all temporal constants and variables appearing in the
query have the same sort and we may omit the syntactic sugar on the quanti�ers on temporal variables
and the type declaration of the free temporal variable when their type is clear from the context. The
following is an example of 
at-MQLF query.

fx; t j 9y; z; w(ACCOUNTS(x; y; z; w; t)^ z < 1000)g

Assuming this query is correctly typed, then the type of t is �ACCOUNTS which is second. This query
asks for the time when an account has a balance lower than $1,000.

3 Point-Based Assumptions

We call point-based assumptions those semantic assumptions that can be used to derive information at
certain ticks of time based on the information explicitly given at di�erent ticks of the same temporal
type. Such derivation can be done in a variety of ways. One way is to assume that the values of certain
attributes persist in time unless they are explicitly changed. Another way is to assume that a missing
value is taken as the average of the last and next explicitly given values. Still another way is to take the
sum of the last three values, etc. In this section, we give a general notion of point-based assumptions
that uses, in principle, any interpolation function to derive information from explicit values.

In the next subsection, we illustrate point-based assumptions by using persistence as an example.
The discussion of the persistence assumption also motivates the syntax and the semantics of general
point-based assumptions.

3.1 An example: Persistence assumption

A point-based assumption that is widely used in practice and in the literature is the persistence assump-
tion. With PX(Y

persis), we denote the assumption of the attributes XY being persistent with respect
to the attributes X . This intuitively means that if we have explicit values for X and Y at a certain tick
of time, these values will persist in time until we �nd a tick at which we have explicit values that are the
same for the attributes X but di�erent for Y . More formally, let M = (R; �; ') be a temporal module
and PX(Y

persis) be a persistence assumption. Then, we say that a tuple t on XY is derived by this
assumption for tick i if there exists j < i such that (1) there exists t00 2 '(j) such that t = t00[XY ], and
(2) for all k, j < k � i, and tuple t0 2 '(k), we have t0[X ] 6= t[X ]. To be complete, we also keep all the
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information (projected on XY ) in the original temporal module. Hence, a persistence assumption on a
temporal module gives all the original information (projected on XY ) plus all the derived information.

Consider our running example of the ACCOUNTS temporal module. The assumption

PAcctNo((AccHol; Balance; AnIntRate)
persis)

says that the values of these four attributes persist in time until a di�erent value for one of the attributes
AccHol, Balance, or AnIntRate with respect to the same AcctNo is found. Note that this is a reasonable
assumption for the ACCOUNTS temporal module.

In the temporal database literature a notion similar to persistence is found when the value of a tuple
is given for an interval [1; uc] where uc is a short hand for \until changed" [WJL91, CI94]. However,
the notion of until changed is not well formalized. For example, it is not clear which attributes must
actually change to be quali�ed as \changed". Besides having a clear semantics, persistence assumptions
are more powerful, since more than one persistence assumption can be speci�ed on the same set of
attributes.

In the next subsection, we formally de�ne the syntax and the semantics of point-based assumptions,
of which the persistence assumption is an example.

3.2 Syntax and semantics of point-based assumptions

A point-based semantic assumption relies on the use of certain methods (called assumption methods)
to derive implicit values from explicit ones. A method is used to derive a value of an attribute by
\interpolating" values of the same attribute at di�erent ticks of time. The expression PX(Y meth)
denotes the assumption using method meth to derive implicit values of attributes XY with respect to
attributes X . We assume there is a �xed set of assumption methods.

We now give the syntax of semantic assumptions.

De�nition Let X , Y1, : : : , Yn be pair-wise disjoint sets of attributes (i.e., X \ Yi = ; and Yi \ Yj = ;

for each i 6= j) and meth1, : : : , methn assumption methods. Then PX(Y
meth1
1 : : : Y methn

n ) is called a
point-based assumption. The attribute set X is called the base of the assumption.

The requirement that the sets X , Y1, : : : , Yn be pair-wise disjoint in the above de�nition intuitively
says that it is not possible to use di�erent assumption methods for the same attribute.

Before de�ning the semantics of our semantic assumptions, we need to introduce the semantics of
assumption methods.

De�nition (Semantics of assumption methods)
For each assumption method meth, there is an associated mapping meth() from two sets of attributes
and a temporal module to a temporal module such that, for all attribute sets X and Y and temporal
module M = (R; �; '), with XY � R, the following conditions are satis�ed:

1. meth(X; Y;M) is a temporal module on (XY; �);

2. if meth(X; Y;M) = (XY; �; '0), then �XY ('(i)) � '0(i) for each positive integer i;

3. for each set Z of attributes with Z � Y , meth(X;Z; �TXZ(M)) = �TXZ(meth(X; Y;M)); and

4. for each value x on X , meth(X; Y; �TX=x(M)) = �TX=x(meth(X; Y;M)).
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The �rst condition in the above de�nition speci�es the scheme of the derived modules. The second
condition requires that each derived module contains all the original tuples. That is, a semantic method
can only be used to add tuples but not to change (or delete) original tuples. The third condition in the
de�nition requires that each method derives values for a certain attribute independently from values of
other attributes. The �nal condition requires that each method derives values for a certain attribute
by considering only tuples in the original module having the same values for X .

Although the semantics of an assumption method is given as a mapping, it is usually described by
a syntactic expression in practice. Any formal language that is su�ciently expressive can be used for
this purpose. In Section 4 we give a formalism based on MQLF to specify the semantics of assumption
methods.

An example of a method that is di�erent from persistence is avg. By applying avg to a set of
numeric attributes Y with base attributes X , we derive the implicit tuples on XY where the value for
each A 2 Y is taken as the average between the values of A in the last and next explicitly stored tuples
that have the same values for X .

Example 2 Consider a temporal module RISKS that stores, for each account holder who received a
loan from the bank, a measure of the possible risk for the bank: RISKS = (hAccHol; EstRiski; day; ')
where '(2=4=93) = fhJ.Smith, 2i; hT.Ford, 4ig, '(6=4=93) = fhJ.Smith, 4i; hT.Ford, 3ig, and ' is empty
for all other days. Then avg(fAccHolg; fEstRiskg; RISKS) is the temporal module that contains the
original information as well as the following: For each day between 2/4/93 and 6/4/93, the EstRisk

values for customers J.Smith and T.Ford were respectively 3 and 3:5. 2

Having de�ned the semantics of assumption methods, we can now give the semantics of semantic
assumptions.

De�nition (Semantics of point-based assumptions)
For each point-based assumption P = PX(Y

meth1
1 : : : Y methk

k ), there is an associated (partial) map-
ping fP from temporal modules to temporal modules such that for each temporal module M =
(R; �; ') with XY1 : : :Yk � R, if methj(X; Yj ;M) = (XYj ; �; 'j) for each j = 1; : : : ; k, then fP (M) =
(XY1 : : :Yk ; �; '0) where '0(i) = '1(i) ./ : : : ./ 'k(i) for each i � 1.

Thus, the semantic assumption PX(Y
meth1
1 : : : Y methk

k ) combines (via natural join) the implicit in-
formation on attributes XY1, : : : , XYk supplied by the methods meth1, : : : , methk , respectively.

A consequence of the above de�nition is the fact that in general, the semantics associated with
PX(Y

meth
1 Y meth

2 ) is not always the same as that of PX((Y1Y2)
meth). Indeed, consider the tempo-

ral module M = (hA;B;Ci; �; '), where '(1) = fh1; 2; 3i; h1; 3; 4ig, and the two semantic assump-
tions P1 = PA(B

persisCpersis), P2 = PA((BC)
persis). Let fP1(M) = (hA;B;Ci; �; '1) and fP2(M) =

(hA;B;Ci; �; '2). It is easily seen that h1; 2; 4i is in '1(2), but not in '2(2).

We consider this as natural since it is likely that the reason that the two sets (Y1 and Y2) of
attributes are written separately is because their values are derived independently. However, the
base X of a point-based assumption is often a temporal key (i.e., there do not exist two distinct
tuples that belong to the same tick yet have the same X values), in which case the semantics of
PX(Y meth

1 Y meth
2 ) and PX((Y1Y2)meth) are the same. Indeed, by condition 3 of assumption methods se-

mantics, the temporal modules obtained by meth(X; Y1;M) and meth(X; Y2;M) are the projections of
M 0 = meth(X; Y1Y2;M). Since X is a temporal key, the join of the two projections, (i.e., the semantics
of PX(Y

meth
1 Y meth

2 )) is the same module M 0 (i.e., the semantics of PX((Y1Y2)
meth)).

11



3.3 Properties of temporal modules with assumptions

Given a temporal moduleM and a set of assumptions �, we would like to know if there is a new temporal
module that models all the information implied by M under �. Clearly, all the tuples in fP (M), for
each P in �, should be present; however, the new module should not include any extraneous tuples. We
call such a module minimal closure of M under �. In order to formalize this notion, we �rst de�ne a
subsumption relation among temporal modules.

De�nition Given two modules M = (R; �; ') and M 0 = (R; �; '0), we say that M is subsumed by
M 0, denoted M �M 0, if for each positive integer i, '(i) � '0(i). The subsumption is said to be strict,
denoted M �M 0, if M �M 0 and M 6=M 0.

De�nition Let M be a temporal module and P a point-based assumption with W as the set of all
the attributes that appear in P . A temporal module M1 is called a closure of M under P if M1 is on
the same temporal scheme of M , M � M1, and fP (M) � �TW (M1). M1 is called a minimal closure of
M under P if it is a closure of M under P and there does not exist closure M2 of M under P such that
M2 �M1. A temporal module M 0 is said to be a closure of M under a set � of point-based assumptions
if it is a closure under each assumption P in �, and is said to be a minimal closure of M under �, if
there does not exist closure M 00 of M under � such that M 00 �M 0.

Notice that the minimal closure of a certain module under a set of point-based assumptions may not
be unique. For example, given M = (ABC; �; ') with '(1) = (a; b; c) and '(i) = ; for each i > 1, and
the assumption P = PA(B

persis), we can �nd as many minimal closures of M under the assumption P ,
as the number of values that attribute C can take. Indeed, for each value x that C can take, the module
Mx = (ABC; �; 'x) with 'x(1) = (a; b; c) and 'x(i) = (a; b; x) for each i > 1, is a minimal closure of M
under P . Here we give a su�cient condition for the existence of the unique minimal closure.

Proposition 1 Let � be a set of point-based assumptions and (R; �) a temporal scheme. If for each
assumption PX(Y

meth1
1 : : : Y methk

k ) in �, we have XY1 � � �Yk = R, then each temporal module on (R; �)
has a unique minimal closure under �. Furthermore, if the minimal closure of a temporal module M
under � is (R; �; '), and the minimal closure of M under each assumption P in � is (R; �; 'P ), then
'(i) =

S
P2� 'P (i).

The opposite is not necessarily true even if we have only persistence assumptions. Consider for
example the temporal module M = (ABC; �; ') with '(1) = (1; 1; 1) and '(i) = ; for all other ticks.
Suppose we have two assumptions, PAB(Cpersis) and PC(Bpersis). Since PC(Bpersis) does not include
all the attributes in M , it violates the condition of the above proposition. However, M does have the
unique minimal closure M 0 = (ABC; �; '0), where '0(i) = (1; 1; 1) for all i.

We use minimal closures to develop two useful notions. The �rst notion deals with the question
whether two temporal modules are equivalent under assumptions. If there are no semantic assumptions,
two temporal modules are equivalent if and only if they have the same schemes, same temporal types
and same windowing functions, i.e., they are identical temporal modules. However, when semantic
assumptions are present, two temporal modules may not be identical, yet they may contain the same
information. To see this, consider the temporal scheme (hAccHol,Addressi, month) and the two modules
M1 and M2 on this scheme. For the �rst month, 'M1

(1) = 'M2
(1) =f(J.Smith, 16 Fifth Av.,NY)g,

while for the second month '1(2) =f(A.Brady, 5 Old St.,NY)g and 'M2
(2) = 'M1

(1)['M1
(2). These

modules are not identical, since 'M1
(2) 6= 'M2

(2). However, they are equivalent under the assumption
PAccHol(Address

persis), since they have identical minimal closures under that assumption.
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De�nition Given two modules M = (R; �; ') and M 0 = (R; �; '0), we say that M is equivalent to M 0

under assumptions � if they have identical sets of minimal closures.

Since there may be di�erent modules that are equivalent under a set of assumptions, it is interesting
to see if there is a minimum temporal module (with respect to the subsumption relation) among these
equivalent modules. In practice, we may choose to use such a minimum module to save storage space.

De�nition (Minimal Representation)
Let � be a set of point-based assumptions and M a temporal module. A temporal module M 0 is said to
be a minimal representation of M under � if M 0 is equivalent to M under �, and there is no temporal
module M 00 such that M 00 is equivalent to M and M 00 �M 0.

The second notion we develop deals with implicit assumptions. It is possible to derive implicit as-
sumptions from a given set of explicit ones. For example, given the assumption
PAcctNo((AccHol; Balance;AnIntRate)

persis) we can derive PAcctNo(Balance
persis). Intuitively, given

an assumption P and a set � of assumptions, we will say that P is implied by � if, for any module, any
implicit information that can be derived from P can also be derived from �. Formally,

De�nition (Implied Assumption)
A point-based assumption P is implied by a set of assumptions � (we write � j= P ) if given an arbitrary
module M, each closure of M under � is also a closure of M under P .

Proposition 2 The following derivation rule is sound for all meth1, : : : , methk :

� PX(Y
meth1
1 ; : : : ; Ymethk

k ) implies PX(W
meth1
1 ; : : : ;Wmethk

k ) if Wj � Yj for each j with 1 � j � k.

An interesting property of persistence assumption is that there exists a sound and complete deriva-
tion rule for persistence assumptions.

Theorem 1 The following derivation rule is both sound and complete for persistence assumptions:

� If PX(Y
persis), then PZ(W

persis) for all Z � X and W � (X n Z) [ Y .

4 Query Evaluation with Point-Based Assumptions

In this section, we assume that each temporal moduleM in the temporal database is associated with a set
�M of point-based semantic assumptions. We use � to denote the collection of all semantic assumptions.
We restrict ourselves to temporal modules having a unique minimal closure under semantic assumptions.
In light of Proposition 1, we assume that each semantic assumption in �M involves all the attributes in
RM.

We �rst formally de�ne the notion of query answer with point-based semantic assumptions.

De�nition Let Q be a correctly typed MQLF query and suppose the temporal modules in the database
DB areM1, : : : ,Mm. Then, the answer of Q (on DB) with assumptions �, denoted Q[DB;�], is Q[DB],
where DB is the database with the temporal modules M1, : : : ,Mm and eachM i is the minimal closure
of Mi under the assumptions �Mi

.
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That is, the answer of a query with assumptions is the answer of the original query on all the minimal
closures of the temporal modules in the database. In other words, we �rst accommodate the assumptions,
via minimal closures, into the temporal modules and then use the minimal closures as the temporal
database to answer the query. Note that the query in question must be correctly typed since point-based
semantic assumptions do not change the temporal types.

The above de�nition captures the purpose of using semantic assumptions in answering queries.
However, as mentioned in the introduction, instead of changing the temporal modules in the database
to answer queries, we change the query to encompass all the semantics such that the new query on the
original database will give the intended answer under assumptions. Formally,

De�nition Given a query Q and semantic assumptions �, a query Q0 is said to be a �-captured version
of Q if Q0[DB] = Q[DB;�] for all instantiations of DB.

If an assumption-captured version of a query is found, in order to answer the query with assumptions,
an existing system can simply evaluate this assumption-captured version in a usual way using \standard"
techniques [TCG+93]. That is, the underlying query evaluation programs of an existing system need
not change to accommodate semantic assumptions in its database.

In order to formalize the process that obtains a �-captured version, we limit the set of assumptions
to those that can be expressed in 
at-MQLF formulas.3 In particular, for each temporal module scheme
M = (R; �) and assumption P = PX(Y

meth1
1 : : : Y methk

k ) with R = XY1 : : : Yk we require the existence
of a formula 	M

P in MQLF such that (a) only one predicate M appears (possibly several times) in 	M
P and

predicate M has arity kRk+1 and (b) for each module M on M, fP (M) = fx1; : : : ; xn; t j 	M
P g. It is clear

that by identifying 	M
P for each temporal scheme M, we have identi�ed the mapping fP .

In the remainder of this section, we �rst show how assumption methods can be described by syntactic
expressions from which we can derive the 	 formulas corresponding to the assumptions. In particular,
we use a slight extension of 
at-MQLF to syntactically specify assumption methods, and then we give
a procedure on how to derive the aforementioned 	 formulas for semantic assumptions from these
syntactic speci�cations.

The syntactic speci�cation of assumption methods need to be parametric with respect to the sets of
attributes X and Y and to the module scheme M. For this purpose we extend 
at-MQLF as follows: The
number n of data attributes of the predicate M (and corresponding variables) is left as a parameter, and
the symbol IndMV , where V is a set of attributes, can be used to indicate the set of indices (positions) of
attributes in V appearing in M when the \parameterized" scheme is instantiated.4 We call a formula in
this extension a formula template.

In this paper, we require that all assumption methods be speci�ed by such an extension of 
at-MQLF.
Such a requirement is not overly restrictive. Indeed, 
at-MQLF is a very expressive language, and we
can specify many methods that are useful in practice. As an example, the formula template for the
persistence method is as follows:

	M
PV (W persis)(w1; : : : ; wn; t) = M(w1; : : : ; wn; t) _

(9t0; v1; : : : ; vn) (t0 < t ^ M(v1; : : : ; vn; t
0) ^

(8t00; z1; : : : ; zn)(t0 < t00 � t) :(M(z1; : : : ; zn; t00) ^ (8i 2 IndMV ) zi = vi)) ^
(8i 2 IndMVW ) wi = vi)

We shall see below how the above template is used to derive the required formula 	M
P where P is a

3This restriction can be relaxed if �-captured version can be in terms of other languages.
4For example, assume M = (hA;B;C;D;Ei; �) and V = fB;C;Eg. Then IndMV = f2; 3; 5g.
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persistence assumption and M is a temporal module scheme. However, it is quite clear that the above
formula template corresponds to our intuitive de�nition of persistence.

As another example, we formally de�ne the avg assumption method by giving the following formula
template:

	M
PV (Wavg)(w1; : : : ; wn; t) = M(w1; : : : ; wn; t) _

(9t1; t2; v1; : : : ; vn; u1; : : : ; un) (t1 < t ^ M(v1; : : : ; vn; t1)

^ (8t00; z1; : : : ; zn) (t1 < t00 � t) :(M(z1; : : : ; zn; t
00) ^ (8i 2 IndMV ) zi = vi))

^ t < t2 ^ M(u1; : : : ; un; t2)

^ (8t00; z1; : : : ; zn) (t � t00 < t2 ) :(M(z1; : : : ; zn; t
00) ^ (8i 2 IndMV ) zi = ui))

^ (8i 2 IndMV ) wi = vi = ui
^ (8i 2 IndMW ) wi =

vi+ui
2 )

It is easily seen that the mapping given by the above template correspond to the intuition behind the
average method.

We now provide a procedure to obtain the formula 	M
P for each given temporal scheme M and

assumption P provided that each assumption method appearing in P is speci�ed by a formula template.

Transformation 1 Given the point-base assumption P = PX(Y
meth1
1 : : :Y methk

k ) and temporal module
scheme M = (R; �), the following steps output the formula 	M

P (x1; : : : ; xn; t):

1. Derive the formulas 	M

PX (Y
meth1
1

)
(w1

1; : : : ; w
1
n; t); : : : ;	

M

PX(Y
methk
k

)
(wk

1 ; : : : ; w
k
n; t) from the formula

template of methods as follows:

� the free variable symbols are substituted with the ones given here;

� V and W are instantiated with X and Y and � with the given value of �;

� the number of variables n is set to kRk;

� each expression of the form \(8i 2 IndMZ) vi = : : : = wi" obtained after instantiating V with
X and W with Y and possibly renaming the variables, is written out as a conjunction of a
�nite number of vl = : : := wl for each l in IndMZ .

2. Output the following formula as 	M

PX (Y
meth1
1

::: Y
methk
k

)
(x1; : : : ; xn; t):

9w1
1; : : : ; w

1
n 	

M

PX (Y
meth1
1

)
(w1

1; : : : ; w
1
n; t) ^ : : : ^ 9wk

1 ; : : : ; w
k
n 	

M

PX(Y
methk
k

)
(wk

1 ; : : : ; w
k
n; t) ^

(8i 2 IndMX) (xi = w1
i = : : := wk

i ) ^ (8i 2 IndMY1) (xi = w1
i ) ^ : : : ^ (8i 2 IndMYk ) (xi = wk

i )

It is easily seen that the above formula is equivalent to the natural join operation required in the
de�nition of assumption semantics. Hence, the following holds:

Proposition 3 Transformation 1 correctly identi�es the formula 	M
P for a point-based assumption P

and temporal module scheme M.

As an example, consider the mapping for P = PAC((BD)
avg (EF )persis). Given a module M on

scheme M=(hA;B;C;D;E; F i; �), this assumption intuitively says that values for attributes B and D
should be derived with respect to AC using the avg (average) method while values of attributes E and F
should simply persist (with respect to AC). In this example n = 6 and IndMAC = f1; 3g, IndMBD = f2; 4g,
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and IndMEF = f5; 6g. The following is the formula de�ning 	M
P . (In the formula, the temporal variable

t is of sort �.)

	M
P (x1; : : : ; x6; t) = 9w1

1; : : : ; w
1
6 	

M
PAC (BDavg)(w

1
1; : : : ; w

1
6; t) ^

9w2
1; : : : ; w

2
6 	

M
PAC (EF persis)(w

2
1; : : : ; w

2
6; t) ^

x1 = w1
1 = w2

1 ^ x3 = w1
3 = w2

3 ^

x2 = w1
2 ^ x4 = w1

4 ^ x5 = w2
5 ^ x6 = w2

6

where

	M
PAC (EF persis)(w

2
1; : : : ; w

2
6; t) = M(w2

1; : : : ; w
2
6; t) _ (9t0) (t0 < t ^ M(w2

1; : : : ; w
2
6; t

0)

^ (8t00; z1; : : : ; z6)(t0 < t00 � t) :(M(z1; : : : ; z6; t00) ^ z1 = w2
1 ^ z3 = w2

3)))

and 	M
PAC (BDavg)(w

1
1; : : : ; w

1
6; t) is similarly derived.

We are now ready to give the process by which we obtain �-captured versions of given queries.

Algorithm 1 Let Q be a correctly-typed MQLF query and � the collection of point-based assumptions.
For each M(x1; : : : ; xn; t) appearing in Q, where each xi is a data variable or constant and t is a temporal
variable or constant of type �, substitute M(x1; : : : ; xn; t) with

	M
P1
(x1; : : : ; xn; t) _ : : : _ 	M

Pk
(x1; : : : ; xn; t)

where P1, : : : , Pk are all the assumptions in �M. 2

Note that in the above replacement, we assume that each free variable in 	M
Pj

is substituted by the

corresponding variable or constant in M(x1; : : : ; xn; t) in Q. By a simple induction on the structure of
the input query, we have:

Theorem 2 The query obtained by Algorithm 1 is a �-captured version of Q.

Example 3 Let us consider the 
at-MQLF query given earlier:
Q = fx; t j 9y; z; w (ACCOUNTS(x; y; z; w; t)^ z < 1000)g. If DB = fACCOUNTSg and � = fP1g where
P1 = PAcctNo((AccHol; Balance;AnIntRate)

persis)g, then Algorithm 1 gives as output the query Q0 =
fx; t j 9y; z; w (	ACCOUNTS

P1
(x; y; z; w; t) ^ z < 1000)g. Substituting 	ACCOUNTS

P1
(x; y; z; w; t) with the

corresponding 
at-MQLF formula that speci�es the semantics of the persistence method, we can easily
verify that the answer Q0[DB] is the module (AcctNo; second; ') with '(i) = ; for each i before
3/4/94:12:19:03 and '(i) = f2034g for each i at and after 3/4/94:12:19:03. Note that this answer is
equal to what we would obtain by computing the closure of ACCOUNTS with respect to P1 and then
evaluating Q on this closure. Indeed, the minimal closure would contain all the tuples derived by the
persistence, in particular those with respect to Mr.Ford's account number 2034. 2

5 Interval-Based Assumptions

Interval-based assumptions are those that can be used to derive information for a certain tick of one
temporal type from information at ticks of a di�erent temporal type. The word interval indicates the fact
that these \source" ticks must be intervals having a certain relationship (containment or intersection)
with respect to the interval of the \target" tick for which the value is being derived.
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5.1 An example: Liquidity

With IX(A
#) we denote the assumption of the attribute A being downward hereditary with respect

to the attributes in X . This intuitively means that if we have an explicit value for the attribute A
with respect to certain values for X at a certain tick of type �, then for each tick of any other type
that is covered by it, A has that same value with respect to the same values for X . Referring to our
running example, it is reasonable to assume IAcctNo(AccHol

#); intuitively, if an account (AcctNo) has
a corresponding account holder name (AccHol) in a second, then it has the same account holder name
in any millisecond, microsecond, and so on within that second. Similarly, with IX(A") we denote the
assumption of the attribute A being upward hereditary with respect to X . Intuitively, if we have the
same value for the attribute A with respect to the same X at contiguous ticks, that value is also the
value of A for the same X for each tick of any other type that is the union of some of these ticks. In
our example, if an account has the same account holder name in each second of a month, we know that
the account has that account holder in that particular month. With IX(A

l) we denote the assumption
of the attribute A being liquid with respect to X ; i.e., it is both downward and upward hereditary.
Referring to our example, we can reasonably make the assumption IAcctNo((AccHol; AnIntRate)

l).

Liquidity, as well as upward/downward heredity, can be used to answer queries that are not correctly
typed. Consider the query:

fy; t:month j 9x; z; w(ACCOUNTS(x; y; z; w; t) ^ x = 1001g

This query is not correctly typed since it asks for the account holder name of account 1001 in months,
while the temporal type of ACCOUNTS is in seconds. However, we can answer the query if there are
assumptions, such as the upward heredity assumption, for all the attributes in ACCOUNTS to convert the
information to a coarser type. Note that the example query could be used to see if there has been a
change of name during a month, in which case the answer would be empty.

We now formalize the notion of a general interval-based assumption.

5.2 Syntax and semantics

As in point-based assumptions, an interval-based assumption relies on the use of certain \conversion"
methods. For example, the liquidity assumption uses a \constant" function to derive values. We assume
that there is a �xed set of conversion methods.

De�nition Let X , Y1, : : : , Yn be pair-wise disjoint attribute sets, and conv1, : : : , convn conversion
methods. Then IX(Y

conv1
1 � � � Y convn

n ) is called an interval-based assumption.

In Subsection 5.1 we have illustrated three conversion methods. There are many others that can
be useful. As an example, consider a module of type � and assume that i is a tick of a type � such
that there is a sequence of ticks j1; : : : ; jk of type �, all contained in tick i of �. We can de�ne two
conversion methods|we call them �rst and last, respectively|that derive the value for tick i of �
using the values at tick j1 and jk of �, respectively. In our running example, it is reasonable to make
the assumption that last can be used to convert the Balance attribute with respect to the attribute
AcctNo. This means that if a query on the ACCOUNTS module asks for the balance of an account for
a month, the balance at the last second of that month for that account is returned. Note that even
though we do not have explicit values for the last second of each month, we can still derive them using
the persistence assumption. Similarly, considering all other attributes in ACCOUNTS, the following is a
reasonable interval-based assumption: IAcctNo((AccHol; AnIntRate)

l; Balancelast).
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Analogous to point-based assumptions, we de�ne the semantics of conversion methods before giving
the semantics of interval-based semantic assumptions. Given a temporal module M = (R; �; ') and a
set S of integers, we use the notation M jS to denote the temporal module (R; �; '0) where '0 is de�ned
as follows: For each positive integer i, '0(i) = '(i) if �(i) \ S 6= ;, and '0(i) = ; otherwise. That is,
M jS is a temporal module obtained by keeping only the values of the windowing function at the ticks
which intersect with the absolute time set S.

De�nition (Semantics of conversion methods)
The semantics of a conversion method conv is given by a mapping conv() from two sets of attributes, X
and Y , a temporal module M = (R; �; ') with XY � R, and a temporal type � such that the following
conditions are satis�ed:

1. conv(X; Y;M; �) is a temporal module on (XY; �);

2. conv(X; Y;M; �) = �TXY (M);

3. for each subset Z of Y , conv(X;Z; �TXZ(M); �) = �TXZconv(X; Y;M; �);

4. for each value x of X , conv(X; Y; �TX=x(M); �) = �TX=x(conv(X; Y;M; �)); and

5. for each positive integer j, conv(X; Y;M j�(j); �) = conv(X; Y;M; �)j�(j).

The �rst condition says that for a given temporal module and a target temporal type, the interval-based
assumption I gives a temporal module with all the attributes in I as the relation scheme of the output
module and the target temporal type as the temporal type of the output module. The second condition
requires that if the target temporal type coincides with the temporal type of the input module, then
the output module should simply be a projection of the input module. The third condition requires
that each method derives values for a certain attribute independently from values of other attributes.
The fourth condition requires that each method derives values for a certain attribute considering only
tuples in the original module having the same value for X . The �nal condition says that the value at
each tick j in the target type � depends only on values at ticks that intersect with j.

If a module M = (R; �; ') has a non-empty set of associated interval-based assumptions, values for
modules in di�erent temporal types can be implied by these assumptions. The way of deriving these
values is speci�ed by the semantics of the semantic assumptions:

De�nition (Semantics of interval-based assumptions)
For each interval-based assumption I = IX(Y

conv1
1 : : :Y convk

k
), there is an associated (partial) mapping

fI from temporal modules to temporal modules such that, for each temporal module M = (R; �; ')
with XY1 : : :Yk � R, if convj(X; Yj ;M; �) = (XYj; �; 'j) for each j = 1; : : : ; k, then fI(M; �) =
(XY1 : : :Yk ; �; '

0) where '0(i) = '1(i) ./ : : : ./ 'k(i) for each i � 1.

Hence, analogous to point-based assumptions, the values that are derived according to di�erent
conversion methods within one assumption are combined via the natural join. Notice that the mapping
for an interval-based assumption de�ned this way satis�es all the conditions required for the mappings
of conversion methods.

6 Query Evaluation with Interval-Based Assumptions

The notion of query answering with point-based assumptions in Section 4 can be extended to that with
interval-based assumptions. As in Section 4, we assume there is a set �M of interval-based assumptions
for each M in the database, and denote the collection of all interval-based assumptions by �.
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As for point-based assumptions, we restrict ourselves to assumptions involving all the attributes
appearing in the modules on which they are applied.5 We also limit interval-based assumptions for
which we can evaluate queries to those that can be expressed in MQLF formulas. In particular, for
each temporal module scheme M = (R; �), temporal type � and assumption I = IX(Y

conv1
1 : : : Y convk

k
)

with R = XY1 : : : Yk we require the existence of a formula 	
M;�
I in MQLF such that (a) among the

predicates in the formula, only one predicate symbol M, involving both data and temporal sorts, appears
(possibly several times) in 	

M;�
I and predicate M has arity kRk+ 1, and (b) if M is a module on M then

fI(M; �) = fx1; : : : ; xn; t:� j 	
M;�
I g where n = kRk.

Analogous to assumption methods, conversion methods can be de�ned through formula templates
such that the 	 formulas of assumption involving those method can be easily derived from the templates.
The formula template needs to be parametric with respect to the module scheme (R; �), the target type
� and to the sets of attributes X and Y . For this purpose the same simple extension considered for

at-MQLF can be used here, allowing n to remain a parameter, and the symbol IndMV where V is a set of
attributes can be used to indicate the set of indices (positions) of attributes in V appearing in R when
the scheme is instantiated. The restriction to this language for the de�nition of conversion methods is
reasonable, since MQLF can be used to express many practically interesting interval-based assumptions.
For example, the liquidity conversion method is speci�ed by the following formula template:
	M;�
IV (W l)

(x1; : : : ; xn; t) =

(8t0 :�)(IntSec�;�(t
0; t)) (9w1; : : : ; wn)(M(w1; : : : ; wn; t

0) ^ (8j 2 IndMVW )xj = wj))

We shall see below how the above template is used to derive the required formula 	M;�
I , where I is

a liquidity assumption of the form IX(Y
l). However, it should be intuitively clear that this formula

template gives the mappings for the liquidity conversion.

The conversion last can be speci�ed by the formula template:

	M;�
IV (W last)

(x1; : : : ; xn; t) =

(9t0:�)(IntSec�;�(t
0; t) ^ (8t00 : �) (t00 > t0 ) :IntSec�;�(t

00; t))
^ (8s:�) (s > t) :IntSec�;�(t0; s))
^ (9w1; : : : ; wn) (M(w1; : : : ; wn; t

0) ^ (8j 2 IndMVW ) xj = wj))

Once we have the de�nition of conversion methods in the form of the formula templates, for any
semantic assumption I involving the de�ned methods, we can easily obtain the formula 	M;�

I such that

fI(M; �) = fx1; : : : ; xn; t:� j 	
M;�
I g for each temporal module M on M and type �.

Similar to what we have done for point based assumptions, the formula 	M;�
I for an assumption

I = IX(Y
conv1
1 : : : Y convk

k ), a target type �, and a temporal module scheme M = (R; �) such that
XY1 : : : Yk = R with kRk = n can be obtained by the following transformation.

Transformation 2 Given an interval based assumption IX(Y
conv1
1 : : :Y convk

k ), temporal module scheme

M and (target) temporal type �, the following steps output the formula 	M;�
I (x1; : : : ; xn; t):

1. Derive the formulas 	M;�

IX(Y
conv1
1

)
(w1

1; : : : ; w
1
n; t); : : : ;	

M;�

IX(Y
convk
k

)
(wk

1 ; : : : ; w
k
n; t) from the semantics

of conversion methods as follows:

� the free variable symbols are substituted with the ones given here;

� V and W are instantiated with X and Y , while � and � with their given values;

� the number of variables n is set to kRk;

5A notion of minimal closure analogous to that for point-based assumptions can be easily de�ned.
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� each expression of the form \(8i 2 IndMZ) vi = : : : = wi" obtained after instantiating V and
W with X and Y and possibly renaming the variables, is written out as a conjunction of a
�nite number of vl = : : := wl for each l in IndMZ .

2. Output the following as 	M;�
I (x1; : : : ; xn; t):

9w1
1; : : : ; w

1
n 	

M;�

IX (Y
conv1
1

)
(w1

1; : : : ; w
1
n; t) ^ : : : ^ 9wk

1 ; : : : ; w
k
n 	

M;�

IX (Y
convk
k

)
(wk

1; : : : ; w
k
n; t) ^

(8i 2 IndMX) (xi = w1
i = : : := wk

i ) ^ (8i 2 IndMY1) (xi = w1
i ) ^ : : : ^ (8i 2 IndMYk ) (xi = wk

i )

It is easily seen that the above formula is the equivalent in our logic of the natural join operation
required in the de�nition of interval-based assumption semantics. Hence, the following holds:

Proposition 4 Transformation 2 identi�es the mapping for an interval-based assumption.

The purpose of interval-based assumptions is to derive information in terms of a di�erent temporal
type. For instance, monthly information can be derived from daily information. The advantage is that
the user query does not have to be correctly typed for the system to answer. Indeed, suppose a temporal
module in the database contains account interest rate information in terms of days. If the user wants
to know the interest rate at a particular hour, she may query the database using hour as the temporal
type for the query. The system will then use the liquidity assumption to answer the query.

However, there are cases where assumptions are not \designed" for certain information derivation.
For example, if only downward heredity is assumed on a temporal module M, information in terms of
any temporal type that is coarser than �M is not derivable. Such incorrectly typed queries cannot be
answered. Below we formalize this intuition.

De�nition (Type reachability)
Let I be an interval-based assumption and 	M;�

I is its associated MQLF formula. Suppose � and � are
two temporal types. Then a type � can reach type � via I if there exists a temporal module M = (R; �; ')
such that the answer of the query fx1; : : : ; xn; t:�j	

M;�
I g, where x1, : : : , xn are all the free variables in

	M;�
I , is not empty.

In other words, type � cannot reach type � via I if the answer of the query given in the de�nition is
empty independently from the module M . Thus, no matter what is the given information (which is in
terms of �), no information in terms of � can be derived by using I .

We can now de�ne the notion of doable queries , which are incorrectly typed queries that can be
answered in the presence of interval-based assumptions.

De�nition (Doable query)
We say that a query is doable (wrt the interval-based assumptions �) if for each subformula M(x1; : : : ; xn; t)
appearing in the query, where t is of type �, � can be reached from �M via some interval-based assump-
tions in �M.

The doability of queries is decidable if all conversion methods are speci�ed by MQLF formula tem-
plates that use no arithmetic operations and with the assumption that the IntSec predicate is precom-
puted into a �nite table with a constant lookup time. Unfortunately, the complexity of the decision
procedure even under these simplifying assumptions is rather high.

Proposition 5 Let � be a set of interval-based assumptions whose conversion methods are speci�ed by
MQLF formula template with the above simpli�cation and assumption. Then, the problem of determining
if a query is doable under � is decidable, but the complexity of such a decision procedure is at least
22

cn

where n is the length of the query and c is a constant.
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In terms of practical systems, we require that the system designer gives explicit information about
interval-based assumptions. We identify below two main kinds of interval-based assumptions: upward
and downward assumptions.

De�nition We say that an assumption I is upward (downward, resp.) if for each type � coarser (�ner,
resp.) than �, type � can be reached from � via I .

Clearly, the liquidity assumption is both upward and downward. It is easy to de�ne in MQLF the
two variants of liquidity so that one works as upward heredity and the other as downward heredity. Each
one has only one of the two properties de�ned above. If our interval-based assumptions are all upward
and/or downward, doability is easily checked.

Similar to the point-based assumptions, we may de�ne query answers with interval-based assump-
tions and assumption-captured version of queries:

De�nition Let � be a set of interval-based assumptions and Q a MQLF query wrt �. Let V be the set
of all the temporal types of the variables and constants appearing in Q, and for each Mi in DB and � in
V , let Mi;� = (Ri; �i; 'i), where for each j � 1, 'i(j) =

S
I2�Mi

'fI(Mi;�)(j). Then the answer of Q with

assumptions � (denoted by Q[DB;�]) is Q[DB], where

� DB = fMi;� j Mi 2 DB and � 2 Vg, and

� Q is the the query obtained by changing each Mi(x1; : : : ; xk; t) to Mi;�(x1; : : : ; xk; t) in Q, where �
is the type of t.

A query Q0 is called �-captured version of Q if Q0[DB] = Q[DB;�].

That is, to answer a query with assumptions �, one needs to (a) obtain, via the given interval-based
assumptions, the temporal modules in terms of the temporal type used in the query, and (b) change the
occurrences of the temporal module predicates to address the \new" temporal modules. The altered
query is obviously correctly-typed, and it is then answered in a usual way over the altered database. A
�-captured version is a query which will obtain, without changing the database, the correct answer of
the original query with assumptions.

Algorithm 2 Given an MQLF query Q on a temporal database with interval assumptions, Q is trans-
formed in a query Q0 on the original modules by substituting each occurrence of an atom M(x1; : : : ; xn; t),
where each xi is a data variable or constant and t is a variable or constant of type �, with

	M;�
I1

(x1; : : : ; xn; t) _ : : : _ 	M;�
Ik

(x1; : : : ; xn; t)

where I1; : : : ; Ik are all the interval assumptions in �M. 2

Theorem 3 Given a query Q and a set of interval-based assumptions � as inputs to Algorithm 2, the
query obtained by the algorithm is a �-captured version of Q.

7 Combining Point-Based and Interval-Based Assumptions

If both point-based and interval-based assumptions are present in �M, the interval-based assumptions
must be applied on the minimal closure of M with respect to the point-based assumptions. This is quite
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intuitive, since values at ticks in di�erent temporal types can be derived by conversion using values not
present in the original module, but may be implied by point-based assumptions. For example, suppose
the module contains the value of an attribute for the �rst day of the year and no value for the other
days. Moreover, suppose we know that that attribute persists and that it is liquid. If we ask what is
its value for the whole year, we can answer only by applying �rst persistence to derive that value for
each day of the year, and then by applying the liquidity to derive the value for the whole year.

The answer to a query in the presence of both point-based and interval-based assumptions is de�ned
by combining the de�nition of the query answering with point-based assumptions and interval-based
assumptions. That is, �rst, the closures of the temporal modules are obtained by point-based assump-
tions. Then the temporal modules are changed, by interval-based assumptions, into modules in terms
of the types requested by the given query. The formal de�nition of answer can be given as follows:
Q[DB;�I [ �P ] = Q[DB] where

� DB = fMi;� j Mi;� =
S
T

I2�Mi
fI(Mi; �); Mi is the minimal closure of Mi 2 DB and � 2 Vg, and

� Q is the the query obtained by changing each Mi(x1; : : : ; xk; t) to Mi;�(x1; : : : ; xk; t) in Q, where �
is the type of t.

The notion of assumption-captured version can be de�ned easily. To obtain assumption-captured
versions, one only needs to apply Algorithm 1 �rst and then Algorithm 2.

Theorem 4 Let � be a set of point-based and/or interval-based assumptions and Q an MQLF query.
Then, Algorithm 1 and 2, applied in this order, yield a �-captured version of Q.

Example 4 Let DB=fACCOUNTS, RISKSg, where ACCOUNTS and RISKS are temporal modules of Ex-
ampls 1 and 2 respectively, � = fP1; P2; I1; I2g where
P1 = PAcctNo((AccHol; Balance;AnIntRate)

persis),
P2 = PAccHol(EstRiskavg),
I1 = IAcctNo((AccHol; AnIntRate)

l; Balancelast), and
I2 = IAccHol(EstRisk

l).
Consider the query

Q = fx; t : month j 9y; z; w; r (ACCOUNTS(x; y; z; w; t)^ z < 1000 ^ RISKS(y; r; t)^ r > 3)g

This query asks for accounts having a balance under $1,000 and such that the estimated risk for their
account holder is greater than 3. The query asks for these account numbers in terms of months. This
means that only the accounts such that those conditions are veri�ed on an interval corresponding to
a month would be returned in the answer. The answer Q[DB;�] can be obtained applying �rst the
point-based assumption P1 and P2 respectively on the two modules in DB. Then, applying the interval-
based assumption I1 and I2 respectively to the resulting modules, they will be converted in terms of
type month. The application of P1 and P2 ensures that there will be at least one tuple respectively for
each second in ACCOUNTS and for each day in RISKS. About interval-based assumptions, since Balance

is converted using last and the other attributes in ACCOUNTS are liquid, the resulting MONTHLY-ACCOUNTS

has the following windowing function:
'(i) = f(1001; J:Smith; 3500; 4:00); (1500;A:Brady; 1500; 3:00); (2034;T:Ford; 500; 2:50)g
for April of 1993� i � June of 1993 and
'(i) = f(1001; J:Smith; 4000; 4:00); (1500;A:Brady; 1500; 3:00); (2034;T:Ford; 500; 2:50)g
for i � July of 1993. Similarly, the resulting MONTHLY-RISKS has windowing function
'0(j) = f(Smith; 3); (Ford; 3:5)g for March of 1993� j � May of 1993, and empty for other ticks.
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The answer can now be computed evaluating Q on this new database and in this case it is a module
whose windowing function has the only value 2034 for ticks corresponding to April and May of 1993.
Theorem 4 says that we don't need to compute this new database, but we can simply modify the query,
yielding the same answer. 2

8 Safety

As in the traditional relational calculus, we require that MQLF queries be \domain independent" [Ull88].
Since scalar functions are used in MQLFqueries, the notion of domain independence needs to be extended.
Here we adopt the notion of embedded domain independence of [EMHJ93]. Intuitively, an MQLF query is
embedded domain independent if its answer only depends on the embedded domain, where the embedded
domain consists of (a) the values that appear in the database, called active domain, and (b) the values
from a bounded number of function applications on the active domain.

De�nition Given a set � of assumptions, a query Q is embedded domain independent wrt � if the
(non-temporal) values in the answer of Q with assumptions � are from the embedded domain.

Embedded domain independence for MQLF is undecidable. We thus follow [Ull88] to give a syntactic
restriction on allowable MQLF queries.6 An MQLF formula is said to be safe if it satis�es the four
conditions given on page 153 of [Ull88] modi�ed as follows: First, we ignore the temporal variables
appearing in the formula. (Variables and functions of the di�erent sorts are in fact strictly separated.)
That is, the four conditions [Ull88, p.153] only apply to non-temporal variables. Second, we have to
take into account the fact that we allow mathematical functions. Speci�cally, for condition 3 of [Ull88,
p.153], we add the fact that a (data) variable x is also limited if it is assigned to the result of a function
applied on limited variables, i.e., if x = f(y1; : : : ; ym) is a subformula, then x is limited when y1, : : : ,
ym are all limited.

An MQLF query fx1; : : : ; xk; t:�j�g is said to be safe if the formula � is safe.

It is easily seen that a safe MQLF query is embedded domain independent. This in particular
means that if the set of data (non-temporal) values appearing in the database is �nite, then the set of
(non-temporal) values appearing in the answer of a safe query is also �nite.

Consider now the answer of a query with a set of semantic assumptions. A safe query does not
guarantee embedded domain independence unless the assumptions satisfy certain conditions.

De�nition A point-based (resp. interval-based) semantic assumption P (resp. I) is said to be safe if
	M
P is safe for any temporal module scheme M (resp. 	M;�

I is safe for any temporal module scheme M and
type �).

Persistence and heredity assumptions are easily seen as safe point-based and interval-based assump-
tions, respectively. Since a semantic assumption can be represented as an MQLF query, its safety implies
embedded domain independence.

The following proposition formally states that the condition on the safety of assumptions is su�cient.

Proposition 6 If Q is a safe query and � a set of safe assumptions, then Q is embedded domain
independent with respect to �.

6A more elaborate criterion called \embedded allowed" appeared in [EMHJ93].
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We conclude, by the following proposition, that to ensure the embedded domain independence of
the query that we are evaluating, it is su�cient to check the safety of the original query if all the
assumptions are assumed to be safe.

Proposition 7 Let Q be a query and � a set of assumptions. Suppose each assumption in �, as well
as Q, is safe. Then Q0, obtained by the transformation from Q according to �, is embedded domain
independent.

Proof. By Theorem 4, Q0[DB] = Q[DB;�]. By Proposition 6, Q is embedded domain independent wrt
�. Hence, Q0 is embedded domain independent. 2

Unlike the traditional relational databases, however, the �niteness of (non-temporal) values appear-
ing in an answer does not guarantee the \�niteness" of the answer. Many natural semantic assumptions
lead to in�nite answers. In Example 3, the answer to the query Q = fx; t j 9y; z; w (ACCOUNTS(x; y; z; w; t)^
z < 1000)g, asking for the accounts (and the times) that have a balance under $1,000, is in�nite. Indeed,
the windowing function ' of the resulting module is non-empty ('(i) = f2034g) for an in�nite number
of ticks. Note that the number of di�erent (non-temporal) values in the answer is �nite.

The above in�nite answer, however, shows a particular characteristics, namely, for each time i which
is after a certain �xed time tmax, the value (set of tuples) associated with i ('(i)) is always the same.
We call such an in�nite temporal module \eventually uniform."

De�nition We say that a module is eventually uniform if after a certain tick its windowing function
always gives the same value. Formally, a temporal module M = (R; �; ') is eventually uniform if there
exist tmax such that '(i) = '(tmax) for each i > tmax.

Note that a representation equivalent to an eventually uniform module is used in almost all temporal
extensions of relational databases. A typical way of representing the eventual uniformity is associating
to a value/tuple the interval [c1, 1], where c1 is a time constant.

In this section, we show that every 
at-MQLF query gives eventually uniform answers if the temporal
modules in the database are all eventually uniform and each assumption is expressed using a 
at-
MQLF formula. We start, however, with a more general notion and result for MQLF queries.

De�nition We say that a temporal module is 1st-order �nitely partitioned (1fp-module for short) if
there always exists a partition of its ticks into a �nite number of sets such that its windowing function
always gives the same �nite set of tuples within these sets. Moreover each such set of ticks can be
speci�ed by a �rst-order formula with only temporal variables and the predicates IntSec and <.

Theorem 5 The answer to an embedded-domain independent MQLF query on a database with as-
sumptions is always 1st-order �nitely partitioned if each module in the database is 1st-order �nitely
partitioned.

We now show that the 
at-MQLF language enjoys a better property regarding query answers.

Theorem 6 Let � be a set of assumptions expressed in terms of 
at-MQLF formulas. The answer
to an embedded-domain independent query in 
at-MQLF on a database with assumptions � is always
eventually uniform if each temporal module in the database is eventually uniform.
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Moreover, the value tmax of the tick after which the answer is always the same can be computed for
each query Q and input modules M1; : : : ; Mk with assumptions �. Indeed, the whole process described in
the proof of Theorem 6 is a syntactical process from which tmax can be derived.

To conclude this section, we mention that Theorem 6 does not hold for MQLF queries. Consider
a temporal module (R; day; '), where R = hNameOnDutyi, which speci�es the person on duty for each
day. The persistence assumption is assumed on the module, i.e., if no one is speci�ed to be on duty on
a speci�c day, the last person on duty should continue. Now consider the following query:

fx; i : dayjM(x; i)^ 9j : month(IntSecmonth;day(j; i)^ :9i2 : day(IntSecmonth;day(j; i2)^ i2 < i))g:

This query asks the list of persons (and the days) who are on duty on �rst day of month. Clearly, the
result module is usually not eventually uniform. Indeed, the result module alternates a non-empty tick
(i.e., '(i) 6= ;) with a sequence of empty ticks (i.e., '(i) = ;), up to the in�nite.

From the results of this section, we conclude that when a temporal database involves only one
temporal type, then we need only eventually uniform temporal modules. This justi�es the choice
researchers have made in most temporal database literature. On the other hand, if more than one types
are involved, then eventual uniformity does not seem to be enough. We may have to resort to �rst-order
�nite partitioning. Ultimate periodicity (such as [KSW90]) may be a good candidate as a special case
of �rst-order �nite partitioning.

9 Conclusion

This paper introduced the notion of semantic assumptions for temporal databases. Semantic assump-
tions allow a compact representation of potentially in�nite temporal data; they can be used to compute
values not explicitly given and to convert data from one temporal type to another. While some of
these assumptions have been extensively used in the literature on temporal databases, they were not
adequately formalized. This paper gives such a formalization considering two very general classes of
assumptions: a) point-based assumptions used on temporal databases with a single temporal type; and
b) interval-based assumptions that are speci�c for databases allowing di�erent temporal types.

A temporal database with a set of assumptions is equivalent to a larger (sometimes in�nite) database
where values (implied by assumptions) are made explicit. We de�ned as the minimal closure of the
database the minimal of these databases with explicit values. If each assumption involves all the
attributes of the scheme to which it is applied, then this minimal closure is unique. This condition can
be seen as a limitation, but it can be relaxed for the purpose of answering queries. One option is to
introduce \don't care" values into the query language. For example, the query language could allow to
talk about part of a temporal module: if M is a temporal module on a scheme with three attributes, the
formula could contain M(x; �; y; t), where � is a don't care. In this case, the \don't care" may not have
a value. This can be a straightforward extension of our work.

Another interesting issue concerns the expressiveness of the query language. Even though MQLF is
a powerful language, there are certain assumptions that cannot be speci�ed. An example of derivation
method that cannot be speci�ed is weighted sum, where a value is computed as the weighted sum of a
set of values using as weights the tick numbers that attach to the values of the set. Indeed, MQLF does
not allow terms of temporal sorts as arguments of functions.

There are also interval-based assumptions that cannot be expressed in MQLF. Consider a summation
conversion method deriving an attribute value at a tick of time as the sum of the values at ticks of �ner
temporal types contained in it. It is impossible to express this method without having a bound on the
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number of ticks contained in each coarser tick. Hence, to represent this kind of methods we require an
additional constraint on the set of types used in the database:

Given an arbitrary type � in the set, it exists a number k (bound) such that each tick of
� contains at most k ticks of each other type in the set.

In the case of summation this condition ensures that there is a bound to the number of values that will
be summed. Observe that the above requirement is satis�ed for many sets of types of practical utility.

There are other interval-based assumptions that cannot be expressed in MQLF. For example, con-
sider a conversion function saying that values in terms of months can be derived from values in terms
of years by dividing it by 12. The e�ect of an assumption using this conversion should be limited to
months and years, but there is no way to do so using MQLF. To take into account this kind of conversion
function it is necessary to introduce the notion of an interval-based assumption restricted to a subset
of the temporal types of the database. Extending the expressiveness of our query language along this
direction should not a�ect the results reported in the paper.

In addition to the formalization of semantic assumptions, a major contribution of the paper is a
simple method to transform a query on a temporal database with assumptions into a new query on the
same database but without assumptions, so that it is not necessary to compute the minimal closure
of each module in the database to obtain the answer. The same algorithms can probably be used to
check constraint satisfaction on temporal databases with assumptions. For example, dynamic integrity
constraints are speci�ed in [Cho92] using Temporal Logic (TL); it is easy to show that every formula
in TL can be translated into an equivalent formula in MQLF.
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Appendix

A.1 Proof of Proposition 1

Proof. Let M be a temporal module on (R; �). Since each assumption P in � involves all the attributes
in R, fP (M) is a temporal module on (R; �) by de�nition. Assume fP (M) = (R; �; 'P ) for each P in �
and letM = (R; �; '), where ' is de�ned as follows: For each positive integer i, '(i) =

S
P2� 'P (i). It is

easily shown thatM is a minimal closure ofM under �. Indeed, it is clear thatM is a closure ofM under
�. It is also clear that M is a minimal closure of M under � since, if a tuple t is dropped from '(i) for
some i, then 'P (i) 6� '(i) for some P 2 � andM is no longer a closure. We now show that this minimal
closure is unique. Suppose by contradiction that there exists a temporal module M1 = (R; �; '1) such
that M1 6=M and M1 is a minimal closure of M under �. By de�nition, fP (M) �M1 for each P 2 �.
Hence, 'P (i) � '1(i) for each P 2 � and

S
P2� 'P (i) � '1(i) for each positive integer i. By the

de�nition of M above, it follows that '(i) � '1(i) and we conclude that M �M1. This contradicts to
the fact that M1 6=M and M1 is a minimal closure of M under �. 2

A.2 Proof of Proposition 2

Proof. Let P1 = PX(Y
meth1
1 : : : Y methk

k ) and P2 = PX(W
meth1
1 : : :Wmethk

k ) such that Wj � Yj for
each 1 � j � k. We show that P1 j= P2. Let M = (R; �; ') be a temporal module and M =
(R; �; ') be a closure of M under P1. We only need to show that M is a closure of M under P2.
Since M is a closure of P1, we have fP1(M) � �TXY1���Yk

(M). Let fP1(M) = (R; �; '0), and for each

1 � j � k, let methj(X; Yj;M) = (XYj ; �; 'Yj ). By de�nition, 'Y1 (i) ./ � � � ./ 'Yk (i) = '0(i) and
'0(i) � '(i) for each positive integer i. Furthermore, let fP2(M) = (R; �; '00) and methj(X;Wj;M) =
(XWj; �; '

W
j ) for each 1 � j � k. By de�nition, '00(i) = 'W1 (i) ./ � � � ./ 'Wk (i) for each positive integer

i. Let i be a positive integer. To show that M is a closure of M under P2, it su�ces now to show
that '00(i) � �XW1���Wk

('(i)). By de�nition again, methj(X;Wj;M) = �TXWj
(methj(X;Wj;M)) =

methj(X;Wj; �
T
XWj

(M)) = �TXWj
(methj(X; Yj;M)). Therefore, 'Wj (i) = �XWj

('Yj (i)). Hence, '
00(i) =

�XW1
('Y1 (i)) ./ � � � ./ �XWk

('Yk (i)). Since Y1, : : : , Yk are pairwise disjoint, it is clear now that '00(i) =
�XW1���Wk

('Y1 (i) ./ � � � ./ '
Y
k (i)) = �XW1���Wk

('0(i)) � �XW1���Wk
('(i)). 2

A.3 Proof of Theorem 1

Proof.
Soundness
Let Z � X . We only need to prove that PZ(V persis) is implied by PX(Y persis) where V = (X nZ)[ Y .
[Indeed, if this is the case, by Proposition 2, we know that PZ(W persis), where W � V , is implied by
PX(Y

persis).] In order to show this, let M = (R; �; ') be an arbitrary module and M a closure of M
under PX(Y persis). Let V = (X n Z) [ Y . By de�nition, we have fPX (Y persis)(M) � �TXY (M), and

we need to prove that fPZ(V persis)(M) � �TZV (M). By the speci�cation of the persistence semantics,
fPZ(V persis)(M) = (XY; �; '0) where, for each i � 1, '0(i) = �XY '(i)[ �XY SZ where SZ = ft j 9j j <
i; tj 2 '(j) and 8k; tk (j < k � i ^ tk 2 '(k)) ) tk[Z] 6= tj [Z]g. Note that fPX (Y persis)(M) =
(XY; �; '00) where, for each i � 1, '00(i) = �XY '(i)[ �XY SX and SX is de�ned as SZ with X in place
of Z. Since Z � X , it is easily seen that tk [Z] 6= tj [Z] implies tk [X ] 6= tj [X ] and hence, SZ � SX .
Therefore, fPZ(V persis)(M) � fPX (Y persis)(M) � �TXY (M).

Completeness
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Let P = PZ(W
persis) be a persistence assumption and � a set of persistence assumptions. Assume that

for each PX(Y
persis) in �, either Z 6� X , or Z � X but W 6� (X n Z) [ Y . To prove the completeness,

we only need to show that there exists a temporal module M such that a closure of M under � is not a
closure ofM under P . Let R be a relation scheme including all attributes appearing in the assumptions
that we are considering, and � an arbitrary type with at least two non-empty ticks. We de�ne the
module M = (R; �; ') with '(1) = f(1; : : : ; 1)g, '(i) = ; for each i � 3 and '(2) de�ned as follows: For
each assumption PX(Y

persis) 2 �, if Z 6� X , '(2) includes the tuple t with t[X ] = 1 and t[R nX ] = 0.
For each assumption P 0 = PX(Y

persis) in �, assume fP 0(M) = (XY; �; 'P 0). We now give a minimal
closure of M under �. Let M = (R; �; ') be the temporal module on (R; �) whose windowing function
' is de�ned as follows: '(1) = '(1) and for each i � 2,
(*) '(i) = '(i)[ ft0 j 9P 0 = PX(Y

persis) 2 �; t0[XY ] 2 'P 0(i) and t0[R nXY ] = 0g.
It is easy to verify that M is a closure of M since M � M and fP 0(M) � �XY (M) for each P 0 =
PX(Y

persis) in �. Let fP (M) = (ZW; �; 'P ) and t be the tuple on ZW with t[A] = 1 for each A 2 ZW .
It is easily seen that t is in 'P (2). Indeed, by the construction of M , for each tuple t0 in '(2), there
exists P 0 = PX(Y

persis) in � with Z 6� X such that t0[A] = 1 if A 2 X and t0[A] = 0 otherwise. Since
t[A] = 1 for each A 2 Z, it is now clear by such a construction that t0[Z] 6= t[Z] for each t0 2 '(2).
Hence, by persistence, t is derived from the tuple (1; : : : ; 1) in '(1) by the persistence P = PZ(W persis),
i.e., t is in 'P (2).

We now prove that M is not a closure of M under PZ(W persis) by showing that t 62 �ZW'(2). In
order to do this, since t 62 �ZW ('(2)), by (*), we need only to show that for each P 0 = PX(Y

persis) 2 �,
there does not exist t0 2 '(2) such that t0[XY ] 2 'P 0(2) and t0[ZW ] = t. Let P 0 = PX(Y persis) be in
�. Two cases arise: (a) Z 6� X and (b) Z � X but W 6� (X n Z) [ Y . Consider (a). Note that by the
construction of '(2) and the persistence assumption, 'P 0(2) = �XY ('(2)), i.e., no tuple is derived from
the tuple (1; : : : ; 1) in '(1), and hence, we know that t 62 �ZW ('(2)). Consider (b). In this case, there
exists an attribute A 2 W such that A 2 (R nXY ). Let t0 be in 'P 0(2). This tuple is either already
in '(2) (in this case, t0[ZW ] 6= t as we reasoned above), or it is derived from the tuple (1; : : : ; 1) in
'(1) by P 0. In this latter case, we know that t0[XY ] = (1; : : : ; 1) and t0[R n XY ] = (0; : : : ; 0). Since
t[ZW ] = (1; : : : ; 1) and there exists A 2 W such that A 2 (R nXY ), it follows that t0[ZW ] 6= t. 2

A.4 Proof of Theorem 2

Proof. Let Q be a correctly-typed query on a database DB with a collection � of point-based assump-
tions expressed in flat�MQLF, and Q0 the query obtained by Algorithm 1 with Q and � as inputs.
In order to prove the theorem, we show that Q0[DB] = Q[DB;�]. Suppose DB = fM1; : : : ;Mkg.
We know that, by de�nition, Q[DB;�] = Q[DB] = Q[M1; : : : ;Mk], where each Mi is the minimal
closure of Mi. The query Q, as any query in MQLF, has the form fx1; : : : ; xn; t : � j 	(x1; : : : ; xn; t)g.
However, for simplicity of the proof, we generalize the query to have more than one free temporal
variable. Hence, Q has the general form: fx1; : : : ; xn; t1 : �1; : : : ; tm : �m j 	(x1; : : : ; xn; t1; : : : ; tm)g.
We use induction on the structure of the formula 	. Since the transformation is only concerned
with atomic formulas of the type M(), the case when 	 = M1(x1; : : : ; xn; t) where M1 is an ar-
bitrary module in DB is the crucial step of the proof. In this case, to evaluate Q on the clo-
sure of DB, i.e. the closure of M1, it means considering M1() instead of M1() as a predicate in
Q. Hence, Q[DB] = fx1; : : : ; xn; t j M1(x1; : : : ; xn; t)g = M1. From the algorithm we have: Q0 =
fx1; : : : ; xn; t j 	M

P1
(x1; : : : ; xn; t) _ : : : _ 	M

Pl
(x1; : : : ; xn; t)g where P1, : : : , Pl are all the assumptions

in � containing all the attributes in M. We now show that Q[DB] = Q0[DB] in this case. By de�nition,
M1 is the minimal module having the same temporal module scheme as M1 such that fPi(M1) �M1 for
each 1 � i � l. We know that the assumption mappings can be expressed in flat�MQLF; for example,
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fP1(M1) = fx1; : : : ; xn; t j 	
M1
P1
(x1; : : : ; xn; t)g. By Proposition 1, M1 is the temporal module whose

windowing function is given by 'M1(t) = fx1; : : : ; xn j 	M
P1
(x1; : : : ; xn; t) _ : : : _ 	M

Pl
(x1; : : : ; xn; t)g

for each time t, since the logical or (_) corresponds to the union operation. From this fact it is clear
that the evaluation of Q0 on DB gives exactly the same tuples present in M1 and this concludes the
proof of the case when the atomic formula is M1(). Other cases of atomic formulas regard comparisons
among variables: xi < xj , xi = xj , ti < tj , ti = tj , and IntSec�;�(ti; tj). When 	 is one of these
formulas, no transformation is done and the answer is independent from DB. Hence, the theorem holds
in these cases. Given that the theorem holds when 	 is an atomic formula, we can easily apply the
induction step to complete the induction. However, the induction is trivial since the transformation
does not a�ect other constructs of a given formula. We thus omit the induction step and conclude that
the theorem holds. 2

A.5 Proof of Proposition 5

Proof. To prove the proposition, we �rst argue that it is decidable if a type � can be reached from
type � via the interval-based assumption I = IX(Y

conv), where the semantics of conv is speci�ed by a
MQLF formula template. Indeed, by condition 3 in the de�nition of the semantics for conversion methods,
a type � can be reached from type � via I if and only if it can be reached via I 0 = IX(Aconv), where A is a
single attribute in Y . Furthermore, by condition 4 in the same de�nition, the type � can be reached from
type � via IX(Aconv) if and only if there exists a temporal module M = (XA; �; ') with the condition
that t[X ] is a �xed constant for all tuples t in the module, and such that fx1; : : : ; xk; t:�j 	

M;�
IX (Aconv)g is

not empty. For each predicate M(x1; : : : ; xn; t) appearing in 	M;�
IX (Aconv), we may simply replace it with

Mxn(t) ^ x1 = a1 ^ � � � ^ xn�1 = an�1 assuming that the constant for X is a1; : : : ; an�1. (Here, without
loss of generality, we assume that A is the last attribute in M.) Furthermore, replace any quanti�er 9x
and 8x by 9Mx and 8Mx, and replace x = y by 8t0(Mx(t0) �My(t0)). Note that t0 < t00, where t0 and t00

are time variables, will be unchanged in the formula. Call such changed formula 	0, which is in monadic
second-order logic. It is easily seen that the formula 	0 is valid i� the original 	 is valid. It is known
[GHR94, page 558] that the validity of the formulas in this logic is decidable since the linear order we
use is a discrete (integer) order. Hence, it is decidable if (	M;�

IX (Aconv)) can be satis�ed by a temporal

module, i.e., whether the query fx1; : : : ; xk; t:�j 	
M;�
IX(Aconv)g is always empty or not. Thus we conclude

that, for a given arbitrary assumption I of the form IX(Y
conv) and types � and �, it is decidable if �

can be reached from � via I .

It is now easily seen that, for a given arbitrary assumption I and types � and �, it is decidable
if � can be reached from � via I . [The reason is that the semantics of an interval-based assumption
that involve more than one conversion method, is the join of the semantics of each conversion method.]
From this, we conclude that the problem of whether a query is doable is decidable.

The lower bound of the complexity of the decision procedure for the above monadic second-order
logic formula is 22

cn
according to [FR79, page 3]. 2

A.6 Proof of Theorem 3

Proof. Let Q be a query on a database DB with a collection � of interval-based assumptions expressed
in MQLF, and Q0 the query obtained by Algorithm 2 with Q and � as inputs. In order to prove the
theorem, we show that Q0[DB] = Q[DB;�]. Suppose DB = fM1; : : : ;Mkg. Let �1; : : : ; �r be all
the temporal types appearing in the database DB and assumptions in � and in the query Q. Let
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DB = fM1;�1 ; : : : ;M1;�r ; : : : ;Mk;�1 ; : : : ;Mk;�rg, where eachMi;�j is the union of the modules fI (Mi; �j)
for each interval-based assumption I 2 � involving all the attributes in Mi. Let Q be the query
obtained by changing each Mi(x1; : : : ; xk; t) to Mi;�(x1; : : : ; xk; t) in Q, where � is the type of t. By
de�nition, Q[DB;�] = Q[DB]. We only need to show that Q0[DB] = Q[DB].

The query Q, as any query in MQLF, has the form fx1; : : : ; xn; t : � j 	(x1; : : : ; xn; t)g. However,
for simplicity of the proof, we generalize the query to have more than one free temporal variable.
Hence, Q has the general form: fx1; : : : ; xn; t1 : �1; : : : ; tm : �m j 	(x1; : : : ; xn; t1; : : : ; tm)g. We use
induction on the structure of the formula 	. The induction proof di�ers from that of Theorem 2 only
for the case when 	 = M(x1; : : : ; xk; t : �) where M is an arbitrary module in DB. In this case we
have Q = fx1; : : : ; xk; t : � j M�(x1; : : : ; xk; t)g that, evaluated on DB gives Q[DB] = M� . From the
algorithm we have: Q0 = fx1; : : : ; xk; t : � j 	

M;�
I1
(x1; : : : ; xk; t) _ : : : _ 	M;�

Il
(x1; : : : ; xk; t)g where I1,

: : : , Il are the interval-based assumptions in � containing all the attributes in M. We now show that
Q[DB] = Q0[DB] in this case. By de�nition, M� is the module having the same attributes and temporal
type as M and de�ned as fI1(M; �) [

T : : :[T fIl(M; �). We know that the assumption mappings can be

expressed in MQLF; for example, fI1(M; �) = fx1; : : : ; xk; t : � j 	
M;�
I1
(x1; : : : ; xk; t)g. Hence, M� is such

that its windowing function '(t) = fx1; : : : ; xk j 	
M;�
I1
(x1; : : : ; xk; t) _ : : : _ 	M;�

Il
(x1; : : : ; xk; t)g for each

time t. From this fact it is clear that the evaluation of Q0 on DB gives exactly the same tuples present
in M� and this concludes the proof of this case. The rest of the induction proof is trivial as in the proof
of Theorem 2 and thus omitted.

2

A.7 Proof of Proposition 6

Proof. If the query Q is on a generic database M1; : : : ;Mk the only predicates appearing in Q will be
Mi() for any 1 � i � k. Each predicate instance corresponds to the closure of a module in the database
accordingly with the point-based assumptions or it corresponds to a module derived accordingly to
interval(or interval + point)-based assumptions. Since the assumptions are assumed to be safe, the
values in the minimal closures of these modules will be either from the database or from function
application on values of the database. Hence, the syntactic conditions of safety of Q and � ensure that
the values resulting from the query are either from the database or from a bounded number of function
applications on values in the database, and we can conclude that Q is embedded domain independent
wrt �. 2

A.8 Proof of Theorem 5

Proof. Given a general query Q on a set of modules M1; : : : ; Mk with assumptions �, by Theorem 4 we
know that its answer is the same as that of the query Q0 on M1; : : : ; Mk without assumptions, where Q

0

is obtained by the transformations of Algorithms 1 and 2 using assumptions �. Hence, without loss of
generality, we will only show that for each query on a database (without assumptions), its answer is
1st-order �nitely partitioned.

For each 1fp-module, since the number of tuples in a temporal module are assumed �nite (i.e., the
set

S
i�1 '(i) is �nite), M can be represented by the following formula

 M(w1; : : : ; wn) = (w1 = a11 ^ : : : ^ wn = a1n ^ �1(t))_ : : :_ (w1 = ar1 ^ : : : ^ wn = arn ^ �r(t));

where each �j is a MQLF formula involving only temporal variables and temporal predicates (IntSec
and <). Each subformula in the disjunction identi�es an n-tuple, and the formula �j(t) identi�es the
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set of ticks at which that tuple is valid. For example, the subformula (w1 = a ^ w2 = b ^ ((1 <
t ^ t < 4) _ t > 8)) represents the tuple (a; b) in M as present at each tick between 1 and 4, and at
each tick greater than 8. Note that the number r of subformulas in the above disjunction equals the
number of di�erent tuples in a module. Hence, 	M has a �nite length for each 1fp-module M.
Let Q0 = fx1 : : :xm; t j  (x1; : : : ; xm; t)g. Let  

0(x1; : : : ; xm; t) be the formula obtained from  () by sub-
stituting each predicate M(w1; : : : ; wn; t

0) appearing in it by the corresponding formula  M(w1; : : : ; wn; t
0).

All the terms in  0 are of one of the forms xi � xj , where �2 f=; 6=;+; �;�; =g and tl � tm where
�2 f=; 6=; <;>g. It is always possible to transform  0 into a formula  00 having the following structure:

 00(x1; : : : ; xk; t) = ( 001(x1; : : : ; xk) ^ �1(t)) _ : : : _ ( 00s (x1; : : : ; xk) ^ �s(t)):

Each  00j (x1; : : : ; xk) is a �rst-order formula on the data domain with free variables x1; : : : ; xk and
involving only terms xi � xj . It intuitively identi�es a set of tuples in the answer. Each �j(t) is
a �rst-order formula on the temporal domain with the only free variable t and involving only terms
tl � tm. It intuitively identi�es the set of ticks at which the tuples speci�ed in  00j are in the answer.
This representation of the answer satis�es the de�nition of 1st-order �nitely partitioned module. Indeed,
there are a �nite number of sets of ticks, each identi�ed by a 1st-order formula �0j(t), forming a partition
of the target type and such that the value of the windowing function is the same for each set. 2

A.9 Proof of Theorem 6

Proof. From the proof of Theorem 5, the answer of a MQLF query takes the form:

 00(x1; : : : ; xk; t) = ( 001(x1; : : : ; xk) ^ �1(t)) _ : : : _ ( 00s (x1; : : : ; xk) ^ �s(t)):

Since now each �i(t) only involves one type of temporal variables and no IntSec predicate is used, we
may apply quanti�er elimination procedures [Coo72] to reduce each �i to �

0
i: a conjunction of temporal

terms with t as the only free variable. �0i intuitively identi�es a �nite set of intervals on time at which
the tuples must be in the answer module. For example, if  00j = (9y > 0 x1 + y = x2 ^ x2 = 10) and
�0j(t) = t > 8, the answer module will contain at each tick after 8, all the possible tuples having 10 as
value of the second attribute and a value less then 10 for the �rst attribute. Take tmax as the greatest
temporal constant appearing in all �0i. For each tick j after tmax, the formula  

00 identi�es the same set
of tuples as for tick tmax. Hence, the answer is eventually uniform, and this concludes the proof. 2
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