
Advanced Transaction Processing in

Multilevel Secure File Stores

Elisa Bertinoa;1, Sushil Jajodiab;2 Luigi Mancinic;3, and Indrajit Rayb;4

aDipartimento di Scienze dell'informazione
Universit�a di Milano, Milano, Italy

bDepartment of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444, U.S.A.

cDipartimento di Informatica e Scienze dell'informazione
Universit�a di Genova, Genova, Italy

Abstract

The concurrency control requirements for transaction processing in a multilevel se-

cure �le system are di�erent from those in conventional transaction processing systems;

in particular, there is the need to coordinate transactions at di�erent security levels

avoiding both potential timing covert channels and the starvation of transactions at

high security levels. Suppose a transaction at a low security level attempts to write a

data item that is being read by a transaction at a higher security level. On the one

hand, a timing covert channel arises if the transaction at the low security level is either

delayed or aborted by the scheduler. On the other hand, the transaction at the high

security level may be subjected to an inde�nite delay if it is forced to abort repeatedly.

This paper extends the two-phase locking mechanism that is suitable for conven-

tional transaction processing systems, to multilevel secure data management systems.

The scheme presented here avoids the abort of higher level transactions, nonetheless

guaranteeing serializability. The system programmer is provided with a powerful set

of linguistic constructs which supports exception handling, partial rollback and for-

ward recovery. The proper use of these constructs can prevent the inde�nite delay in

completion of a high level transaction, and allows the system programmer to trade o�

starvation with transaction isolation.

Index Terms|Data management system, �le system management, transaction pro-

cessing, security kernel, concurrency, mandatory access control, two-phase locking, ex-

ception handling

Contact Author: Professor Elisa Bertino, Mail Stop 4A4, George Mason University,
Fairfax, VA 22030-4444. Telephone: 703{993{1653/1640 (dept.), Fax: 703{993-1638,
Internet: ebertino@isse.gmu.edu

1Partially supported by Italian M.U.R.S.T. and by Nato Collaborative Research grant number 930888
2Partially supported by National Science Foundation under grants IRI{9303416 and INT{9412507 and

by National Security Agency under grant MDA904{94{C{6118
3Partially supported by Italian M.U.R.S.T.
4Partially supported by National Science Foundation under grants IRI{9303416

Advanced Transaction Processing in

Multilevel Secure File Stores

Abstract

The concurrency control requirements for transaction processing in a multilevel secure
�le system are di�erent from those in conventional transaction processing systems; in par-
ticular, there is the need to coordinate transactions at di�erent security levels avoiding
both potential timing covert channels and the starvation of transactions at high security
levels. Suppose a transaction at a low security level attempts to write a data item that is
being read by a transaction at a higher security level. On the one hand, a timing covert
channel arises if the transaction at the low security level is either delayed or aborted by the
scheduler. On the other hand, the transaction at the high security level may be subjected
to an inde�nite delay if it is forced to abort repeatedly.

This paper extends the two-phase locking mechanism that is suitable for conventional
transaction processing systems, to multilevel secure data management systems. The scheme
presented here avoids the abort of higher level transactions, nonetheless guaranteeing seri-
alizability. The system programmer is provided with a powerful set of linguistic constructs
which supports exception handling, partial rollback and forward recovery. The proper use
of these constructs can prevent the inde�nite delay in completion of a high level transaction,
and allows the system programmer to trade o� starvation with transaction isolation.

Index Terms|Data management system, �le system management, transaction process-
ing, security kernel, concurrency, mandatory access control, two-phase locking, exception
handling

1 Introduction

Transactions represent an important functionality that any data management system (ei-
ther a �le system or a database management system) must provide. Conventional and
advanced DBMSs provide a transaction management subsystem in charge of transaction
synchronization and recovery. Because of the relevance of the transaction paradigm in ap-
plication development, transaction facilities are now being o�ered as part of advanced �le
systems as well. Indeed, a large class of applications exists for which the full power of a
DBMS may not be required, but for which reliable, concurrent access to shared data is a
crucial requirement. As a result, transaction facilities are now being supported in many �le
systems such as Camelot [EMS91] and Arjuna [SM94].

While transaction management techniques and algorithms are fairly well understood
for data management systems, this is not the case for multilevel secure systems. In such
systems, the data and user processes are classi�ed into di�erent security levels, and access
to a data item by a process is governed by the following mandatory access rules: A process
P can write to a data item x only if x is at the same security level as that of P , and can
read x only if x is at a security level lower than or equal to that of P (cf. [BL76]).

The development of a multilevel secure data management system requires a careful re-
visitation of the architectural components, techniques and algorithms used in a conventional

1

non-secure system. If a system intended to be secure is not designed properly, it may have
covert channels [Lam73, Den82] which can be exploited by sophisticated intruders to gain
illegal access to data.

Secure transaction processing is not easily achieved by the conventional techniques, as
these have grave security implications. To illustrate, consider the following example. Let Ti
be a high level transaction which is reading a low level data item x, and Tj be a low level
transaction which is trying to write to x.5 Assume that the concurrency control mechanism
uses two-phase locking (2PL) and, therefore, the transaction Tj will have to wait to acquire
a lock on x until such time as Ti releases its lock on x. Suppose Tj can measure the time
quantum, q, it has to wait to acquire the lock on x; a quantum of waiting time greater
than a certain amount is considered to be a 1 and below that is considered to be a 0. This
knowledge can be exploited by Ti to send one bit of high level information to Tj , and by
repeating this protocol any arbitrary information can be sent. This indirect way of sending
information, against the security policy of the system, is an example of a timing covert

channel. In order to prevent the class of timing covert channel, that arises from the use
of a lock-based protocol for transaction synchronization, a low level transaction cannot be
delayed or aborted, because of a lock conict with a high level transaction.

To date, no research e�ort has been reported dealing with the problem of secure con-
currency control in the context of secure �le systems, although this problem has been
investigated within the framework of database systems. In [KTS90], Keefe, Tsai and Sri-
vastava present a formal framework for secure concurrency control in multilevel databases.
Lamport [Lam77], Reed and Kanodia [RK79] and Schaefer [Sch74] o�er solutions to the
secure readers/writers problem. While these solutions are secure, they do not yield serializ-
able schedules when applied to transactions (since transactions contain read and write sets
that are often related). Moreover, they su�er from the problem of starvation, i.e., transac-
tions that are reading lower level data items may be subject to inde�nite delays. Ammann
and Jajodia [AJ92] give two timestamp based algorithms that yield serializable schedules;
however, both su�er from starvation.

Recently, secure versions of commercial DBMSs are providing concurrency control that
is free of timing covert channel; however, the solutions adopted in these systems are not
completely satisfactory. For example, the concurrency control algorithm of Trusted Oracle
DBMS [Ora92] is based on a combination of 2PL, multiversioning and timestamp ordering.
As shown in [JA92], the histories generated by this concurrency control algorithm are not
always one-copy serializable. As an additional example, Informix-OnLine/Secure DBMS
[Inf93a, Inf93b] uses an approach in which a low level transaction can acquire a write lock
on a low data item, even if a high level transaction holds a read lock on this data item.
Thus, a low level transaction is never delayed by a high level transaction. The high level
transaction simply receives a warning that a lock on a low data item has been `broken.'
However, despite the broken lock, the high level transaction is still committed, unless the
programmer has explicitly added some code to perform rollback of the transaction. A
major drawback of the Informix approach is that no information is provided to the high
level transaction specifying which lock has been broken if the transaction has acquired locks
on several low data items. Thus only a very primitive handling of broken lock exceptions

5Throughout this paper, we use the terms high and low to refer to two security levels such that the former

is strictly higher than the latter in the partial order.

2

is possible at the application program level.
The goals of this work are:

1. to provide a multi-level secure �le system architecture that supports secure transaction
processing, and to isolate the trusted components6 in such a system;

2. to provide a set of linguistic constructs to support exible yet powerful systems pro-
gramming. In particular features for exception handling, partial rollback, and forward
recovery are incorporated within the transaction paradigm;

3. to extend strict 2PL on single version data items for concurrency control in secure
transaction processing;

4. to avoid the abort and thereby starvation of the high level transaction when a low
level transaction acquires a conicting lock;

5. to guarantee serializable execution of concurrent transactions;

6. to close those timing covert channels that arise due to lock-based transaction synchro-
nization; and

7. to provide a secure hierarchical locking facility in order to reduce the number of
conicts between transactions.

In addition to the usual read and write locks of strict 2PL, our protocol uses an additional
lock mode called the signal lock, which is acquired by a high level transaction Ti to read a
lower data item x. Unlike a read lock, the signal lock does not conict with a write lock,
and hence a low level transaction Tj requesting a write lock on x is never delayed or aborted
because of the read by Ti. The system noti�es Ti of the existence of the new value for x
sometime after the write operation by Tj , by sending a signal to Ti. When Ti receives the
signal, it decides how to handle the signal. Ti can ignore the signal, do a rollback, re-read
the data item x or take some other action. Our scheme provides for delayed signals, i.e.,
the system sends all signals generated by Tj together, after the last write operation of Tj ,
instead of sending a signal immediately after each write operation. In particular, if Ti reads
x before Tj writes to it, and commits before the system can notify Ti, no signal is handled
(or serviced) by Ti. The use of delayed signals not only allows the notions of exception
handling and forward recovery, as de�ned in [Cri82], but also increases concurrency among
transactions while preserving serializability, as will be shown subsequently.

The rest of the paper is organized as follows. Section 2 summarizes the security model
on which our work is based. Section 3 provides an overview of the approach. In partic-
ular, Section 3.1 presents the system architecture. It identi�es the trusted and untrusted
components of the system as well as their various functions. Section 3.2 de�nes the three
di�erent types of locking operations and also provides the lock compatibility matrix used for

6A component is trusted if its software operates awlessly for the system to enforce security policy

correctly. This requires developing a formal speci�cation of the component software and a demonstration

that the implemented system is consistent with the speci�cation. Since it is impractical to perform the latter

task rigorously for large programs, it is necessary that the number of trusted components be kept as small

as possible.

3

locking. Section 4 includes the description of the basic transaction model, with section 4.1
introducing the four new system calls for transaction processing, section 4.2 describing the
Trusted Lock Manager and section 4.3 providing two examples of transactions in this model.
Section 5 formalizes the notions of a well-formed transaction and histories, and proves that
histories consisting of well-formed transactions are serializable. Section 6 describes an opti-
mization of the basic locking protocol with the introduction of multigranularity locking in
a hierarchical mode. Section 7 concludes the paper.

2 The Security Model

The multilevel secure system consists of a set D of data items, a set T of transactions
(subjects) which manipulate these data items and a lattice S of security levels, called the
security lattice, whose elements are ordered by the dominance relation �. If two security
levels si and sj are ordered in the lattice such that si � sj , then sj dominates si. A security
level si is said to be strictly dominated by a security level sj , denoted as si � sj , if si � sj
and i 6= j. Each data item from the set D and every transaction from the set T is assigned
a �xed security level.

In order for a transaction Ti to access a data item x, the following two necessary condi-
tions must be satis�ed:

1. Ti is allowed a read access to data item x only if L(x) � L(Ti). In other words the
transaction must be at a security level that dominates the security level of the data
item x in order for Ti to read x.

2. Ti is allowed a write access to the data item x only if L(x) = L(Ti). That is, the
transaction must be at the same security level as the data item x, if it has to write to
x.

Note that the second constraint is the restricted version of the ?{property which allows
transactions to write to higher levels [BL76, Den82]; the constrained version is desirable for
integrity reasons.

In addition to these two restrictions, a secure system must guard against illegal infor-
mation ows through covert channels. The security model addresses only mandatory access
control and no discretionary access controls.

3 Overview of the Approach

3.1 System Architecture

The architecture of our multilevel secure transaction processing system can be divided into
a trusted, an untrusted, and a passive component as shown in Figure 1. The trusted com-
ponent consists of two active elements: Trusted Lock Manager and Trusted File Manager.
The untrusted component is a collection of Transaction Managers (TMs), one for each se-
curity level. The passive component is the File Store which may be physically partitioned
according to the security levels.

4

Transaction Manager Transaction Manager Transaction Manager

Top_Secret

Transaction Manager

Secret Confidential Unclassified

Trusted File Manager

Trusted Lock Manager

Trusted Computing Base

Secret

File Store File Store

Confidential

File Store

Unclassified

File Store

Top Secret

Figure 1: System architecture with four security levels

Note that the assumption about the Lock Manager being trusted can be relaxed by
providing one Lock Manager for each security level. A Trojan Horse inside some untrusted
Lock Manager can compromise the correct execution of concurrent transactions, but cannot
violate security. However, as the whole body of a standard Lock Manager, written with all
the requisite defensive programming, exception handlers, optimizations, deadlock detectors,
etc. comes to about a thousand lines of actual code [GR93], it is easily veri�able. Thus the
assumption of a Trusted Lock Manager, which jeopardizes neither security nor integrity, is
justi�ed.

Note also that although we use the term Trusted File Manager, this component need
not be fully trusted. We refer the interested reader to [SW88, IAT90, Irv95] for implemen-
tation of File Managers that require a small Trusted Computing Base as their only trusted
component.

The function of the Trusted Lock Manager is to provide the basic operations of locking
and unlocking data items. The functionalities of the Trusted Lock Manager should be
designed and implemented so that they cannot be exploited as timing covert channels.
Speci�cally, if a TMi acquires a read lock on a data item at level sj , where sj � si, the
execution of such operation should be transparent to all subjects at any level sk with sk � si.

Transaction processing is implemented by a cooperation between the Transaction Man-

5

agers, the Trusted Lock Manager and the Trusted File Manager. The services of the Trusted
Lock Manager and the Trusted File Manager can be invoked by each of the untrusted TMs.
A TM, on receiving an operation from a transaction, sends a request for the appropriate
lock mode to the Trusted Lock Manager. When the Trusted Lock Manager acknowledges
that the lock is set, the TM sends the operation to the Trusted File Manager which then is
responsible for the actual access to the data item. Our locking protocol closes the timing
covert channel that arises from using a lock-based concurrency control algorithm. This is
due to the fact that a lower level transaction is never required to wait for a write lock on
some data item x even if a high level transaction is reading x.

A transaction Tk at the security level si can read information stored at level sj only if
sj � si, and can write information only at level si. The corresponding TMi at the level si
controls the concurrent execution and the recovery of those (and only those) transactions
that are at level si, and hence TMi can be an untrusted component of the architecture.
In particular, a TMi that does not set or release locks on data items properly, can cause
integrity violations at all the security levels sj such that si � sj . However, this does not
lead to a security violation because no information can be passed on to the lower levels from
the higher levels through the modulation of the lock/unlock operations. This is a direct
consequence of the fact that the Trusted Lock Manager provides the locking operations,
transparently.

We require that the Trusted File Manager provide memoryless services on the �le stores.7

By memoryless service we mean that whenever a high level transaction requests any oper-
ation (such as open, close, or read) on low data items, the Trusted File Manager executes
this operation in such a manner that the utilization of any system resource is not observ-
able to the lower level transactions. In the architecture of Figure 1, a security violation
can occur if two TMs establish a timing covert channel either through the Trusted Lock
Manager or through the Trusted File Manager. If the Trusted File Manager is memoryless
and the request from a TMi is served by the Trusted Lock Manager transparently with
respect to the lower level TMs, then these types of covert channels can be eliminated. The
description of such a Trusted File Manager is beyond the scope of this paper. We refer to
[SW88, IAT90, Irv95] for description of multilevel �le systems that provide �le services to
transactions at a particular level in a manner transparent to all lower level transactions.

In our work, we discuss the design of the concurrency control mechanism that will close
the timing covert channel, arising from the use of locking, as described in Section 1.

3.2 Locking Operations

We de�ne three kinds of locks that a transaction may acquire in order to perform an
operation on a data item.

Read Lock If a transaction wants to read a data item which is at its own security level,
it has to acquire a read lock on the data item.

7Strictly speaking, this requirement is not necessary for closing the timing covert channel due to lock-

based transaction synchronization. It has been added to close a number of other covert channels that can

potentially arise.

6

Y = Lock is granted

N = Lock is not granted

Read

Write

Signal

Granted

Requested None

Y

Y

Y Y

Y

N

N

N

N

Y

Y

Y

Read Write Signal

Figure 2: Lock compatibility matrix

Write Lock If a transaction wants to write to a data item which is at its own security
level, it has to acquire a write lock on the data item.

Signal Lock If a transaction wants to read an item which is at a security level lower than
that of the transaction, it has to acquire a signal lock on the data item.

The lock compatibility matrix as used by the lock manager is given in Figure 2.
The compatibility matrix shows that the signal lock and the write lock are compatible

in some cases but conicting in others. Speci�cally, if a write lock is requested on a data
item x, when it has already been locked by a signal lock, the write lock is granted; however
if the signal lock is requested at a time when the write lock is already in e�ect on the item,
the signal lock is refused.

In principle, transactions that are reading down on a data item x do conict with lower
level transactions that are writing to x. However, we cannot delay or abort the low level
transaction because doing so will open a timing covert channel. On the other hand, if a low
level transaction is writing to x, we can delay the high transactions that wish to read x. It
is precisely to implement this policy, a requested write lock does not conict with a granted
signal lock, but a requested signal lock does conict with a granted write lock. If a low level
transaction, Ti wants to acquire a write lock on an item x while a high transaction Tj is
holding a signal lock on x, Ti will be granted the write lock; however, if Tj wants to acquire
a signal lock on x while Ti is holding a write lock on x, Tj will be denied the lock, and
has to wait till such time as Ti releases the write lock. A typical example of interleaving
of concurrent transactions T1 and T2, called history, in this model is given in Figure 3,
where ri[x] and wi[x] denotes the read and write operations on data item x issued by a
transaction Ti. Note that this history is not serializable, as the operations of transaction T2
follows r1[x] and precedes r1[y]. As we detail the model, it will be evident how the signal
lock together with the proposed system calls remove any inconsistent concurrent execution
from the history.

7

w [x]2 w [y]2 c2

r [x]1 r [y]1 w [z]1 c1High

Low

= high level transaction

= low level transaction2

1T

T

z = high level object

x, y = low level object

Figure 3: An example history

4 Transaction Processing Model

As mentioned earlier in Section 3.1, transaction processing is achieved by the cooperation
between a Transaction Manager, Trusted Lock Manager, and the Trusted File Manager in
our model. A transaction consists of a sequence of system primitives, possibly interspersed
with some other commands. TM is responsible for the system primitive commands while
the run time support of the programming language is responsible for the other commands.
TM relies on the Trusted Lock Manager for execution of some of these system primitives.

In this section we �rst describe the transaction processing system primitives which are
used by the programmer to develop a transaction. This description is accompanied by a
pseudo-code for a TM, which gives the algorithm for these primitives. Next, we provide a
description and algorithm for the Trusted Lock Manager. Finally we give two examples of
typical transactions in our model.

4.1 Transaction Processing System Primitives

Before we give the description of the primitives for secure transaction processing, let us recall
two assumptions of our basic transaction model. The �rst assumption is that the system
maintains single version of each data item and uses strict 2PL for concurrency control for
transactions at the same security level. The second assumption, important from the point
of view of security, is that a low level transaction cannot be made to wait for a lock to be
released by a high transaction. This has been shown to expose a timing covert channel by
which a security breach can take place.

In addition to the basic transaction processing system calls, namely Begin Transaction,
End Transaction, Read, Write, Commit and Abort, the TM also supports the following four
new system primitives:

8

sl := SaveWork;

Rollback(sl);

RaiseSignal;

GetSignal [sl1 ! handler1; : : : ; sln ! handlern];

Figure 4 shows the algorithm for the transaction manager module at any security level l.
(Note that the �gure deals with only those portions of the module that are relevant to the
four system calls.) The thread TransactionRunTimeSupport contains the code for all four
transaction processing primitives and is executed for each active transaction as and when
one of the primitives is encountered in the transaction code. The other thread of importance
to us is the SignalReceiver thread. Its relevance will become evident as we proceed with
the description of the model. For now, it is su�cient to note that this thread keeps signals
intended for a transaction Ti in a queue associated with Ti.

4.1.1 Description of the SaveWork and RollBack primitives

The SaveWork call establishes a savepoint, which causes the system to record the current
state of processing. On encountering a SaveWork command in a transaction's execution,
the TM writes on the transaction's log a savepoint record, while the run-time support of
the programming language saves the current values of any local variables on the volatile
memory. The SaveWork call returns to the transaction a handle in the form of the identi�er
sl, called a signal label. This signal label can subsequently be used to refer to that savepoint.
Typically, this handle is a monotonically increasing number. The transaction can return
to any savepoint by invoking the RollBack(sl) primitive and passing to it the signal label,
sl, of the savepoint to be restored. The execution of this command �rst restores the state
of the system to the state that existed at the time of the savepoint denoted by the signal
label sl, and then reexecutes the operations that follow the savepoint. Depending on the
application logic, the system programmer can decide to return to the most recent savepoint
or to any other.

We assume that the successful execution of the Begin Transaction primitive establishes
the default savepoint for a transaction.

4.1.2 Description of the RaiseSignal primitive

When a transaction Tj at some security level invokes a RaiseSignal primitive, the Trusted
Lock Manager sends a signal to each of those higher level transactions that have signal locks
on data items being written by Tj . That is, the Trusted Lock Manager considers all the
data items xj 's on which Tj holds write locks, and signals the TMs of those uncommitted
higher level transactions that have signal locks on these xj 's (for example if a higher level
transaction Ti holds a signal lock on xj , then the TM for Ti is noti�ed by the Lock Manager).
Once these higher level TMs have been noti�ed, the Trusted Lock Manager acknowledges
the RaiseSignal call to Tj. Tj blocks on the RaiseSignal call until it is acknowledged by the

9

TransactionManagerl() /* l : security level */
for each active Transaction Ti at level l do
create a queue SQi

/* queue for signals from LockManager; contains */
/* identities of data items whose signal locks */
/* have been broken */

create a queue LWi of all operations being executed by Ti
...
cobegin
...
thread TransactionRunTimeSupporti()

AppendToQueue(LWi , CurrentInstruction)
/* save the current instruction in the queue LWi */

case CurrentInstruction of
Begin Transaction:

performs initialization functions and
establishes the default savepoint.

...
Read(x):

if L(x) = L(Ti) then
wait(LockManager, Ti, lock, x, read)
/* read at the same level; wait till read lock is granted */

else
wait(LockManager, Ti, lock, x, signal)
/* read at a lower level; wait till signal lock */
/* is granted */

execute read[x]
Write(x):

wait(LockManager,Ti,lock,x,write)
/* wait till write lock is granted */

execute write[x]
SaveWork:

slx := system generated unique signal label
AppendToQueue(LWi , slx)

/* writes the savepoint record on the queue LWi */
return(slx)

Rollback(sly):
rollback transaction up to a savepoint denoted by sly in LWi

Figure 4: Transaction manager module (continued on next page)

10

RaiseSignal:
Wait(LockManager, Ti, RaiseSignal)

/* sends a request to the LockManager to execute */
/* a RaiseSignal. Waits until an acknowledgement */
/* is received from the LockManager */

GetSignal:
AppendToQueue(SQi , GetSignalMark)

/* put a marker in the queue SQi to indicate */
/* that only those signals in the queue before */
/* and upto the marker will be serviced */

OldestRead := GetLastElement(LWi)
/* the following while loop selects among all the low */
/* read operations performed by Ti. the earliest */
/* read whose signal locks have been broken */
/* At the end of the loop, the variable OldestRead */
/* contains this earliest read operation */

while not GetSignalMark in front of queue SQi do
QueueFront := Dequeue(SQi)
FirstRead := First(LWi, read[QueueFront])
if Precede(LWi, FirstRead, OldestRead) then

OldestRead := FirstRead
endwhile
Dequeue(SQi)

/* remove the GetSignalMark from SQi */
slx := Last(LWi, OldestRead, \SaveWork")

/* selects the signal label of the savepoint which */
/* immediately precedes OldestRead in the queue LWi */

signal transaction Ti with slx
endcase

...
thread SignalReceiver()

/* this thread keeps on listening for a signal */
/* from the LockManager; when a signal is */
/* received, it queues the identity of the */
/* signaled data item in SQi */

repeat
ReceiveSignal(LockManager, Ti, x)
AppendToQueue(SQi, x)

forever
...
coend
...
endfor

Figure 4: Transaction Manager Module

11

Dequeue(Queue) Return and delete the �rst element from
the queue Queue.

Precede(Queue, Item1, Item2,) If Item1 occurs before Item2 in the
queue Queue, then return true.

Last(Queue, Pos, Item) Scan the queue Queue starting backwards
from position Pos and stop at the �rst occurrence
of Item. Return the element immediately following
it in Queue.

AppendToQueue(Queue,Item) Insert Item at the end of the queue Queue.
GetLastElement(Queue) Return the last element in the queue Queue.
First(Queue, Item) Scan the queue Queue from its front; stop at

the �rst occurrence of Item in Queue and
return the position of Item.

Wait(TO, Ti, op, x, mode) Send a message to TO. The message includes
the transaction identi�er Ti for the current
transaction, the operation op to perform (Lock / Unlock),
the identi�er of the data item x on which to
perform the operation and the operation mode Mode.
Then wait for acknowledgement from TO.

ReceiveSignal(LockManager,TID,x) Returns the identi�er of the signaled
data item x, together with the identity, TID,
of the transaction that initially had the signal
lock on the data item x.

Figure 5: Notation used in Figure 4

12

Trusted Lock Manager. Eventually, if and when the higher level Ti executes a GetSignal call
(which is explained in the next section), its TM will notify Ti about the new value for the
low data item xj . This implementation of the RaiseSignal guarantees that the transaction
histories are serializable, as will be shown later in Section 5.

Note that the lower level transaction Tj never waits for either a GetSignal call from a
higher level transaction or a higher level transaction to service (or handle) the RaiseSignal
call that Tj has just issued; it is upto the Trusted Lock Manager to correctly inform the
TMs at higher levels about the RaiseSignal. Tj only waits till it gets an acknowledgement
from the Trusted lock Manager. This protocol is implemented in the Trusted Lock Manager
avoiding potential timing covert channels. The RaiseSignal call guarantees that if a higher
level transaction Ti has read a data item x, which is then modi�ed by the lower level Tj ,
and if Ti executes a GetSignal after the RaiseSignal of Tj , then Ti will service the signal of
Tj .

An issue that can arise in the reader's mind is what happens if the programmer does
not issue a RaiseSignal. This will not cause any security violation, although it may lead to
consistency problem because the higher level transactions will not be aware of broken signal
locks. Later on we will show that RaiseSignal and GetSignal can be made a part of the
End Transaction primitive, and hence they will be automatically invoked. This transparent
invocation of the system commands not only reduces the programming e�ort, but also
guarantees a well-formed transaction and hence serializable histories. An alternative to
having the RaiseSignal as a part of the End Transaction primitive is to implement immediate
signals instead of delayed signals. What this means is that the Trusted Lock Manager
informs any high level transaction that has a signal lock on a low data item x of the new
value for x immediately when x is updated by a lower transaction. Consequently, even if the
programmer does not issue a RaiseSignal, correctness of the protocol will not be a�ected.

4.1.3 Description of the GetSignal primitive

The GetSignal primitive is used by a system programmer to specify how signals from lower
level transactions are to be serviced by a high transaction.

The GetSignal call has two exit points: a standard one which is the next instruction in
the transaction body after the GetSignal instruction and an exceptional continuation which
is one sli ! handleri from the expression

[sl1 ! handler1; : : : ; sln ! handlern]

Each sli represents a signal label and the corresponding handleri represents a piece of
program code to be executed for this signal label. The exceptional continuation is taken
when the signal label sli is returned by the transaction manager to the GetSignal call.

When a transaction Ti invokes a GetSignal call, its TM considers all the signals that
have been received on behalf of Ti, after the last GetSignal invocation by Ti, and selects
only one signal to send to Ti. (Recall that the TM for Ti receives these signals from the
Trusted Lock Manager.) If the current GetSignal is the �rst one in Ti, then all signals
received since the beginning of execution of Ti are considered.

Three cases may arise at this point: (i) There is no signal to be serviced, (ii) There is
only one signal to be serviced or (iii) There are multiple signals to be serviced. If there

13

r [p]i

r [q]i

r [s]i

*

*

*

*

sl = SaveWork()

sl = SaveWork()

sl = SaveWork()

 sl -> ...

 sl -> ...]

GetSignal[sl -> ...;

s

p

q

s

p

q

This savepoint covers

This savepoint covers

This savepoint covers only

r [p]i &r [q]i r [s]i,

&r [q]i r [s]i

r [s]i

Figure 6: Choosing a signal to be serviced

is no signal from the Trusted Lock Manager, the GetSignal returns a nil value and the
computation continues from the next instruction following the GetSignal. If there is only
one signal, it indicates to the transaction Ti that the lower level data item x, which was read
by Ti, has now a new value. In such a case, the transaction manager TM for Ti returns to
the GetSignal call the identi�er slx of the savepoint that immediately precedes the read of
x in the code of Ti, and the exceptional continuation represented by the handler associated
with slx, is executed.

If there are multiple signals to be serviced, the transaction manager considers all these
signals and selects only one to be handled. To understand how this selection of a single signal
is achieved, consider the transaction fragment shown in Figure 6. The high transaction Ti
in the �gure performs three low read operations ri[p], ri[q] and ri[s] in this order. The
savepoints immediately preceding these low read operations are labeled slp, slq and sls
respectively. The transaction manager for Ti selects the signal label of that savepoint which
immediately precedes the earliest low read operation among all the low reads signaled. For
example, the transaction manager returns the signal label sls, if a signal is raised for ri[s].
If there is a signal corresponding to ri[q] and ri[s] only, then the signal label returned would
be slq. If, on the other hand, there is a signal for each of the three low reads, then slp would
be raised.

The default invocation for GetSignal is GetSignal[! RollBack] which does not specify

14

any signal label. When a signal is to be serviced by this default GetSignal, it rolls back the
transaction Ti to the savepoint immediately preceding the earliest read operation among all
the reads on the low data items performed by Ti, that have to be redone owing to updates
by low transactions. If no savepoint has been explicitly established in the transaction,
then this default invocation rolls back Ti, to the default savepoint coinciding with the
Begin Transaction. It should be noted that the GetSignal call is non-blocking, i.e. the
call does not wait for the arrival of a signal. If a signal is already available, it is serviced,
otherwise no action is taken.

4.2 Trusted Lock Manager

The duties of the Trusted Lock Manager are summarized by the algorithm in Figure 7.
Here a request is a tuple of the form (Sender, Ti, op, x, mode), where Sender is the name
of the TM sending the request, Ti is the identi�er of the transaction that is requiring the
operation, op is the operation requested on data item x (e.g. lock, unlock, etc), and mode

denotes the required lock mode. Before setting any lock, the Trusted Lock Manager checks
if the security level of the TM and of the transaction are compatible with the lock mode
requested for the data item x. It is assumed that the function to determine the security
level of a subject, and in particular of the sender of a message, is trusted.

It is worth noting that the signal by the Trusted Lock Manager is a delayed signal.
The Trusted Lock Manager noti�es the relevant high level TMs of all the low-read/write
conicts that have occurred, only when one of the low level transaction invokes a RaiseSignal
command. One of the advantages of this scheme based on delayed signals is that if a high
level transaction Tj has read a low data item x, which in turn has been written by a low
transaction Ti, and Ti invokes RaiseSignal after the last GetSignal of Tj then no signal
will be serviced by Tj , and Tj can go ahead and commit. This preserves serializability,
as shown in Section 5 because Tj has read the previous committed value of x, which is
a correct value. Note that as a consequence the Signal locks can be released earlier than
the commit time; in particular, the TMs can release the Signal lock of a transaction right
after the last GetSignal returns a nil value. The earlier release of signal locks minimizes
the communication between Trusted Lock Manager and the TMs. In the example above
the Trusted Lock Manager would provide no signal to Tj . In addition, the delayed signals
reduce the overhead due to signal processing. Once a low transaction Ti acquires a write
lock on a data item x, the number of higher transactions to be noti�ed can only decrease,
not increase. This is because some of these higher transactions may commit before they
are noti�ed and all transactions arriving after Ti that want to read x, have to wait till Ti
commits. The Trusted Lock Manager can further minimize the number of messages to be
sent to a particular TM by grouping together in a single message, all signals to di�erent
transactions at the same security level.

4.3 Some Example Transactions

In this section we provide two examples of transactions in our models. The �rst example
shows a transaction that is guaranteed to maintain consistency in the �le system. Later on
in Section 5, we will show that this transaction conforms to the de�nition of well-formedness

15

TrustedLockManager()
repeat
Receive(TMl,Ti,op,x,mode); /*TMl is the transaction manager for Ti */
case mode do

Read / Write:
If L(TMl)6=L(Ti)6=L(x) then
Send(TMl,Ti,lockIllegal);

Signal:
If L(TMl)6=L(Ti) OR L(Ti) �L(x)
Send(TMl,Ti,lockIllegal);

endcase
case op do

Lock:
if mode lock does not conict with other locks that are already set on x

then SetLock(Ti,x,mode); Send(TMl,Ti,lockOK)
else Delay(Ti,x,mode);

Unlock:
ReleaseLock(Ti,x,mode);
Send(TMl,Ti,unlockOK);
if there is some transaction Tk, that had previously requested
a lock on x, but was not awarded the lock, then awake Tk;
if there is a tie, then resolve in favor of lower level transactions.
SetLock(Tk,x,mode);
Send(TML(Tk),Tk,lockOK);

RaiseSignal:
let x1:::xn be the data items locked in write mode by Ti.
for each Tj that has a signal lock on xk do

notify the TM of Tj of a new value for xk ;
Send(TMl,Ti,raisesignalOK);

endcase
forever

Figure 7: Trusted lock manager module

16

Send(TO,TID,response) sends a message to TO; the message
contains the identi�er of a transaction
TID and a response.

Receive(FROM ,TID,op,x,mode) receives a service request from FROM ;
the request contains the operation op
to be performed on behalf of the transaction TID

on data item x; if the operation is a
lock or unlock operation, then mode speci�es the locking mode.

SetLock(TID,x,mode) adds to the lock table for
TID, a lock of type mode on data item x.

ReleaseLock(TID,x,mode) removes from the lock table
for TID, the lock of type mode on data item x.

Delay(TID,x,mode) puts the transaction TID, waiting
for a lock of type mode, in the wait
queue for data item x.

Figure 8: Notations used in Figure 7

of a transaction in our model. The second example demonstrates the exibility available to
the programmer in developing a transaction, so as to tradeo� consistency for isolation.

Example 4.1 The structure of the transaction is shown in Figure 9. The relevant code for
the transaction is delimited by a pair of Begin Transaction and End Transaction brackets.

When a transaction Ti is started, an implicit SaveWork corresponding to the Be-
gin Transaction is executed. Prior to any read or write operation, the transaction manager
for Ti, say TMj , requests the Trusted Lock Manager for the necessary locks; the Trusted
Lock Manager in turn grants the lock according to the rules stated in the lock compatibility
matrix. During the execution of the transaction, further savepoints can be established as
determined by the system programmer. In our case, three additional savepoints have been
established in lines 5, 15 and 21. We assume that there are only two low read operations
in the transaction viz. r[x] and r[y] in lines 6 and 18.

Suppose that the GetSignal in line 13 of the transaction is currently being executed. If
there has been no low level transaction which has updated data item x, then there will be
no signal to be serviced, and hence the handler associated with the GetSignal will not be
executed. If on the other hand, an update of x is signaled by a low level transaction, then
the handler rolls back the transaction to the savepoint denoted by S1. Consequently, all
operations in the transaction, starting from line 13 backwards till line 6 are �rst undone
and then the commands from line 6 to line 13 are re-executed. After this the transaction
continues execution from line 14 onwards.

As Ti continues its execution, at some point it performs the RaiseSignal at line 20. When
this call is executed, the transaction manager, TMj , informs the Trusted Lock Manager to
signal all those TMs that are at levels higher than TMj and have transactions with signal
locks on z. Ti blocks on the RaiseSignal call until the Trusted Lock Manager acknowledges
that all the relevant higher level TMs have been informed. After this acknowledgement, Ti
continues from line 21.

17

/* x, y are low level data items which can be read but not written to. */
/* z and u are data items at the same security level as the transaction. */
Begin Transaction

1. : : :
2. : : :
3. : : :
4. : : :
5. S1 = SaveWork ;
6. r[x] ;
7. r[z] ;
8. /* some computation on local program variables */

9.
...

10.
...

11. /* some computation on local program variables */

12.
...

13. GetSignal[S1 ! RollBack(S1)];

14.
...

15. S2 = SaveWork ;
16. /* some computation on local program variables */

17.
...

18. r[y] ;
19. w[z] ;
20. RaiseSignal;
21. S3 = SaveWork ;

22.
...

23. /* some computation on local program variables */

24.
...

25. GetSignal[S1 ! Rollback(S1) ;
S2 ! Rollback(S2)];

26.
...

27. r[u];
28. GetSignal[! rollback] ;
29. /* some computation on local program variables */

End Transaction

Figure 9: A transaction that ensures consistency

18

Continuing with its execution, Ti executes the GetSignal at line 25. Here four cases
may arise: A low level transaction has updated x, a low level transaction has updated y,
both x and y have been updated, or there is no signal. If x is updated, then the handler
corresponding to signal label S1 is executed and the transaction rolls back to the savepoint
S1. If y is updated the handler corresponding to signal label S2 is executed. If both x
and y have been updated then the transaction manager signals S1; this is because S1 is the
savepoint immediately preceding the earliest of the two read operation in T , viz. r[x] and
r[y]. Finally, if there is no signal the transaction proceeds from line 26 onwards.

In line 28 of the transaction, we have a default invocation of the GetSignal command. If
there is any signal to be serviced at this point, the transaction is rolled back to the savepoint
immediately preceding the earliest low read operation among those signaled. For example,
if both x and y are signaled, then the transaction will rollback to the savepoint S1. If on
the other hand, only y is signaled, then the transaction will rollback to S2.

Savepoints can also be used in the transaction code merely to control the ow and
rollback even without the occurrence of any low level read operation. An example of this
is the savepoint S3 established in line 21.

We would like to mention here, that if the GetSignals on line 13 and 25 are removed
from the program code in order to simplify it, the transaction still remains well-formed. We
explain why this is so later on in Section 5. 2

Example 4.2 The transaction in this example is quite similar to the one in the previous
example. Consequently, we describe only those steps that are di�erent in this transaction.
In particular, the only di�erences between the transaction in Figure 10 and that in Figure
9 are in the GetSignal calls in lines 13 and 25.

Consider the GetSignal in line 13. If an update of x is signaled by a lower level trans-
action, then instead of rolling back the transaction, as in Figure 9, the handler rereads the
new value of x and updates the local program variables according to the new value. Note
that there is no need to reread the high data item z. After this the transaction continues
execution from line 14 onwards. It should be noted that here the programmer has exploited
the semantics of the transaction in order to perform a forward recovery instead of a rollback.
In particular, the forward recovery is possible because there is no update of the data store
between the savepoint S1 and the GetSignal in line 13.

Consider next the GetSignal in line 25 of Figure 10. If x is updated, then the handler
corresponding to signal label S1 is executed and the transaction rolls back to savepoint
S1. Note here that the programmer has speci�ed a di�erent handler for the signal label S1
than was used previously with the GetSignal in line 13; the handler in line 13 performed a
forward recovery.

On the other hand, if y is updated the handler corresponding to signal label S2 is
executed. In this handler the programmer has speci�ed a conditional rollback. If the total
number of rollbacks for this transaction is more than 4 till this point, the programmer does
not want another rollback for y. Instead he wants that an alert message be delivered and the
execution continue forward from line 26. This construct for conditional rollback, if properly
used in all the rollback handlers, prevents the inde�nite delay for completion of a high level
transaction and thereby allows the programmer to �nd a trade o� between starvation and
transaction isolation.

19

/* x, y are low level data items which can be read but not written to. */
/* z and u are data items at the same security level as the transaction. */
/* RollBackCount is a user accessible system variable which is */
/* incremented by 1 each time a rollback operation is performed. */
/* This variable is initialized to zero only at the transaction beginning */
Begin Transaction

1. : : :
2. : : :
3. : : :
4. : : :
5. S1 = SaveWork ;
6. r[x] ;
7. r[z] ;
8. /* some computation on local program variables */
9. : : :
10. : : :
11. /* some computation on local program variables */
12. : : :
13. GetSignal[S1 ! r[x];

update the local variables according to the new value of x] ;
14. : : :
15. S2 = SaveWork ;
16. /* some computation on local program variables */
17. : : :
18. r[y] ;
19. w[z] ;
20. RaiseSignal;
21. S3 = SaveWork ;
22. : : :
23. /* some computation on local program variables */
24. : : :
25. GetSignal[S1 ! rollback(S1) ;

S2 ! If RollBackCount < 4 then rollback(S2)
else send appropriate message to user] ;

26. : : :
27. r[u];
28. GetSignal[! rollback] ;
29. /* some computation on local program variables */

End Transaction

Figure 10: A transaction providing more exibility

20

Finally, if both x and y have been updated, then the transaction manager signals S1 as
it is the savepoint immediately preceding the earliest of the two read operations in T . 2

5 The Formal Transaction Model

This section formally de�nes a transaction in our model and presents the notions of histories,
rollback-free projections of histories and serializable histories.

De�nition 5.1 A transaction Ti is a partial order with ordering relation <i where

1. Ti � < [rsi [fai, cig where

(a) < is the powerset of fri[x], wi[x], swi(sl), gsi(sl), rbi(sl) j x is a data item and
sl is a signal labelg, where swi(sl) establishes a savepoint denoted by the signal
label sl, gsi(sl) is an execution of the command GetSignal, servicing a signal
label sl, and rbi(sl) denotes the command RollBack with the parameter sl.

(b) rsi is the command RaiseSignal

(c) ai is an abort and

(d) ci is a commit

2. ai 2 Ti i� ci =2 Ti

3. if t is ai or ci, then for any other operation p 2 Ti, p <i t

The result of the rbi(sl) command is the execution of a series of undo(opi) operations,
the duals of opi. For each opi that precedes rbi(sl) and up to the command SaveWork
identi�ed by the signal label sl, an undo(opi) is executed. The order of execution of these
undo commands is in the reverse of the order that the operations opi appeared in the
transaction. The e�ect of a undo operation is to remove the result of opi from the system,
as if opi was never executed. As a result of these undo commands, the �le store and the
local program variables are restored to the state denoted by the savepoint sl which is the
parameter of the RollBack command. Speci�cally, the undo of a read operation will release
the lock on the data item, and the undo(gs(sl)) resets all the local program variables to the
state denoted by sl.

The execution of a RollBack command in a transaction T1 is shown in the following
examples. The operations of T1 till the RollBack command, are executed in the sequence
shown below in Example 5.1.

Example 5.1 r1[y] sw1(sl) r1[x] w1[z] gs1(sl) rb1(sl) 2

The above transaction with the RollBack command expanded with the complete se-
quence of undo commands only is shown below.

Example 5.2 r1[y] sw1(sl) r1[x] w1[z] gs1(sl) undo(gs1(sl)) undo(w1[z]) undo(r1[x]) 2

21

Once the state has been restored to the savepoint (i.e. all undo operations have been
performed), the transaction is re-executed from the savepoint as shown in example 5.3
below. Here, this is reected by the second r1[x] which is nothing but the re-read of data
item x followed by w1[s]. The reason why w1[s] is shown instead of w1[z] (i.e. re-writing
of z) is to emphasize the fact that after the RollBack is executed, it is not necessarily true
that all commands are re-done. This is speci�cally true if there is a conditional command
after the step r1[x] which depend on the value of x. In such a case a di�erent ow of control
than the original one may result in a di�erent list of commands being executed.

Also of interest is the gs1(nil) command in Example 5.3. If the execution of a GetSignal
command in a transaction does not return a signal label, we say that no signal is serviced
by the GetSignal and this is denoted by gs(nil).

Example 5.3 r1[y] sw1(sl) r1[x] w1[z] gs1(sl) undo(gs1(sl)) undo(w1[z]) undo(r1[x]) r1[x]
w1[s] r1[u] rs1 r1[p] gs1(nil) c1 2

The interleaving of a set of transactions, when they execute concurrently, is modeled by
a history [BHG87].

De�nition 5.2 Two operations p and q are said to conict, if they both operate on the
same data item and at least one of them is a write operation.

De�nition 5.3 A complete history H over a set of committed transactions T = fT1, : : :,
Tng is a partial order with the ordering relation <H where:

1. H = [ni=1Ti;

2. <H � [ni <i; and

3. for any two conicting operations p, q 2 H, either p <H q or q <H p.

Henceforth, by history we always mean a complete history. A serialization graph is a
pictorial representation of a history and is de�ned as follows.

De�nition 5.4 The serialization graph SG(H) for a history H is a directed graph whose
nodes are the transactions in H and whose edges are all Ti ! Tj (i 6= j) such that one of
Ti's operations precedes and conicts with one of Tj 's operations.

De�nition 5.5 A history Hs over transactions T1, T2, : : :, Tn is said to be a serial history
if for every pair of transactions Ti, Tj 2 Hs, either all the operations of Ti execute before
any of the operations of Tj or vice versa.

In the transaction model proposed in this paper, a serial history Hs cannot contain a
GetSignal which generates a rollback computation, since there is no interleaving of trans-
actions. In other words, only gs(nil) can be in Hs. It is not proper to de�ne a serializable
history H in this model, as being equivalent to some serial history Hs. This is because, the
history H may contain some rollback computations, triggered by a GetSignal command,
which will be absent in any Hs. Nonetheless, a rollback computation being formed of the
dual opi; undo(opi), in e�ect does not modify the �le store. Thus, we are led to a slightly
modi�ed de�nition of serializability in terms of the rollback� free projection of a history
H . Informally, given a history H , the rollback-free projection of H is the history obtained
from H by deleting all those operations that were undone due to a rollback command.

22

sw1

r [x]1

Low

High 1r [y]

w [x]r [b] w [b] sw2 w [p] rs r [a] gs (nil) c

Low

High 1r [y]

w [x]r [b] w [b] sw w [p] rs 2 r [a] gs (nil) c

r [x]1rb (sw)1gs (sw)w [z]r [x]1

(a) Original history with rollback

(b) Rollback-free projection history

rs w [z] gs (nil) cw [s]

cgs (nil)w [z]rsw [s]1 1 1 1 1 1 1 1

2 2 2 22 2

1 11 1

22 2 2 2 2

1

1

2

2

2

2

sw1

Figure 11: Rollback equivalent histories

De�nition 5.6 The rollback-free projection, R(H), of a history H is a restriction of the
partial order (H;<H), such that

1. R(H) � H , that is, the operations in R(H) belong also to the set of operations of the
transactions in H ;

2. if opi, swi(sl) and rbi(sl) 2 H such that swi(sl) <H opi <H rbi(sl), then both
operations rbi(sl), opi =2 R(H);

3. any opi 2 H not excluded by 2 above is included in R(H);

4. for all opi, opj 2 R(H), opi <R(H) opj i� opi <H opj .

Figure 11 shows a history H and its rollback-free projection history R(H). We are now
in a position to introduce the notion of a serializable history.

De�nition 5.7 A history H is serializable if its rollback-free projection R(H) is conict
equivalent to some serial history Hs.

De�nition 5.8 A transaction Ti is said to be well-formed if

23

1. Transaction Ti acquires a lock in an appropriate mode on a data item x before per-
forming an operation of that mode on x. Each lock operation of Ti is eventually
followed by a corresponding release of the lock.

2. Transaction Ti, which is requesting a lock on a data item, has to wait if a conicting
lock has already been acquired on the same data item by another transaction.

3. If Ti has to rollback to a savepoint sl, it releases all the locks that it acquired after sl
and up to its current point of execution and then reexecutes the code starting from
sl, reacquiring all relevant locks as it proceeds.

4. Each GetSignal command in Ti is well-formed. That is, for every gsi(sl) 2 Ti such
that sl 6= nil; gsi(sl) <i rbi(sl).

5. In the execution of Ti, at least one GetSignal follows the RaiseSignal call. The Rais-
eSignal command should follow the last write lock operation in Ti and the GetSignal
command should be after the last lock operation in Ti.

In order to satisfy the conditions 4 and 5 above, the code of Ti should be organized as
follows: (1) For every SaveWork command of the form sli := SaveWork, which is de�ned
before a GetSignal, there should be a handler in the GetSignal of the form sli ! handleri;
also, handleri should contain the command Rollback(sli), and (2) The control ow analysis
of the transaction should ensure that at least one RaiseSignal after the last write and one
GetSignal after the last lock operation is executed.

An example of a transaction that is well-formed is given in Figure 9. In contrast, the
example of the transaction in Figure 10 is not well-formed, according to the de�nition above
for two reasons: (1) The GetSignal on line 13 does not contain any Rollback command;
and (2) The GetSignal on line 25 contains a conditional Rollback. Such constructs can
be convenient in practical system programming, since in many applications it is useful to
have a compromise between correctness and performance [GR93]. However, in order to
ensure serializability the strong de�nition of well-formedness is required as in De�nition
5.8. The simplest way to make the transaction in Figure 10 well-formed, is to replace all
the GetSignals by the default invocation of GetSignal, viz. GetSignal[! RollBack] thus
satisfying condition 4 above.

In order to demonstrate that the relative order of the RaiseSignal and GetSignal, as
stated in criterion 5 of well-formed transaction, is necessary to guarantee serializability,
consider the example history in Figure 12. (In this �gure, the dashed arrows indicate the
temporal ordering of the operations, and not conicts among them.) Transaction T2 is
not well-formed because the GetSignal command precedes the RaiseSignal command in T2.
Evidently this history which is rollback-free contains the cycle T1 ! T2 ! T3 ! T1, and
hence is not serializable. However, if transaction T2 were well-formed, the history would be
serializable. Note that in this latter case the RaiseSignal of T3 is serviced by the GetSignal
of T2, and the RaiseSignal of T2 is serviced by the GetSignal of T1.

It should also be noted that only the last RaiseSignal, GetSignal pair contributes towards
the well-formedness of a transaction. Indeed, even if all the GetSignal calls other than the
last one in a transaction services all the relevant signals, it can always happen that the
last GetSignal misses at least one signal as in the non-serializable history of Figure 12. In

24

2w [x]

gs (nil)1

c 2r [y]2

w [y]3

gs (nil)2

rs3 gs (nil)3 c 3

rs

r [x]1 1r [y]Very High

High

Low

c 1

2

Figure 12: A history with a transaction that is not well-formed

subsequent discussions whenever we speak of rsi, gsi for a transaction Ti we mean the last
RaiseSignal - GetSignal pair.

From properties 1, 4, and 5 of well-formed transactions, it follows that Ti ! Tj, where
transaction Ti is at a level higher than Tj , only if Ti reads a low data item x which is
subsequently written by Tj , and Tj raises the signal after the last GetSignal of Ti. If this is
not the case then Ti is rolled back, the new value written by Tj , is re-read by Ti, and hence
the conict Ti ! Tj is removed. We summarize this observation as a proposition as follows:

Proposition 5.1 Given two well-formed transactions Ti and Tj such that L(Tj) � L(Ti),
if Ti ! Tj in SG(R(H)) then gsi <R(H) rsj .

This proposition is generalized to include also transactions at any two security level by
the following lemma.

Lemma 5.1 Given two well-formed transactions Ti and Tj , if Ti ! Tj in SG(R(H)) then
gsi <R(H) gsj .

Proof: There may be three cases: Ti and Tj are at the same security level, Ti is at a lower
level than Tj , and Ti is at a higher level than Tj . Note that if Ti and Tj are at incomparable
security levels, they cannot have any conict. Each of these cases is considered in turn:

1. Since transactions at the same security level use strict 2PL, at least the conicting
operation opj in Tj must follow the commit of Ti. Thus, gsi <R(H) ci <R(H) opj <R(H)

gsj .

2. If Ti is at a lower level than Tj , again the reasoning in case 1 applies since the
conicting read operation of Tj is delayed until after the commit of Ti.

3. If Ti is at a higher level than Tj and Ti ! Tj in the history, by proposition 5.1,
gsi <R(H) rsj . Thus, gsi <R(H) rsj <R(H) gsj .

2

Theorem 5.1 A history H consisting solely of well-formed transactions is serializable.

25

Proof: By de�nition of serializable histories, the rollback-free projection R(H) of the his-
tory H need be considered. We will show that the serialization graph for R(H), SG(R(H))
does not contain any cycle.

Suppose SG(R(H)) contains a cycle T1 ! T2 ! : : :! Tn ! T1, n > 1. By Lemma 5.1,
it follows that gs1 < gs2 < : : : < gsn�1 < gsn < gs1, which is a contradiction. 2

6 Hierarchical Lock Protocol

So far the �le store has been viewed as an unstructured collection of data items. However,
it is useful to view the �le store as a hierarchy of di�erent granules of data items. Although
the granularity of data items is unimportant for correctness, it is relevant for system per-
formance because the concurrency among transactions can be increased by the use of locks
on increasingly �ner granules of data items. A small granule lock is costly for a complex
transaction that accesses a large number of granules. A coarse granule lock on a data item,
on the other hand, would discriminate against the many small transactions that want to
access just a tiny part of the data item. Thus the choice of a lock granule presents a trade-
o� between concurrency and overhead. A hierarchical lock protocol is particularly useful
in a multilevel secure �le store since it can reduce the number of signals to higher-level
transactions.

We will assume that the lock manager uses the natural hierarchical relationship among
the di�erent data granularities present in conventional systems, that is: �le store, area, �le,
block (page) and record. Such a hierarchical relationship of data items is represented by a
lock type graph. Each edge in this graph connects a data type of coarser granularity to one
of �ner granularity. A set of data items that is structured according to a lock type graph is
called a lock instance graph.

As stated in Section 3.1, the �le store is partitioned according to security levels. This
results in a number of lock instance graphs, one for each security level, with a �le store
granule at the root of each lock instance graph. All the data items in a particular lock
instance graph have the same security classi�cation. This results in a single level �le store
for each security level. In contrast, if all the data items at di�erent security levels were
to belong to the same lock instance graph, then a pseudo data granule, coarser than the
physically coarsest, would be required at the root of this graph. This pseudo data granule
would have to be classi�ed at the lowest security level in the security lattice. Otherwise,
any low data item which is in some interior node, would be invisible to a low transaction.
However, if the root is at the lowest classi�cation level, then a lowest level transaction can
put a write lock on the root and thereby prevent transactions at other security levels to
modify those portions of the lock instance graph which is at their level. Moreover, the costs
associated with maintaining one extra granule in the lock instance graph is high [GR93].
Thus, it is better to have single level �le stores for each security level, for implementing a
secure hierarchical locking protocol.

A lock on a coarse data x explicitly locks x and implicitly locks all descendants of x;
for example, a read lock on a �le implicitly read locks all the records in that �le.

We de�ne seven di�erent kinds of locks. Of these, three are the read lock, write lock
and signal lock described in section 3. The other four are generally termed as the intention
locks. These intention locks allow the lock manager to ensure before locking a data object

26

x, that there are no locks on any ancestor of x that implicitly lock x in a conicting mode.
The di�erent intention locks are described below.

Intent Read If a transaction T wants to read a data object x which is at the same security
level as T, then it has to set intent read locks on all data items which are the ancestors
of x in the lock instance graph, before setting the read lock on x.

Intent Write If a transaction T wants to write a data object x which is at the same
security level as T, then it has to set an intent write lock on x's parent before it can
set a write lock on x.

Intent Signal If a transaction T wants to read a data object x which is at a lower security
level than T itself, then it has to set intent signal locks on all data items which are
the ancestors of x in the data granularity hierarchy, before setting the signal lock on
x.

Read Intent Write If a transaction T wants to read a data object x which is at T's
security level and also wants to write to some part of x (i.e. to a �ner granule of x)
then T sets a read intent write lock on x. This is equivalent to setting a read lock on
x and an intent write lock on x. The intent write lock on x ensures that write locks
can subsequently be set on �ner granules of x for writing.

The compatibility matrix for hierarchical locks is given in Figure 13.
Apart from the di�erent compatibility matrix used, the Trusted Lock Manager for hi-

erarchical locking is very much similar to the standard Trusted Lock Manager discussed
in section 4.2. The only di�erence is in the handling of RaiseSignal. In the Trusted Lock
Manager module with hierarchical locking, if x1 : : :xn are the data items previously locked
in Write mode, then for each Tj that has a Signal lock or an IntentSignal lock on xk the
TM of Tj has to be noti�ed of a new value for xk; if y1 : : : yn are the data items previously
locked in IntentWrite or ReadIntentWrite mode by Ti, then for each Tj that has a Signal
lock on yk , the TM of Tj has to be noti�ed of a new value for yk . If Tj has a IntentSignal
lock on yk , then it is not required to be noti�ed. Figure 14 shows the modi�ed Trusted
Lock Manager module with hierarchical locking. Only the portion for the RaiseSignal has
been shown in the �gure as the rest of the algorithm is the same.

Given a lock instance graph G that is a tree, the lock manager sets and releases locks
for each transaction Ti according to the following hierarchical locking protocol.

1. If the data object x is not the root of G, and is at the same security level as Ti, then
to set a read lock or an intent read lock on x, Ti must have an intent read lock or an
intent write lock on x's parent.

2. If the data object x is not the root of G, but is at a security level lower than Ti, then
to set a signal lock on x, Ti must have an intent signal lock on x's parent.

3. If x is not the root of G, and is at the same security level as Ti, then to set a write
lock or an intent write lock on x, Ti must have an intent write lock on x's parent.

27

Intent
Read

Intent
Write

Read Read Intent
Write

Write Signal
Signal
Intent

Intent
Read

Intent
Write

Read

Read Intent
Write

Write

Signal

Signal
Intent

None

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes Yes Yes YesYes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No No

NoNo

No

NoNo

No

No

No

No

No

No

No

No

No

No

Requested

Granted

(IR) (IW) (R) (SIR) (W) (S) (IS)

Figure 13: Compatibility matrix for hierarchical locking

28

TrustedLockManager()
repeat
receive (TMl,Ti,op,x,mode);

: : :

: : :
case op do

: : :
: : :

RaiseSignal:
let x1:::xn be the data items locked in Write mode by Ti.
for each Tj that has either a Signal or an
IntentSignal lock on xk do
notify the TM of Tj of a new value for xk;
let y1:::yn be the data items locked
in IntentWrite or ReadIntentWrite mode by Ti.
for each Tj that has a Signal lock on yk do
notify the TM of Tj of a new value for yk;
send(TMl,Ti,raiseOK);

endcase
forever

Figure 14: Trusted lock manager module with hierarchical locking

4. To read x, where x is at the same security level as Ti, the transaction Ti must own
either a read lock or a write lock on some ancestor of x either explicitly or implicitly.
(Note possessing a write lock on an object, enables a transaction to read it also.)

5. To write x, Ti must own a write lock on some ancestor of x either explicitly or implicitly.

6. To read a low level object x, the transaction Ti must have an explicit or implicit signal
lock on some ancestor of x.

7. The transaction Ti may not release an intention lock on a data item x, if it is currently
holding a lock on any child of x.

The goal of the hierarchical locking protocol given above is to ensure that transactions
never hold conicting (explicit or implicit) locks on the same data item.

Theorem 6.1 If two transactions obey the hierarchical locking protocol with respect to a
given lock instance graph that is a tree, then they cannot own conicting locks on the same
node of the graph.

Proof: It is su�cient to show that two transactions cannot hold conicting locks when
either one or both of the locks are implicit. Moreover, only leaf nodes of the lock instance

29

graph need be considered since if two transactions held conicting locks on a nonleaf node
x, they would be holding conicting locks on all descendants (including the leaf) of x.

Two conicting locks on leaf x, with either one or both being implicit in nature, can
occur in the following twelve ways.

Transaction Ti granted on x Transaction Tj requested on x

1 implicit read lock explicit write lock
2 implicit read lock implicit write lock
3 explicit read lock implicit write lock
4 implicit write lock explicit write lock
5 implicit write lock implicit write lock
6 explicit write lock implicit write lock
7 implicit write lock explicit signal lock
8 implicit write lock implicit signal lock
9 explicit write lock implicit signal lock
10 implicit write lock explicit read lock
11 implicit write lock implicit read lock
12 explicit write lock implicit read lock

Case 1. If Tj has to have an explicit w lock on data item x, then from rule 3 of the locking
protocol, it must own an intent write lock on x's parent. By induction, Tj must have
intent write lock on all ancestor's of x, in particular on data item y, an ancestor of x.
Now Ti can have an implicit read lock on x, if it owns a read lock on some ancestor
of x. By rule 4 of the locking protocol and induction, Ti possesses a read lock on y.
This is not possible since a read lock and an intent write lock conict.

Case 2. By rules 4 and 5, Ti owns a read lock on some ancestor y of x and Tj owns a write
lock on ancestor y0 of x. There are three cases:

a. y = y0 which is not possible because this implies that Ti and Tj are holding
conicting locks on the same node.

b. y is an ancestor of y0. In this case Tj must own an intent write lock on y, which
conicts with a read lock on y as in Case 1.

c. y0 is an ancestor of y. In this case Ti must own an intent read lock on y0 which
conicts with write lock on y0.

Case 3. By rule 4 of the locking protocol, Ti has a read lock on some ancestor y of x. And
by rule 3 and induction Tj must have an intent write lock on y. This is not possible
according to the lock compatibility matrix.

Case 4. If Ti holds an implicit write lock on x then Ti holds a write lock on some ancestor
y of x. In order for Tj to get an explicit lock on x, it must have an intent write lock
on x's parent and by induction an intent lock on y. this is not possible according to
the lock compatibility matrix.

Case 5. By rule 5 Ti owns a write lock on y, some ancestor of x and tj owns a write lock
on y0, some other ancestor of x. There are three possible cases:

30

a. y = y0. This implies that both Ti and Tj have conicting locks on the same data
item and is obviously not possible.

b. y is an ancestor of y0. This is not possible because if Tj holds a write lock on y0

it must have an intent write lock on y and thus a conict with Ti.

c. y0 is an ancestor of y. In this case Ti holds an intent write lock on y0; thus Tj
conicts with Ti.

Case 6. Ti holds a write lock on y, some ancestor of x and Tj has to obtain an intent write
lock on that y in order to have an implicit lock on x. This is not possible.

Case 7. For Ti to have an implicit write lock on x, it must have a write lock on some
ancestor y of X , on which Tj has to acquire an intent signal lock, if it has to own a
signal lock on x. This is not allowed according to the lock compatibility matrix.

Case 8. If Ti has an implicit write lock on x, it must own a write lock on y, some ancestor
of x. Similarly Tj has to own a signal lock on y0, some other ancestor of x. As in Case
5 above, three di�erent cases arises :

a. y = y0. This is clearly impossible.

b. y is an ancestor of y0. For Tj to hold a signal lock on y0 it must have an intent
signal lock on y which will then conict with the write lock of Ti.

c. y0 is an ancestor of y. In this case Ti must have an intent write lock on y0, but
then Tj 's signal lock will conict with this lock.

Case 9. In this case Ti holds an intent write lock on some ancestor y of x, on which Tj tries
a signal lock. According to the lock compatibility matrix, these two locks conict and
hence this situation is not possible.

Case 10. The argument is similar to Case 7.

Case 11. Follows from a reasoning similar to Case 8.

Case 12. The same reasoning as in Case 9 applies.

2

Lemma 6.1 A transaction which satis�es conditions 3, 4 and 5 for well-formedness and
obeys the hierarchical locking protocol for its lock and unlock operations is well-formed.

Proof Sketch: As shown in theorem 6.1 two transactions obeying the hierarchical locking
protocol, cannot own conicting locks simultaneously on the same node of the lock instance
graph that is a tree. Thus transaction Ti, which is requesting a lock on an item, has to wait
if a conicting lock has been acquired on the same data item, by another transaction. Thus
the transaction Ti satis�es condition 2 for well-formedness and is well-formed. 2

Theorem 6.2 A history H consisting of well-formed transactions obeying the hierarchical
protocol for locking and unlocking operations, is serializable.

Proof Sketch: The proof is similar to the proof for theorem 5.1 2

31

7 Conclusion and Future Work

This paper extended the two-phase locking mechanism into the realm of secure transaction
processing using single-version data items. In the proposed scheme, the only way data
sharing among transactions at di�erent levels can take place is by having a higher level
transaction Tj read a lower level data item x using a Signal lock on x. Since a lower level
transaction Ti can never access higher level data item, Ti does not ever have to wait or be
aborted owing to a conicting higher level transaction Tj. This closes the timing covert
channel that can arise owing to a lock based synchronization of concurrently executing
multilevel transactions. In addition, deadlocks among transactions at multiple levels are
also prevented. This is due to the fact that although, in this scheme, Tj may have to wait
for Ti to release write locks, Ti never waits for Tj . This allows system deadlock detection
by employing untrusted deadlock detectors at each security level. Each deadlock detector
is responsible for possible deadlocks among transactions at its level.

The proposed GetSignal, RaiseSignal, SaveWork, and RollBack commands allow a sim-
ple generalization of the at transaction model. The generalization is related to what
are called sequential nested transactions in which transactions have an internal structure,
though they are executed sequentially. In particular, transaction T starts a new subtrans-
action by executing a SaveWork call; sometimes T performs a Rollback to one of these
savepoints aborting one of its subtransactions. The GetSignal corresponds to end subtrans-
action and, therefore, a commit operation, if nothing has to be noti�ed. Indeed, in the
sequential nested transaction model the commit of a subtransaction is essentially a null
operation. The e�ects of the transaction are made durable and public only when the top
level transaction commits.

In order to reduce the programming e�ort and make this approach more convenient for
database applications, the proposed primitives can be invoked transparently in the applica-
tion as follows. Every time a transaction requests a Signal lock, its transaction manager is-
sues a SaveWork command. When the transaction completes and issues an End Transaction
command, the transaction manager invokes �rst the RaiseSignal command and then the
GetSignal command. The GetSignal command invoked should be the default invocation,
i.e., GetSignal[! RollBack] which, in case there is any signal to be serviced, will rollback
the transaction to the savepoint immediately preceeding the earliest lower read operation
that has to be redone. This transparent invocation of the system commands satis�es the
conditions of well-formedness of transactions given in section 5 and hence guarantees se-
rializable histories. Further, it appears that for transactions that do not read lower level
data items, there is no need to include any GetSignal command. These transactions can be
simpli�ed by invoking only a RaiseSignal at the commit of the transactions.

The goal of this work is not exactly to improve performance. Rather it is to provide
a secure concurrency control protocol that is based on locks on single-version data, and
to provide exibility to the system programmer. Indeed, our new system primitives allow
the system programmer to emulate other secure concurrency control protocols like that
of [Inf93a, Inf93b]. Nonetheless, it appears that the ideas presented here can be suitably
modi�ed to support higher levels of concurrency in the conventional transaction processing
framework thus leading to improved performance. This is because an update transaction
can acquire a write lock on a data item, even though a read lock is already set on the

32

same data item. Note that the overhead due to possible rollbacks will be reduced for short-
lived read transactions as they will tend to commit before getting signaled by the update
transactions.

As part of our future work, we plan to investigate the impact of this novel concurrency
control mechanism on di�erent aspects of transaction processing. In particular, it appears
that the problem of commit protocols for secure transactions can be solved more e�ectively
within this scheme.

References

[AJ92] P. Ammann and S. Jajodia. A timestamp ordering algorithm for secure, single-
version, multi-level databases. Database Security, V: Status and Prospects, Carl

E. Landwehr, ed., North-Holland, Amsterdam, pages 23{25, 1992.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley Publishing Company, Reading,
MA, 1987.

[BL76] D.E. Bell and L.J. LaPadula. Secure computer systems: Uni�ed exposition and
multics interpretation,. Technical Report MTR-2997, The Mitre Corp., Burling-
ton Road, Bedford, MA 01730, USA, March 1976.

[Cri82] F. Cristian. Exception handling and software fault tolerance. IEEE Transactions
on Computers, C-31(6):531{540, June 1982.

[Den82] D. E. Denning. Cryptography and Data Security. Addison-Wesley, Reading, MA,
1982.

[EMS91] J. L. Eppinger, L. B. Mummert, and A. Z. Spector, editors. Camelot and Avalon:

A Distributed Transaction Facility. Morgan Kaufman Publishers, Inc., San Mateo,
California, 1991.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann Publishers, San Mateo, CA, 1993.

[IAT90] C. E. Irvine, T. B. Acheson, and M. F. Thompson. Building trust into a multilevel
�le system. In Proceedings of the 13th. National Computer Security Conference,
Washington D.C., 1990.

[Inf93a] Informix Software, Inc., Menlo Park, CA. Informix-OnLine/Secure Administra-
tor's Guide, April 1993.

[Inf93b] Informix Software, Inc., Menlo Park, CA. Informix-OnLine/Secure Security Fea-
tures User's Guide, April 1993.

[Irv95] C. E. Irvine. A multilevel �le system for high assurance. In Proccedings of the
IEEE Symposium on Security and Privacy, Oakland, CA, May 1995.

33

[JA92] S. Jajodia and V. Atluri. Alternative correctness criteria for concurrent execution
of transactions in multilevel secure database systems. In Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, California, pages 216{224, May
1992.

[KTS90] T. F. Keefe, W. T. Tsai, and J. Srivastava. Multilevel secure database concurrency
control. In Proceedings of the IEEE 6th Int'l. Conference on Data Engineering,
Los Angeles, California, pages 337{344, February 1990.

[Lam73] B. W. Lampson. A note on the con�nement problem. Communication of the

ACM, 16(10):613{615, October 1973.

[Lam77] L. Lamport. Concurrent reading and writing. Communications of the ACM,
20(11):806{811, November 1977.

[Ora92] Oracle Corp., Redwood City, CA. Trusted Oracle Administrator's Guide, 1992.

[RK79] D. P. Reed and R. K. Kanodia. Synchronization with eventcounts and sequencers.
Communications of ACM, 22(5):115{123, May 1979.

[Sch74] M. Schaefer. Quasi-synchronization of readers and writers in a secure multi-level
environment. Technical Report TM-5407/003, Syst. Develop. Corp., September
1974.

[SM94] S. K. Srivastava and D. L. McCue. Structuring fault-tolerant object systems for
modularity in a distributed environment. IEEE Transactions on Parallel and
Distributed Systems, 5(4):421{432, 1994.

[SW88] M. A. Sca�er and G. Walsh. Lock/ix: On implementing unix on the lock tcb.
In Proceedings of the 11th. National Computer Security Conference, pages 17{20,
October 1988.

34

