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Abstract

The Earth Observing System (EOS) Data and Information System (EOSDIS) is perhaps one of the most important examples
of large-scale, geographically distributed, and data intensive systems. Designing such systems in a way that guarantees that the
resulting design will satisfy all functional and performance requirements is not a trivial task. This paper presents a performance-
oriented methodology to design large-scale distributed data intensive information systems. The methodology is then applied to
the design of EOSDIS Core System (ECS). Performance results, based on queuing network models of ECS are also presented.
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I. Introduction

One of the most important examples of information systems that are large-scale, geographically distributed, and
handle very large volumes of data is the Earth Observing System (EOS) Data and Information System (EOSDIS). EOS
is a NASA program mission to study the planet earth. A series of satellites with scienti�c instruments aboard will
be launched starting in 1997. They will collect data about the atmosphere, land, and ocean. An estimated terabyte
of raw data will be sent to the earth every day. George Mason University (GMU) was one of three (the others were
Berkeley and North Dakota) selected universities to develop an independent architecture for EOSDIS Core System
(ECS). GMU put together an interdisciplinary team composed of Earth scientists, computer, and information scientists.
The Earth scientists of our team came fromGMU's Computational Science and Informatics Institute, from the University
of Delaware, the University of New Hampshire, and from the Center for Ocean-Land-Atmosphere Studies (COLA) in
Maryland. The authors of this paper were involved with the computer and information aspects of the architecture design.
A methodology had to be developed to design such a complex system. This methodology is performance oriented to
guarantee that the �nal design will satisfy the functional performance requirements of the system. The methodology
is general and can be applied to the design of any large-scale distributed data intensive information system. After
presenting the methodology, we discuss how it was applied to the design of ECS.

II. Large-Scale Distributed Data Intensive Information Systems

This section characterizes a large-scale distributed data intensive information system (LSS), provides the principles
to be used when designing an LSS, and gives the logical architecture of an LSS building block (the LSS Node).

A. Characterization of an LSS

Figure 1 depicts the various components of a LSS. Such systems can be characterized as follows:
� large number of users: the number of potential users of an LSS can range from 100,000 to millions of users.
� diverse user population: users may include researchers studying a particular domain of science running complex
simulationmodels (e.g., Earth scientists studying ocean circulation models), policy makers at governmental agencies
(e.g., Department of Energy, Environmental Protection Agency), international organizations (e.g., The World Bank),
private industries (e.g., the oil industry, timber industry), and K-12 students. Moreover, the users of an LSS are
assumed to be spread through very large geographical areas.

� diversity in user requirements: as a consequence of the diversity in user population one may also expect to have a
wide variation in user requirements. While some users may pose very simple queries to the system, other users may
submit complex requests that may involve evaluating very complex scienti�c models or correlating several image
�les. User requests may also vary widely in terms of the amount of data requested (from a few bytes to hundreds of
gigabytes). Di�erent types of users may have di�erent performance requirements and di�erent categories of users
may be assigned di�erent priorities to ensure that their performance requirements are met.
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� high data intensity: raw data is expected to arrive at an LSS from one or more sources (e.g., instruments mounted
on Earth orbiting satellites, particle accelerators) at very high rates (e.g., from terabytes to petabytes (1015 bytes)
per day).

� diversity in data types stored: the holdings of an LSS are assumed to include a large variety of data types, such as
raw data, large data sets resulting from applying complex algorithms to the raw data, images, metadata (i.e., data
describing the data), free format text, and multimedia documents.

� function distribution: the di�erent functions of an LSS should be implemented by components (LSS nodes) that
are geographically distributed. These components are connected through one or more interconnected networks.
Distribution is important to provide modularity, fault tolerance, and scalability to the design of an LSS.
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Fig. 1. A Large Scale Distributed Data Intensive Information System

B. Design Principles for an LSS

An LSS should adhere to the following principles:
� P1. Location transparency : users should be able to access any information object, including data products, meta-
data, and browse data, without having to know the physical location of these objects. This implies that data can
migrate to achieve load balance, cope with failures, and improve performance without disrupting the users of the
system.

� P2. Modularity : the architecture of an LSS should be composed of elements that can be con�gured to serve as
nodes of di�erent type, data processing, and storage capabilities, with the same underlying architecture.

� P3. Minimization of User Connections: the number of users that will access an LSS is very large. Thus, the system
should allow for users to do as much local work as possible before a connection to the LSS is made.

� P4. External processing capabilities: networks of workstations (NOWs) are an attractive alternative to make
available the idle cycles, unused mainmemory, and disk space of a collection of workstations, to parallel programs [1],
[2]. An LSS should be capable of registering idle CPU cycles at user facilities and schedule computations using
these cycles. There should also be a mechanism by which users of an LSS could pay for part of their usage through
cycles.

� P5. Separation of Functions: the functions provided by an LSS should be divided into related groups and imple-
mented by separate types of servers. This way, servers can be optimized to perform the functions they are best
suited for.

� P6. Scalability: an LSS should be scalable to take into account di�erent requirements that may exist at di�erent
stages of its lifecycle. Requirements may change as new data sources are incorporated into the system (e.g., new
data collection satellites being launched) and as new users learn about the system. The system should be scalable
on a selective basis. This means that if more I/O capacity at a given site is required, it should be possible to
upgrade the I/O subsystem without necessarily impacting the processing and networking capabilities.

� P7. Support for Heterogeneity: an LSS should support many di�erent types of processing paradigms to accommo-
date, as best as possible, the diversity of processing needs that may occur within a given complex application or
in the collection of applications submitted to the system. Machines of di�erent paradigms (e.g., SIMD, MIMD) as
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well as heterogeneous architectures (e.g., Cray's T3D) should be allowed to coexist at the processing servers. The
motivation for heterogeneity has been demonstrated in [20], [21], [22]. The Scheduler should take the heterogeneity
into account when making its decisions. Signi�cant work has been done in the area of metacomputing [6], [7] and
on scheduling of parallel applications in heterogeneous environments [16], [18], [19].

� P8. Minimization of Data Transmission: Data transmission should be kept to the minimum possible level. This
implies that data sets should be transmitted from source to destination with the minimum possible number of
intermediate nodes. This principle is particularly important in a LSS where huge volumes of data are transported
in and out of the system. A virtual client protocol was proposed [14] for minimizing data transfers in nested
client/server interactions.

C. Logical Architecture of an LSS

The basic building block of an LSS is the LSS node shown in Fig. 2. The functions of an LSS are provided by a
collection of interconnected LSS nodes.
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Fig. 2. Logical Architecture of an LSS Node

The basic logical architecture of such a node includes a collection of servers that implement the di�erent functions of
an LSS. Servers in an LSS node may act as clients with respect to other servers in the same or other LSS node. The
main types of servers in an LSS node are:
1. archival server: handles the storage of all types of data in an LSS node. This type of server may be further
specialized into archival servers of di�erent types.

2. metadata server: manages the collection of metadata relative to the data managed by the archival server.
3. processing server: handles processing requests to transform data sets of one type into data sets of another type.
4. query server: manages the processing of both ad-hoc and pre-registered queries.
5. scheduling server: schedules the processing requests using both local and remote processing servers. The scheduling
server may also use idle cycles located at user facilities. The set of scheduling servers in all LSS nodes, collectively
implement a global scheduler.

6. con�guration management server: monitors the operation conditions of the LSS node, collects statistics about the
utilization of its various resources, and recon�gures the node when necessary to cope with failures and performance
degradation.

7. catalog management server: maintains a directory of all objects managed by the LSS. The collection of all catalog
managers collectively maintain a global directory of LSS objects. The catalog managers are used to locate LSS
objects.

8. user management server: maintains information about registered users, their pro�les, accounting and security
information.

III. A Performance Oriented Design Methodology

Performance models play a crucial role in the design of complex information systems. They are useful to distinguish
among a variety of alternatives, both good and bad, assess the impact of architectural choices, predict potential bottle-
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necks, size hardware components, and evaluate if a proposed architecture will meet the performance requirements under
the expected workload.
This section describes a performance oriented system design methodology. The main thrust of this methodology is

to guarantee, by successive re�nements, that the architecture meets performance goals set forth in the requirements
analysis and speci�cation phase. The methodology is better explained with the help of Figure 3.
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Fig. 3. Performance Oriented Design Methodology

There are three basic inputs to the methodology: functional requirements, performance requirements, and the user
model. These three elements are shown as shaded clouds in Fig. 3. The functional requirements specify the functions to
be performed by the system. The performance requirements specify the requirements on performance when executing any
of these functions (e.g., maximum response time values, minimum throughputs). The user model describes the typical
interactions between users and the system. The user model also provides quantitative information on the frequency
with which users interact with the system, as well as the resource requirements per interaction (e.g., an Earth scientists
studying ocean circulation models will typically browse twenty 3 MByte images and then will run an ocean circulation
model that requires an average of 500 MFLOPs).
A domain model [9] is developed that reects, at the functional level, the interaction of the main system components.

The resulting domain model is then used to derive a client/server software architecture speci�cation which depicts the
message exchanges between clients and servers in the system. This client/server architecture is combined with the
user model to generate event sequence scenarios showing each type of user interaction. These scenarios are further
annotated with performance parameters such as request arrival rates, data volumes per request, server processing and
I/O requirements per request. The client/server software architecture drives a �rst-cut at the system architecture. The
client/server software architecture and the system architecture generate a software/hardware mapping that associates
logical servers to physical elements such as processors and network segments. The components of the system architec-
ture are assigned performance characteristics (e.g., network segment speeds, router latencies, I/O subsystem bandwidth,
processor speeds). Then, the performance annotated scenarios, the software/hardware map, and the architecture per-
formance characteristics are combined to generate input parameters to a performance model. The performance model is
based on analytical methods to solve mixed (i.e., open/closed) queuing networks [15]. The outputs of the performance
model include response times and throughputs for each type of request submitted to the system. An analysis of the
results of the performance model reveals the possible bottlenecks. If the architecture does not meet the performance
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objectives, architectural changes at the hardware and/or software level have to take place. These changes are guided
by the outputs of the performance model. These changes are reected back into the architecture and into the event
sequence scenarios. Successive iterations guarantee that the �nal design meets the performance objectives. Since the
design process is iterative, one starts with a �rst cut at the architecture and goes through successive re�nements to
meet the performance goals. These re�nements may imply combining servers into a single physical computing element,
changing the software architecture by creating additional servers, or changing the underlying hardware characteristics
(e.g., internal network bandwidth, processing element speeds, and I/O subsystem rates).
The methodology just described was used by the authors in the design of an alternative architecture for EOSDIS Core

System (ECS). The next section briey describes EOSDIS and ECS. The remaining sections of the paper discuss how
the methodology was applied to the speci�c design.

IV. EOSDIS and ECS

Raw data coming from the satellites is �rst received at the White Sands complex in West Virginia. After some initial
level of calibration, it is sent for archival and further processing at a collection of eight centers called Distributed Active
Archive Centers (DAACs). There are currently eight DAACs: Goddard Space Flight Center (GSFC), Langley Research
Center (LaRC), EROS Data Center (EDC), University of Alaska at Fairbanks (UAF), University of Colorado (CU), Jet
Propulsion Laboratory, (JPL), Marshall Space Flight Center (MSFC), Oak Ridge National Laboratory (ORNL), and the
Consortium for International Earth Science Information Network (CIESIN). The raw data received by the DAACs is said
to be Level 0 data. Level 0 data is used to generate Level 1 data, de�ned as reconstructed, unprocessed instrument data
at full resolution, time-referenced, and annotated with ancillary info. Environmental variables at the same resolution
and location as the Level 1 data are derived to generate Level 2 data. A set of variables mapped on uniform space-time
grid scales, with some consistency and completeness, are called Level 3 data. Finally, the model output or results from
analyses of lower level data is known as Level 4.
About 500 NASA selected scientists will determine which data products are to be generated by ECS (standard data

products). The facilities where these scientists are located are called SCFs (Science ComputingFacilities). The remaining
sections of this paper concentrate on EOSDIS Core System (ECS), and in particular on its Science Data Processing
Segment (SDPS).

V. The Layers of the Architecture

The architecture of ECS can be conceptualized as being composed of fours layers as indicated in Fig. 4: the Application
Layer, the ECS Services Layer, the Distributed Object Management Layer, and the CommunicationsManagement Layer.
The �gure shows how the functions and services of each layer are decomposed as well as how functions in one layer make
use of services in the same or lower layer. The Applications and ECS Services layers are the only ones in which ECS
concepts are known. The layers below are used to support the services provided by the two top layers. The functions of
the four layers are explained in the following subsections.

A. The Application Layer

The Application Layer is composed of functions that are executed both at user facilities and at ECS sites and deal
with ECS objects. ECS objects may be standard data products, metadata, browse products, algorithms, documents, or
support data (e.g., calibration and engineering data). The application layer functions fall into the following categories:
� Browsing Functions: allow EOSDIS users to navigate through the web of ECS concepts to discover what ECS
objects are available for retrieval or access. For example, an ECS user interested in studying the ozone layer may
�nd out, by using the browsing functions, that EOSDIS contains information about atmospheric composition and
that the MODIS instrument collects information about aerosol levels in the atmosphere.

� Query Functions: these are the functions used to formulate queries to retrieve ECS objects. For example, a user
may use the query functions to request EOSDIS to retrieve all sea-surface temperatures where the strengths of the
concurrent wind exceeds x Newtons/m2. If the result of the query exceeds a certain pre-determined threshold in
terms of volume of data to be transferred, the query functions must provide the user with an estimate of the volume
(in bytes) of the result of the query. Also, the user should be presented with alternatives for delivering the result of
the query: i) on-line delivery, ii) e-mail delivery, iii) e-mail noti�cation, iv) magnetic tape, and v) CD-ROM. Costs
as well as delivery time estimates are associated with each alternative to facilitate the users decision. Depending on
the size of the result, some alternatives are not even considered. Users will also use the query functions to retrieve
(order) standard data products. Through subscription functions, users may request EOSDIS to repeat a query at
regular time intervals (e.g., every three hours). Users should be able to give conditions under which the results of a
routinely repeated query are sent to him/her (ECS should allow for user provided \�lters" that will be run against
the result of a query to determine if the result should be sent to the user.) [principle P8 ]

� Data Access Functions: the data access functions constitute an API (Application Program Interface) through which
programs running at user facilities can access ECS data sets at the data granule level. This allows users to run
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Fig. 4. ECS Multi-Layer Framework

scienti�c applications that require large volumes of data to be executed at their facilities without requiring that
the entire collection of needed data sets be downloaded prior to the execution of the program. The API can also
be used by components of ECS to request subsets of data products needed to process or reprocess standard data
products.

� Product Processing Functions: these functions allow users to request the processing and reprocessing of standard
products. Not every EOSDIS user should be allowed to request ECS to process or reprocess a particular standard
product. Thus, these functions must ensure that the requesting user has the proper privileges to invoke these
functions.

� Product Archiving Functions: through these functions, users with the right privileges can request ECS to archive
a particular data product. These functions can be used to request the archival at determined sites of level 0 data
or it can be used to request that higher level products generated within a DAAC be stored at a particular archival
site.

� System Control Functions: most of the functions in this category are of interest to system administrators and can
only be invoked by users with the right privileges. Examples of such functions include:
{ reporting on overall system performance and on individual component performance: these functions provide

throughput and response time metrics as well as information on bottlenecks per workload type.
{ reporting on system and component failures and availability measures.
{ system recon�guration functions to meet performance and availability requirements.
{ user registration: these functions allow for users to register with EOSDIS. ECS must keep user security (password

and privileges) and pro�le information (used to optimize the processing of user requests) for each registered user.
{ billing functions: these functions generate bills to users for their use of EOSDIS.

B. ECS Services Layer

All services implemented by the ECS Services layer are independent of the location of the various servers that
implement the services [principle P1 ]. This allows for EOSDIS resources (data and processors) to be relocated to
comply with performance and availability requirements without the need to rebuild all the software running at the ECS
Services layer. Two types of names (of ECS objects and ECS servers) are handled within the ECS Services layer: a
logical name and a mapped name. The logical name for an object or server should be understandable by the users (e.g.
\MOD27" as a name for the Ocean Productivity standard product as it is known by earth scientists). ECS objects at
the Application Layer are only known by logical names. For each logical name there is a corresponding mapped name
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which is used by the Distributed Object Management Layer to physically locate the object. The mapped name acts as
a location independent object handle.
The services provided by the ECS Services Layer are:
� Information Management Services (IMS): these services provide the main interface through which the application
layer provides query, browsing, data access, product archival, product processing, and system control functions
to EOSDIS users. Depending on the type of user request, and based on directory information obtained from the
directory services, other services within the ECS Services Layer may be invoked to perform the requested function.
The IMS will typically request the result to be sent directly to the requesting user following a Virtual Client
Protocol (VCP) aimed at reducing the amount of data transfer [principle P8 ] when nested client/server interactions
exist. [14].

� ECS Object Management Services: these services support the implementation of the query, data access, and product
archiving functions.

� Product Processing Services: these services support all the functions included in the set of Product Processing
functions described in the Application layer.

� Directory Services: these services implement the mapping between logical names and mapped names. Every refer-
ence to an ECS object or ECS server within the ECS Services layer must use a mapped name. Thus, the Information
Management Services need to use the Directory services to obtain the mapped name for a logical name.

� Monitoring Services: these are the services that support all system control functions de�ned in the Applications
layer.

� Thesaurus Services: these functions are used to support the navigation through the web of ECS concepts provided
by the Browsing functions at the Application layer. A more detailed discussion on thesaurus service can be found
in [13].

C. Distributed Object Management Layer

At the interface between this level and the ECS services layer, objects are only known by their mapped names.
The mapping between mapped names and location dependent names is implemented at this level. Note that only this
mapping needs to be changed if ECS is recon�gured due to performance or component failure reasons. The services
provided by the Distributed Object Management layer are:
� Naming and Catalog Services: these services implement the mapping between mapped names and location dependent
names. Every time that a new ECS object is created at the ECS Services layer, a new mapped name is requested
from the Distributed Object Management layer. This layer, through the Naming and Catalog services, allocates
the object to an ECS physical location (ECS site). The ECS Services layer can provide guidance to the Distributed
Object Management Layer as to the location of the newly created object. Since the ECS Services layer follows the
principle of location transparency, it will tell the Distributed Object Management layer which other objects (given
by their mapped names) should be co-located, if possible, with the new object.

� Storage and Retrieval Services: these services are used to store and/or retrieve an ECS object. The mapping
between mapped and location dependent names is used to �nd the location of the object within EOSDIS.

D. Communication Services Layer

Two types of transport communication services are provided at this layer:
� Connection Oriented Transport Protocols: these services implement connection oriented protocols, such as TCP
(Transmission Control Protocol). These are the types of services to be used for the transmission of large data
streams when the sequence is to be preserved.

� Connection-less Transport Protocols: these services implement connection-less protocols, such as UDP (User Data-
gram Protocol) and they are used when short messages are to be exchanged by entities above the Communications
Management Layer.

VI. Client Access to EOSDIS

The access mechanism to EOSDIS is explained with the help of Fig. 5. Users access EOSDIS through a software
module called EOSDIS Access Module (EOSX) that must run at the user workstation. One of the main functions of
EOSX is to connect to a Client IMS (CIMS) that may or may not reside at the user's desktop. If a user does not have
a capable enough workstation to run a CIMS, he or she can always connect to a CIMS over a network.
The CIMS acts a server to EOSX but acts as a client to the Server IMS that runs at the DAACs. The Client IMS

has the following components:
User Interface Manager (UIM): manages the interaction with the users connected to the CIMS.
User Pro�le Manager (UPM): manages the user pro�les so that they can continue sessions from where they stopped
previously, and keeps track of the preferred areas of interest for the user.
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Service Request Manager (SRM): handles requests to ECS services, to be passed on to the Distributed Services Man-
ager, as well as requests to manipulate local objects (local objects may be browse products or data products
previously retrieved from ECS and cached for the user at the CIMS).

Local Thesaurus Manager (LTM): maintains a local subset of the Global Thesaurus (see discussion below) maintained
by the collection of all DAACs. The Local Thesaurus contains a description of a subset of the data available at
EOSDIS along with the likely location of the data.

Local Object Manager (LOM): handles the management of all ECS objects (e.g., browse products, metadata, and
data products) previously retrieved and cached for further use.

Distributed Services Manager (DSM): receives all requests for ECS services and generates appropriate requests to all
ECS sites involved in the request. The DSM also acts as a transaction coordinator for user requests that involve
multiple ECS sites. The requests generated by a DSM are sent to Server IMSs (SIMSs) at ECS sites.

Communications Manager (CM): establishes and manages all needed connections to ECS sites as requested by the
Distributed Services Manager. If short requests are involved, connectionless protocols such as UDP should be used,
while if large streams of data need to be exchanged, TCP connections should be used.

One of the main functions of the CIMS is to provide users with a subset of a Global Thesaurus (or Global ECS Web)
implemented at the DAACs. The Global Thesaurus is a network of information nodes that describes ECS concepts
available for users to search or navigate through. Stored with each information node is a list of ECS sites (DAACS,
ADCs, or DADCs) that hold the actual data related to a particular information node. This Global Thesaurus has a set
of information nodes, called entry points, that can be used to start a navigational process through the web.
A particular CIMS will typically contain a subset or sub-web of the Global Thesaurus, called the Local Thesaurus,

that acts as a cache for the Global Thesaurus. This local cache stores the nodes and links most recently traversed by a
user. Whenever a user attempts to traverse from an information node in his Local Thesaurus to an information node
not in his Local Thesaurus, an information node fault is generated. As a consequence, a request is generated by the
Local Thesaurus Manager (LTM) to any DAAC 1 to load a subgraph of the Global Thesaurus rooted at the information
node that caused the fault. This request contains enough information on the users recent activity, pro�le, and storage
limitations, to allow the Global Thesaurus Server at the DAAC to determine a proper subgraph that will potentially
minimize the number of future information node faults.
Users should also be allowed to add their own local annotations to the Local Thesaurus. These local annotations are

not reected back to the Global Thesaurus.
Due to the principle of location transparency [principle P1 ], the location information contained in information nodes

at the Local Thesaurus is not seen by the user but is used to determine where to send requests for ECS services. Note
also that the Local Thesaurus is not updated every time that there is a change in the Global Thesaurus. This would be
infeasible due to the huge number of users and therefore the large number of Local Thesauri in the system. Therefore,
it is possible for an information node at the Local Thesaurus to be pointing to the wrong ECS site. This fact will be
detected when a request to the ECS site is generated. Only then, the Local Thesaurus will be adjusted to reect the

1It is assumed that the Global Thesaurus is replicated at all DAACs.



9

change. This procedure acts like an \optimistic cache coherence protocol" in the sense that it does not try to maintain
the coherence of all Local Thesaurus caches, but rather operates under the optimistic assumption that the information
is valid. It should be obvious that \cache invalidation" type of protocols would be prohibitive in the ECS environment.
Note that due to di�erent types of caching mechanisms implemented at the CIMS (Local Thesaurus and Local Object

Manager), connections and data transfer to and from ECS sites are kept to the minimum possible [principle P3 ].

VII. ECS Node Logical Architecture

The building block of the ECS architecture is called an ECS node, which is a collection of servers of di�erent types.
This is ECS's instantiation of an LSS node. ECS nodes can be con�gured to serve as DAACs, Auxiliary Data Centers,
or even SCFs [principle P2 ]. ECS nodes are connected to the user community by a User Network (e.g. Internet/NII)
and are connected to other ECS nodes by the ESN network.
An ECS node (see Fig. 6) has three main subsystems: ECS Object Management Subsystem (EOMS), Product Pro-

cessing Subsystem (PPS), and Information Management Subsystem (IMS). Each of the main subsystems is implemented
by a collection of servers to be described below. All servers can communicate with one another through an ECS Node
local high speed network. Through this network, and ECS node is connected to the Internet and to the Earth Science
Network (ESN). Note that Fig. 6 represents a logical not a physical design. In order to map the logical design into a
physical design one would need to specify the mapping of the various servers into actual machines, the capabilities of
these machines in terms of processing and I/O characteristics, and the topology and bandwidth characteristics of the
ECS Node Local high speed network. More details on the speci�c functions of each server are given in [14].
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Fig. 6. ECS Node Architecture.

An ECS node may have any number of servers of each type. The actual number of servers is determined by the
workload imposed on a given ECS node. A server may act as client for a server on the same or on a remote ECS Node.
For example a Product Processing Server, acting as a client, may request a data product from several Archival Servers.
Some of them could be local to the Product Processing Server and others could be remote. It is important to realize
that servers are just logical concepts. The mapping between servers and actual machines determines the actual physical
architecture of the system.
Although it is conceivable for all servers of an ECS node to be mapped into a single computer, this is not desirable

for various reasons: need for redundancy, adequate performance, and the need to accommodate signi�cantly di�erent
processing, communications, and I/O requirements.

VIII. A Performance Model for the ECS Architecture

Performance models of computer systems are used to predict how performance metrics such as throughput, response
times, queue sizes, and component utilizations, vary as a function of the workload and system parameters. The analysis
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discussed in this section is based on queuing network based analytic models [15]. We present here a brief overview of
the concepts behind queuing network (QN) models as well as the terminology to be used.
A queuing network (QN) is a network of queues through which customers ow. Customers may have di�erent meanings

in di�erent contexts. In the EOSDIS context, a customer may be a request to retrieve a browse image from a certain
DAAC, or a request to generate a given standard product. A queue is composed of a service center and a waiting line of
customers waiting to use the service center. Service centers may be used to represent a processing element, components
of an I/O subsystem, or a communications network. Since customers may vary signi�cantly in terms of the demands
placed on the di�erent service centers, one should aggregate all similar customers into groups called customer classes.
All customers of the same class are represented by a set of values that represent the average demand on each service
center over all customers of the class. In the context of EOSDIS, each di�erent scenario generated from the user model
may give rise to a di�erent customer class. Some customer classes may be considered to be open in the sense that the
customers arrive from outside the system, get served by a subset of the service centers, and leave. In this case, there
is not limit on the number of customers in the queuing network. An example of an open class could be \browse image
queries from K-12 students". Other classes may be considered to be closed in the sense that there is always a constant
number of customers of this class in the queuing network. This type of class is used to represent work that is performed
on a routinely and continuous basis. An example of this would be \processing of standard product MOD28".
Each customer class is speci�ed by the following parameters:
� type: open or closed.
� intensity parameters: arrival rate of customers in the case of open classes and number of customers in the case of
closed classes.

� service demands: total time spent per customer receiving service from each service center. Note that the time spent
waiting to get access to the service center is not part of the service demand.

The total time spent by a customer in the queuing network is the response time for the customers' class. The response
time is composed of two basic components: queuing time and service time. The queuing time, computed by queuing
network based analytic models, is a function of the contention for access to the several service centers. The service
time is a function of the total service demand placed on all resources. Another performance measure of interest is the
throughput per customer class. This measures the average number of customer request completions per unit time. For
open classes, the throughput is simply equal to the arrival rate. For closed classes, the throughput is computed by a
queuing network based analytic model.
For each customer class, one must specify the required service levels, i.e., the upper and lower bounds on performance.

Examples of service levels in the context of EOSDIS are:
� level 1 data must be made available within 48 hours of observation.
� levels 2 and 3 standard products should be made available within 96 hours of observation.
� A DAAC should be capable of generating quick-look products within 1 hour of receipt of necessary input for 1% of
EOS instrument data.

Each user category may exhibit several important patterns of interaction with ECS. Each scenario is assigned to a
class of customers in the queuing network model. Each scenario is mapped to the ECS architecture so that service
demands can be obtained for the di�erent architecture components and subsystems. Given that the architecture under
consideration is a client-server based architecture, multiple time-line diagrams such as the one shown in Fig. 7 were
used to map each scenario to the architecture. In this �gure, an external request submitted to the Client IMS implies
in three requests sent to Server IMS, one request sent to the Level 2 Metadata Server, and one request sent to the Level
2 Browse Data Server. Note that servers may act as clients when requesting service from other servers. The dashed
arrows from a server (acting as a client) into a server indicate a request. These arrows are annotated with performance
related data such as the probability that service is requested from this server, number of bytes involved in the request,
and resource demand parameters related to the service requested from the server. The dashed arrows from a server to
another (acting as a client) indicate replies from previous requests. These arrows are also annotated with the number
of bytes sent back to the client.
An analysis of each scenario determines the average number of requests per server as well as the average service

demand per server. This analysis also determines the average load imposed on the various communication subsystems
of ECS.

A. Performance Model Parameters

The service demand parameters per server for each scenario (customer class in the queuing network model) are
obtained as follows. Let
� b(r): data volume to be retrieved by request r (in MBytes),
� c(r): computational demand associated with request r (in millions of oating point operations),
� Ci: computing speed of server i (in MFLOPS),
� IOi: I/O bandwidth of server i (in MBytes/sec),
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Fig. 7. Multiple Time-line Diagram

� pi;j(r): probability that request r is addressed to server j,
� Ri: set of requests generated by client i,
� D

proc
j : processing service demand at server j,

� DIO
j : I/O service demand at server j.

Then we can write that,

D
proc
j =

X

8i

X

r2Ri

pi;j(r)� c(r)

Ci

DIO
j =

X

8i

X

r2Ri

pi;j(r)� b(r)

IOi

B. The Queuing Network Model

The performance model used for the ECS architecture is a mixed queuing network: some classes are open and some are
closed. The data product generation classes are closed classes while queries (e.g., browse and metadata) are represented
as open classes. Any server (in the client/server architecture) is represented by two devices in the QN: a computing
device and an I/O device. The various communication networks are represented by load dependent devices in the QN.
Figure 8 contains a diagram of the queuing network model used to represent the ECS architecture.

C. Performance Results for ECS Architecture

Several numerical examples are used in this section to evaluate the architecture of ECS. A baseline model using the
values derived from the user model generated by the team of Earth scientists was evaluated �rst. Modi�cations analysis
were then carried out to gauge the sensitivity of the architecture to di�erent changes in the workload and architecture
components. It should be noted that the results shown below do not represent actual ECS performance since, at the
time of this study, we did not have enough data available. Some assumptions had to be made to compensate for missing
values. At any rate, the results indicate the type of analysis that can be made with the performance models described
here.
The following numerical data are considered in the baseline model:
� Local Area Network Bandwidth: 100 Mbps based on a 2-channel FDDI backbone.
� ESN bandwidth: 45 Mbps assuming T3 lines between the major DAACs.
� Processing capacity: 60 GFLOPS, based on the achieved performance for a CM-5 running the LAPACK bench-
mark [3].

� I/O bandwidth: 70 MBytes/sec.
For the purposes of this study we considered the following scenarios:
� El-Nino and Southern Oscillations (ENSO) [10].
� World Ocean Circulation Experiment and the Tropical Ocean Global Atmosphere (WOCE/TOGA) [11].
� Global Ocean Observing System (GOOS) [11].
� Terrestrial Scenario (Land use) [12].
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Fig. 8. Queuing Network Model of the ECS Architecture

� Push scenario for Level 0 products (L0). This scenario represents the workload imposed on ECS by the continued
arrival, processing, and storage of level 0 products. The numerical data for this workload is derived from tables
available in HAIS documents.

� Push scenario for Level 1 and higher data products (L1-L4). This scenario represents the workload imposed on ECS
by the processing and storage of levels 1 through 4 data products. The numerical data for this workload is derived
from tables available in HAIS documents.

We show here a few examples of the results obtained in our analysis. An extensive set of curves and tables can be
found in [17]. The value of the workload intensity for the user scenarios which are not varying were chosen so that they
represent a light load. For the open scenarios (ENSO, WOCE/TOGA, GOOS, and Land use) the arrival rate was �xed
at 0.1 requests/sec except when this is the varying parameter. For the L0 and L1-L4 scenarios the number of jobs in
the system was �xed at 10 except when this is the varying parameter.
Figure 9 displays the impact of varying the arrival rate of ENSO requests on the response time of GOOS, Land use,

and L1-L4 classes. As it can be seen, response times smaller than 4 sec for Land Use and GOOS are supported for arrival
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Fig. 9. Impact of ENSO Arrival Rate on GOOS, L1-L4, and Land Use Scenarios.

rates of ENSO requests not exceeding 0.25 req/sec. After 0.4 req/sec for ENSO requests, the system saturates and the
response times increases at a very fast rate. The L1-L4 workload is rather insensitive to ENSO requests until the onset
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of saturation. The response time curve of the L1-L4 workload as a function of the number of jobs (see Fig. 10) grows
to a certain saturation point since the throughput for closed classes is bounded by the maximum service demand [15].
Figure 11 investigates the impact of consolidating some of the DAACs. In particular, the loads of DAACs MSFC, JPL,
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Fig. 10. Impact of L1-L4 workload intensity on GOOS, L1-L4, and Land Use Scenarios.

UAF, and CU are assumed to be assigned to LaRC. This reduces the number of DAACs from 8 to just 5. The vertical
axis in the �gure is the response time ratio S de�ned as

S =
Response Time Under the Consolidated Scenario

Response Time Under the Original Scenario

A value of S greater than 1 indicates that consolidating DAACs increases the response time. It should be noted that
when DAACs are consolidated, there are two e�ects on performance: some servers will become more heavily utilized as
a result of the additional load. This makes S to be greater than 1. On the other hand, for some scenarios, the network
demand is reduced by the DAAC consolidation. This reduces the response time under the consolidated scenario and
makes S < 1. As seen in Fig. 11, performance for the ENSO workload becomes twice as bad when the arrival rate of
GOOS requests approaches 0.55 req/sec. The L0 workload is only slightly sensitive to DAAC consolidation.
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IX. Summary Remarks

A characterization of large-scale, distributed, and data intensive information systems was given. A general method-
ology to design such systems was discussed. The methodology is performance-oriented. Through the iterative use of
performance models to carry out performance prediction, the system design is re�ned through successive steps. This
guarantees that the �nal design will satisfy the functional and performance requirements. EOSDIS Core System was
used a case study for the methodology.
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