
Applying Formal Methods to Semantic-Based Decomposition

of Transactions

Paul Ammann� Sushil Jajodiay

Indrakshi Rayz

Center for Secure Information Systems

and

Department of Information and Software Systems Engineering

George Mason University

Fairfax, VA 22030-4444

Email: fpammann, jajodia, imukherjg@isse.gmu.edu

Contact Author: Professor Sushil Jajodia, Mail Stop 4A4, George Mason University,

Fairfax, VA 22030-4444. Telephone: 703{993{1653/1640 (dept.), Fax: 703{993-1638,

Internet: jajodia@gmu.edu

A preliminary version of this paper will appear under the title `Using formal methods to

reason about semantics-based decomposition of transactions' in VLDB '95: Proceedings of

the Twenty-First International Conference On Very Large Data Bases, Zurich, Switzerland,

September 1995.

�Partially supported by National Science Foundation under grant number CCR-9202270
yPartially supported by a grant from ARPA, administered by the O�ce of Naval Research under grant

number N0014-92-J-4038, by National Science Foundation under grant number IRI-9303416, and by National

Security Agency under contract number MDA904-94-C-6118
zPartially supported by a George Mason University Graduate Research Fellowship Award

Abstract

In some important database applications, performance requirements are not sat-

is�ed by the traditional approach of serializability, in which transactions appear

to execute atomically and in isolation on a consistent database state. Although

many researchers have investigated the process of decomposing transactions into

steps to increase concurrency, the focus of the research is typically on imple-

menting a decomposition supplied by the database application developer, with

relatively little attention to what constitutes a desirable decomposition and how

the developer should obtain such a decomposition. In this paper, we focus on

the decomposition process itself. A decomposition generates a set of proof obli-

gations that must be satis�ed to show that the decomposition correctly models

the original collection of transactions. We introduce the notion of semantic

histories to formulate and prove the necessary properties, and the notion of

successor sets to describe e�ciently the correct interleavings of steps. The suc-

cessor set constraints use information about conicts between steps so as to take

full advantage of conict serializability at the level of steps. We implement the

resulting, veri�ed decomposition in a two-phase locking environment.

1 Introduction

Performance requirements can force a transaction to be decomposed into smaller logical

units (we call these steps), especially if the transaction is long-lived. Consider the simple

example of making a hotel reservation. The reserve transaction might consist of ensuring

that there are still rooms vacant, selecting a vacant room that matches the customer's

preferences, and recording billing information. Since the reserve transaction might last a

relatively long time { for example, when the customer makes reservations by phone { an

implementation might force the three steps in the reserve transaction to occur separately.

Although researchers have recognized the need for decomposing a set of transactions into

steps, we analyze the decomposition process in a way that allows correctness with respect to

the original transactions to be assessed formally. Each aspect of our decomposition process

is accompanied by corresponding proof obligations, and we give an e�cient, two-phase

locking implementation for the resulting, veri�ed decomposition.

The traditional transaction model relies on the properties of atomicity, consistency, and

isolation. Atomicity ensures that either all actions of a transaction complete successfully

or all of its e�ects are absent. Consistency ensures that a transaction when executed by

itself, without interference from other transactions, maps the database from one consistent

state to another consistent state. Isolation ensures that no transaction ever views the partial

e�ects of some other transaction even when transactions execute concurrently. Decomposing

transactions into steps generally forces one to relinquish these three properties to some

degree.

Decomposition not only sacri�ces atomicity, since atomicity of the single logical action

is lost, but impacts consistency and isolation as well. Execution of a step may leave the

database in an inconsistent state, which may be viewed by other transactions or steps; there-

fore, it is necessary to reason about the interleavings of the steps of di�erent transactions.

Although the step-by-step decomposition of a single transaction into steps may be under-

stood in isolation, reasoning about the interleaving of these steps with other transactions,

possibly also decomposed into steps, is substantially more di�cult.

To reason about interleavings, we introduce the notion of semantic histories which not

only list the sequence of steps forming the history, but also convey information regarding

the state of the database before and after execution of each step in the history. We identify

properties which semantic histories must satisfy to show that a particular decomposition

correctly models the original collection of transactions.

The remainder of the paper is organized as follows. A motivating example is presented

in Section 2. Section 3 gives our model and illustrates it with re�nements to the motivating

example. Successor sets, which are crucial to an e�cient implementation of our decompo-

1

N Set of Natural Numbers

PA Powerset of Set A

#A Cardinality of Set A

n Set Di�erence (Also schema `hiding')

A o

9
B Forward Composition of A with B

x 7! y Ordered Pair (x ; y)

A 7! B Partial Function from A to B

A 7� B Partial Injective Function from A to B

B �CA Relation A with Set B Removed from Domain

AB B Relation A with Range Restricted to Set B

domA Domain of Relation A

ranA Range of Relation A

A� B Function A Overridden with Function B

x? Variable x? is an Input

x ! Variable x ! is an Output

x State Variable x before an Operation

x 0 State Variable x 0 after an Operation

�A Before and After State of Schema A

�A �A with No Change to State

Table 1: Z Notation

sition, are presented in Section 4. A graph-based characterization of correctness is given in

Section 5, followed by an implementation in a two-phase locking environment in Section 6.

Section 7 relates our work to the literature. Section 8 concludes the paper.

We adopt the Z speci�cation language [Spi89] for expressing model-based speci�cations.

Z is based on set theory, �rst order predicate logic, and a schema calculus to organize large

speci�cations. Knowledge of Z is helpful, but not required, for reading this paper, since we

narrate the formal speci�cations in English. Table 1 briey explains the Z notation used in

our examples. Other speci�cation and analysis conventions peculiar to Z are explained as

the need arises.

2 The Hotel Database

We illustrate our ideas with an example of a hotel database. A Z speci�cation of the

hotel database appears in �gure 1. The hotel database has a set of objects, two integrity

2

[Guest ;Room]
Status ::= Available j Unavailable

total : N

Hotel

res : N
RM : Guest 7� Room

ST : Room 7! Status

guest : PGuest

#RM = res

dom(ST B fUnavailableg)
= ranRM

Reserve

�Hotel
g? : Guest
r ! : Room

res < total

g? 62 guest
ST (r !) = Available

res 0 = res + 1
ST 0 = ST � fr ! 7! Unavailableg

RM 0 = RM [fg? 7! r !g
guest 0 = guest [fg?g

Cancel

�Hotel
g? : Guest

g? 2 guest
res 0 = res � 1
ST 0 = ST � fRM (g?) 7! Availableg
RM 0 = fg?g �C RM

guest 0 = guest n fg?g

Report

�Hotel
currentstatus ! : Room 7! Status

currentassignments ! : Guest 7� Room

currentstatus ! = ST

currentassignments ! = RM

Figure 1: Initial Speci�cation of the Hotel Database

constraints on these objects, and three types of transactions, which we identify and explain

below.

The speci�cation assumes two types, Guest and Room, which enumerate all possible

guests and all possible hotel rooms, respectively. The global variable total is number of

rooms in the hotel.

In Z states are described with a two-dimensional graphical notation called a schema, in

which declarations for the objects in the state appear in the top part and constraints on

the objects appear on the bottom part. The objects in the hotel database are listed in the

schema Hotel , which de�nes the state of the hotel.

The object res is a natural number that records the total number of reservations, RM

is a partial injection that relates guests to rooms, ST is a partial function that records the

status of each room in the hotel, and guest records the set of guests.

3

The integrity constraints on the objects in hotel database appear in the bottom part of

Hotel . There are two integrity constraints:

1. #RM = res . The number of guests who have been assigned rooms (the size of the

RM function) equals the total number of reservations (res).

2. dom(STBfUnavailableg) = ranRM . The set of rooms that are unavailable (dom(STB

fUnavailableg)) is exactly the set of rooms reserved by guests (ranRM). In other

words, every unavailable room must be associated with some guest.

The three types of transactions in the hotel database are Reserve, Cancel , and Report .

Reserve takes as input a guest g? and produces as output a room assignment r !. Reserve

has a precondition that there must be fewer than total reserved rooms and g? must be

a new guest. (Our particular example does not allow guests to register multiple times.)

Reserve has a postcondition that room r ! with status Available is chosen, the total number

of reservations res is incremented, the status of r ! is changed to Unavailable, the ordered

pair g? 7! r ! is added to the function RM, and g? is added to the set guest .

Cancel takes as input a guest g? and cancels that guest's reservation. Cancel has a

precondition that the guest g? is in guest. Cancel has a postcondition that res is decre-

mented, the status of the room assigned to g? is changed to Available, g? is removed from

the domain of the function RM , and g? is removed from the set guest.

Report has no precondition, and merely produces the state components ST and RM as

outputs.

Since the role of initialization is peripheral to our analysis, we omit initialization schemas

here. Instead, we assume that the database has been initialized to a consistent state.

3 The Model

In our model, a database is speci�ed as a collection of objects, along with some invariants

or integrity constraints on these objects. At any given time, the state is determined by the

values of the objects in the database. A change in the value of a database object changes

the state. The invariants are predicates de�ned over the objects in the state. A database

state is said to be consistent if the values of the objects satisfy the given invariants.

A transaction is an operation on a database state. Associated with each transaction is

a set of preconditions and a set of postconditions on the database objects. A precondition

limits the database states to which a transaction can be applied. For example, a Reserve

transaction has a precondition that the hotel have at least one room available. A postcon-

dition constrains the possible database states after a transaction completes. For example,

4

a Reserve transaction has a postcondition that there be some room available before the

reservation that is unavailable after the reservation. Postconditions also constrain outputs.

For example, the room r ! output by Reserve must be available initially. Together, precon-

ditions and postconditions must ensure that if a transaction executes on a consistent state,

the result is again a consistent state.

Instead of executing a transaction as an atomic unit, we break up a transaction into

steps, and execute each of these steps as an atomic unit. The decomposition exploits

the semantic information associated with the transaction. Although such a decomposition

process is very much application speci�c, nevertheless, we identify necessary properties that

must be satis�ed by a decomposition.

De�nition 1 [Transaction Decomposition] A decomposition of a transaction Ti is a

sequence of two or more atomic steps < Ti1;Ti2; : : : ;Tin >. In place of Ti , these steps are

executed in the given order as atomic operations on a database state.

As one check on the decomposition, we must demonstrate that the steps, when exe-

cuted in the correct sequence and without interference from other transactions, model the

execution of the original transaction.

One possible composition requirement is that the steps in a decomposition be treated

exactly as transactions in the original system, in that the integrity constraints must hold

after each step. As the decomposition below demonstrates, such a requirement is too strong

in practice. After presenting a naive decomposition, we develop a more realistic composition

property.

3.1 A Naive Decomposition of the Reserve Transaction

Suppose we break up the Reserve transaction into the following three steps:

Step 1: Increment the number of reserved rooms (res).

Step 2: Pick a room with status Available and change it to Unavailable.

Step 3: Add the guest to the set of guests and assign the room to the guest.

Thus, Reserve will be implemented as three atomic steps, rather than as a single action.

A naive speci�cation of these steps is given in �gure 2.

The above decomposition has a serious aw in that none of the proposed steps, consid-

ered by itself, maintains the invariants in Hotel . For example, NaiveR1 does not maintain

the invariant #RM = res since NaiveR1 increments the value of res, but does not alter

5

NaiveR1
�Hotel

res < total

res 0 = res + 1
ST 0 = ST

RM 0 = RM

guest 0 = guest

NaiveR2
�Hotel
r ! : Room

ST (r !) = Available

ST 0 = ST�
fr ! 7! Unavailableg

res 0 = res

RM 0 = RM

guest 0 = guest

NaiveR3
�Hotel
r ! : Room; g? : Guest

g? 62 guest
RM 0 = RM[

fg? 7! r !g
guest 0 = guest [fg?g
res 0 = res

ST 0 = ST

Figure 2: A Naive Decomposition

RM. Formally, the computed preconditions of all three steps simplify to false, indicating

that none of the steps can be safely executed in an implementation. Executing one of the

proposed steps would leave the invariants unsatis�ed, and other transactions could be ex-

posed to the inconsistent state. For example, Report may produce an inconsistent output

if executed in a state in which the invariants do not hold.

3.2 Modi�cation of Original Invariants

The previous example demonstrates that not all decompositions are acceptable. Speci�cally,

a decomposition may yield steps that leave the database in a state in which the invariants

are not satis�ed. This possibility is illustrated for the hotel example by the arrow labeled

NaiveR1 in �gure 3(a). Once the invariants are violated, the formal basis for assessing the

correctness of subsequent behavior collapses.

As noted earlier, one way to solve this problem is to allow only those decompositions

that have the property that partial executions leave the database state consistent. Such an

approach is exceedingly restrictive, and so we reject it. In the hotel example, the informal

description of the steps into which Reserve is broken is perfectly satisfactory; what is

unreasonable is the insistence that the invariants of Hotel hold at all intermediate steps.

We need a formal model that can accommodate the notion that some { but not all {

violations of the invariants are acceptable.

Figure 3(b) illustrates a model that allows inconsistent states { as de�ned by the in-

variants { that are nonetheless acceptable. The temporary inconsistency introduced by R1

(speci�ed below in �gure 4) is allowed, and steps of some other transactions, e.g. Valid-

Cancel, can tolerate the inconsistency introduced by R1, and so are allowed to proceed.

The general approach is to modify the original set of invariants and decompose transactions

6

such that each step satis�es the new set of invariants. The model in �gure 3(b) has many

advantages, including greater concurrency among steps. We formalize the model as follows.

Let I denote the original invariants, and let ST denote the set consisting of all consistent

states; i.e., ST = fST : ST satis�es I g. A transaction Ti always operates on a consistent

ST 2 ST. If STi denotes the state after the execution of Ti , then STi is also in ST. However,

when Ti is broken up into steps < Ti1;Ti2; : : : ;Tin >, each step Tij is executed as an atomic

operation. If STij represents the partial execution of Ti , it is possible that after execution of

step Tij , the resulting database state STij no longer satis�es the invariants I and, therefore,

lies outside ST. Figure 3(a) illustrates this possibility for the naive decomposition of the

hotel example.

In our approach, we de�ne a new set of invariants, Î , by relaxing the original invariants I .

We decompose each transaction such that execution of any step results in a database state

that satis�es Î . In addition, if all the steps of a transaction are executed on an initial state

that satis�es the original invariants, then the �nal state also satis�es the original invariants.

Let dST = f ST : ST satis�es Îg. The relationship between ST and dST is shown in �gure

3(b). The inner circle denotes ST and the outer circle denotes dST (signifying that ST

�dST). The ring denotes the set of all states that satisfy Î but not I . The important part

about �gure 3(b) is that the set of inconsistent but acceptable states is formally identi�ed

and distinguished from the states that are unacceptable. The advantage is that formal

analysis can be used to investigate activities in dST.

To reason about the correctness of decomposing transactions into steps, and avoid the

problems of a naive decomposition, we use auxiliary variables to generalize the invariants.

Auxiliary variables are a standard method of reasoning about concurrent executions [OG76]

and, in particular, have been applied to the problem of semantic database concurrency

control [GM83, Appendix C]. Our work focuses more on the decomposition process than

does [GM83], and so we emphasize the role of auxiliary variables more strongly.

In the hotel example, we generalize the invariant #RM = res by introducing an

auxiliary variable to express the fact that number of guests with rooms might di�er from

total reservations by the number of reserve transactions in progress. We generalize the

invariant dom(ST B fUnavailableg) = ranRM by introducing another auxiliary variable

to express the fact that the unavailable rooms might di�er from the rooms assigned to guests

by those rooms selected by reserve transactions in progress. Before we show these changes

to the example, we present two properties that a decomposition must possess. We stress

that the auxiliary variables are introduced for purposes of analysis; the goal is to eliminate

such variables from the implementation.

7

ST

Set of all database states

Set of all consistent
database states

NaiveR2

Cancel

NaiveR1

NaiveR3

(a) General classi�cation of database

states

ST

ST

but acceptable states
Set of inconsistent

R1
R2

R3

ValidCancel

(b) Database states as classi�ed in our

model

Figure 3: Classi�cation of the Database States

3.3 Composition Property

With the notion of generalized invariants in place, we can state the property relating steps

in a decomposition to the original transaction. We call this requirement the composition

property. Formally:

Composition Property Let Ti denote the original transaction and Ti1;Ti2; : : : ;Tin

denote the corresponding steps. Ti and its steps are related as follows:

Ti , (Ti1
o

9
Ti2

o

9
: : : o

9
Tin) ^ I

Executing the steps Ti1;Ti2; : : : ;Tin serially on a state satisfying the original invari-

ants I , changes the original database objects in the same way as executing the original

transaction Ti on the same state.

From an implementation perspective, the composition property is similar to requiring

that the stepwise execution of the steps be view equivalent to that of the original transaction.

A complicating factor is that the decomposition may introduce additional database objects;

the composition property does not limit the values of these additional database objects (for

example, compare Hotel in �gure 1 with ValidHotel in �gure 4).

8

3.4 Sensitive Transaction Isolation Property

In our model, we allow steps or transactions to see database states that do not satisfy the

original invariants (i.e., states in dST { ST). But we may wish to keep some transactions

from viewing any inconsistency with respect to the original invariants. For example, some

transactions may output data to users; these transactions are referred to as sensitive trans-

actions in [GM83]. We require sensitive transactions to appear to have generated outputs

from a consistent state.

Sensitive Transaction Isolation Property All output data produced by a sensitive

transaction Ti should have the appearance that it is based on a consistent state in ST, even

though Ti may be running on a database state in dST� ST.

In our model, we ensure the sensitive transaction isolation property by construction.

For each sensitive transaction, we compute the subset of the original integrity constraints,

I , relevant to the calculation of any outputs. This subset of I must be implied by the

precondition of the sensitive transaction.

3.5 A Valid Decomposition

In this section, we provide a valid decomposition of the hotel database. The problems noted

in the previous decomposition are avoided, and the necessary properties identi�ed so far

hold. After presenting the example, we derive additional properties that valid decomposi-

tions must have.

To make the invariants more general, we add auxiliary variables and de�ne a new state

ValidHotel. We add the auxiliary variable tempreserved, which is a natural number, to

denote the reservations that have been partially processed. We also add the auxiliary

variable tempassigned, which is a set of rooms, to denote the rooms that have been reserved

but which have not yet been assigned to guests. The invariants are modi�ed accordingly.

The schema ValidHotel together with the modi�ed invariants is shown in �gure 4.

R1, R2 and R3 are three steps of the reserve transaction. To implement a Reserve,

the three steps execute in order. The three steps satisfy the composition property; see the

appendix for a further discussion of this point. Although Reserve is a sensitive transaction,

it turns out that no additional preconditions are needed to ensure that the output r ! reects

a consistent state; again, see the appendix for details.

The re�ned version of the single step Cancel transaction is nearly identical to the unre-

�ned version, except that the auxiliary variables tempassigned and tempreserved are speci-

�ed as remaining unchanged.

Report is a sensitive transaction, and we establish the sensitive transaction isolation

9

ValidHotel

res : N
ST : Room 7! Status

RM : Guest 7� Room

guest : PGuest
tempreserved : N
tempassigned : PRoom

#RM + tempreserved = res

dom(ST B fUnavailableg) = ranRM
[tempassigned

R1
�ValidHotel

res < total

res 0 = res + 1
tempreserved 0 = tempreserved + 1
ST 0 = ST

RM 0 = RM

guest 0 = guest

tempassigned 0 = tempassigned

R2
�ValidHotel
r ! : Room

ST (r !) = Available

ST 0 = ST � fr ! 7! Unavailableg

tempassigned 0 = tempassigned [fr !g
res 0 = res

tempreserved 0 = tempreserved

guest 0 = guest

RM 0 = RM

R3
�ValidHotel
g? : Guest
r ! : Room

g? 62 guest
RM 0 = RM [fg? 7! r !g
guest 0 = guest [fg?g
tempassigned 0 = tempassigned n fr !g
tempreserved 0 = tempreserved � 1
res 0 = res

ST 0 = ST

ValidCancel

�ValidHotel
g? : Guest

g? 2 guest
res 0 = res � 1
ST 0 = ST � fRM (g?) 7! Availableg
RM 0 = fg?g �C RM

guest 0 = guest n fg?g
tempreserved 0 = tempreserved

tempassigned 0 = tempassigned

ValidReport

�ValidHotel
currentstatus ! : Room 7! Status

currentassignments ! : Guest 7� Room

tempassigned = ?
currentstatus ! = ST

currentassignments ! = RM

Figure 4: A Correct Decomposition for the Hotel Database

10

property by construction. A formal treatment is given in the appendix. Informally, Report

transaction outputs values of ST and RM . ST and RM involve the following original

invariant:

dom(ST B fUnavailableg) = ranRM

which can be derived from

dom(ST B fUnavailableg) = ranRM [tempassigned

if the auxiliary variable tempassigned satis�es tempassigned = ?.

3.6 Semantic Histories

We are interested in the relationship between the original speci�cation and the speci�cation

with the modi�ed invariants. In particular, we would like to know if and when the database

state returns to a consistent state, and whether outputs reect a state that satis�es the

original invariants, and not just the modi�ed ones. We return to these questions after

giving some de�nitions.

In the previous subsections we showed how a Reserve transaction can be decomposed

into steps R1, R2 and R3. Before we proceed further, we make a distinction between a

type of a step and an instance of a step. R1, R2, R3, ValidReport , ValidCancel represent

the di�erent types of steps in the Hotel Database. On the other hand, histories, de�ned

subsequently, reect actual transactions, and must reference instances of steps. In general,

a history may contain many instances of a step of a given type. We use the notation Tij to

denote an instance of a step.

De�nition 2 [Type] Steps of a transaction in a system are classi�ed into a set of types.

Let TYPES be the set of all types of steps which are run by the system. The type of step

Tij is denoted by ty(Tij).

Example 1 The set of all types of steps for the Hotel Database is given by,

TYPES = fR1;R2;R3;ValidReport ;ValidCancelg

2

De�nition 3 [Stepwise Serial History] A stepwise serial history H over a set of transac-

tions T = fT1;T2; : : : ;Tmg is a sequence of steps < Ti1j1 ;Ti2j2 ; : : : ;Tipjq >, 1 � i1; : : : ; ip �

m, Tir js is a step in Tir , 1 � ir � m, 1 � js � n, n is the number of steps in transaction

Tir , such that

11

1. for each Ti 2 T, a step of Ti either appears exactly once in H or does not appear at

all,

2. for any two steps Tij , Tik of some Ti 2 T, Tij precedes Tik in H if Tij precedes Tik

in Ti , and

3. if Tij 2 H , then Tik 2 H for 1 � k < j .

By Condition (1), we ensure that every step of a transaction should occur at most once

in a stepwise serial history. Condition (2) ensures that the order of the steps in a transaction

is preserved in the stepwise serial history. Condition (3) ensures that for every step in a

stepwise serial history, all the preceding steps in the corresponding transaction are present

in the history.

Note: At this point, our notion of a history does not reference the typical operations

on data elements, such as read and write. These operations are introduced and integrated

into the de�nition of histories as we re�ne our speci�cations.

Example 2 < T11;T13;T21;T12 > is not a stepwise serial history since it violates condition

(2) and (3). < T11;T12;T13;T12 > is not a stepwise serial history since it violates condition

(1). < T11;T21;T12;T13 > is a stepwise serial history. 2

De�nition 4 [Complete Execution]An execution of a transactionTi = < Ti1;Ti2; : : : ;Tin >

in a stepwise serial history H is a complete execution if all n steps of Ti appear in H .

Example 3 For the hotel database, an execution of the reserve transaction Ti will be

complete in a stepwise serial history H if all three steps Ti1, Ti2, and Ti3 of Ti appear in

H . Note that ty(Ti1) = R1, ty(Ti2) = R2, ty(Ti3) = R3. 2

To emphasize the fact that we view the database from a semantic perspective, we de�ne

the term semantic history .

De�nition 5 [Semantic History] A semantic history H is a stepwise serial history that

is bound to

1. an initial state, and

2. the states resulting from the execution of each step in H .

Although we usually use the term partial semantic history for cases in which the ex-

ecution of at least one transaction actually is incomplete, we �nd it convenient to de�ne

complete semantic histories as a special case of partial semantic histories.

12

De�nition 6 [Partial Semantic History]A partial semantic history is simply a semantic

history.

De�nition 7 [Complete Semantic History] A semantic history H over T is a complete

semantic history if the execution of each Ti in T is complete.

3.7 Consistent Execution Property

Similar to the consistency property for traditional databases, we place the following require-

ment on semantic histories:

Consistent Execution Property If we execute a complete semantic history H on an

initial state (i.e., the state prior to the execution of any step in H) that satis�es the original

invariants I , then the �nal state (i.e., the state after the execution of the last step in H)

also satis�es the original invariants I .

Although consistent execution property is de�nitely desirable, it is not enough because

it does not capture the cumulative e�ect of each transaction. For a semantic history to be

correct, we require that all intermediate states be in dST, which is formalized in following

de�nitions. Note that the consistency of outputs is ensured by the sensitive transaction

isolation property.

De�nition 8 [Correct Partial Semantic History] A partial semantic history Hp is a

correct partial semantic history if

1. the initial state is in ST,

2. all states before and after the execution of each step in Hp are in dST, and

3. preconditions for each step are satis�ed before it is executed.

De�nition 9 [Correct Complete Semantic History] A complete semantic history H

is a correct complete semantic history if

1. H is a correct partial semantic history, and

2. the �nal state is in ST.

3.8 Complete Execution Property

The fourth property which we describe is the complete execution property. When transac-

tions have been broken up into steps, the interleaving of steps may lead to deadlock (i.e., a

13

state from which we cannot complete some partially executed transaction). The complete

execution property ensures that deadlock is avoided; if a transaction has been partially

executed, then it can eventually complete.

Complete Execution Property Every correct partial semantic history Hp is a pre�x

of some correct complete semantic history.

In the hotel database suppose we have a correct partial semantic history H as shown

below:

H =< T11;T12 >

where ty(T11) = R1 and ty(T12) = R2. Let the reserve transaction T1 execute with g?

= John. Consider step T13 where ty(T13) = R3. The precondition John 62 guest of T13

requires that John not have a existing reservation, but it is possible that in the �nal state

in H , John is an element of guest . We may cancel John's existing reservation, by executing

the single step cancel transaction T21. This will allow the incomplete reserve transaction

T1 to complete. First, the precondition of T21, John 2 guest , is guaranteed to hold if

the precondition of T13 does not hold. Second, the postcondition of T21 establishes the

precondition of T13. Thus the reserve transaction for John can complete, and the correct

partial semantic history H can be extended to be a correct complete semantic history.

3.9 A Decomposition Lacking Complete Execution Property

In this section, we show that some otherwise plausible decompositions do not satisfy the

complete execution property, which is clearly undesirable. To illustrate the possibility, we

modify the hotel database to yield the DeadLockHotel database shown in �gure 5.

In the example speci�cation, the cancel type of transaction is decomposed into steps of

type C 1 and C 2. We introduce the auxiliary variable tempcanceled which keeps count of

the cancel transactions that have completed a step of type C 1 but not one of type C 2. The

invariant

#RM = res � tempreserved

in the original ValidHotel is changed to:

#RM = res � tempreserved + tempcanceled

Moreover, we introduce a new structure clist which keeps track of the guests whose

cancellations are in progress. The guest whose reservation is being canceled is added to the

clist in �rst step of cancel and is removed from the clist in the second step. We impose an

additional constraint that a room cannot be reserved for a guest whose cancellation is in

14

DeadLockHotel

res ; tempreserved : N
RM : Guest 7� Room

ST : Room 7! Status

guest ; clist : PGuest
tempcanceled : N
tempassigned : PRoom

#RM = res � tempreserved

+tempcanceled
dom(ST B fUnavailableg) = ranRM

[tempassigned

Res1
�DeadLockHotel

res < total

res 0 = res + 1
tempreserved 0 = tempreserved + 1
tempcanceled 0 = tempcanceled

ST 0 = ST

RM 0 = RM

guest 0 = guest

tempassigned 0 = tempassigned

clist 0 = clist

C 1
�DeadLockHotel
g? : Guest

res > 0
res 0 = res � 1
clist 0 = clist [fg?g; ST 0 = ST

tempcanceled 0 = tempcanceled + 1
tempreserved 0 = tempreserved

tempassigned 0 = tempassigned

guest 0 = guest ; RM 0 = RM

Res2
�DeadLockHotel
r ! : Room

ST (r !) = Available

ST 0 = ST � fr ! 7! Unavailableg

tempassigned 0 = tempassigned [fr !g
res 0 = res ; guest 0 = guest

RM 0 = RM ; clist 0 = clist

tempreserved 0 = tempreserved

tempcanceled 0 = tempcanceled

C 2
�DeadLockHotel
g? : Guest

g? 2 guest ; g? 2 clist
ST 0 = ST � fRM (g?) 7! Availableg
RM 0 = fg?g �C RM

guest 0 = guest n fg?g
clist 0 = clist n fg?g
tempcanceled 0 = tempcanceled � 1
tempreserved 0 = tempreserved

tempassigned 0 = tempassigned

res 0 = res

Res3
�DeadLockHotel
g? : Guest
r ! : Room

g? 62 guest ; g? 62 clist
guest 0 = guest [fg?g
RM 0 = RM [fg? 7! r !g
tempreserved 0 = tempreserved � 1
tempassigned 0 = tempassigned n fr !g
tempcanceled 0 = tempcanceled

res 0 = res ; ST 0 = ST

clist 0 = clist

Figure 5: Example Speci�cation Lacking Complete Execution Property

15

progress; note the precondition g? 62 clist in step Res3. The reserve transaction is broken

into steps Res1, Res2 and Res3, which are similar to R1, R2 and R3 of the ValidHotel

speci�cation.

Consider the correct partial semantic history Hp =< T11;T21;T22 >, where ty(T11) =

C 1, ty(T21) = Res1 and ty(T22) = Res2.

Let the reserve and cancel transactions in Hp have the same g? as their input. Also

assume that g? 62 guest . We try to complete the reserve and cancel transactions. T23 cannot

be executed because the precondition g? 62 clist is not satis�ed as step T11 has inserted g?

in clist. T12 cannot be executed because the precondition g? 2 guest is not satis�ed. It is

possible to execute any number of steps of other transactions, but the reserve and cancel

transactions in Hp still cannot complete.

The deadlock could be avoided by including the invariant clist � guest in DeadLockHotel.

Omission of this constraint allows the database to enter an undesirable state where c? 2

clist ^ c? 62 guest , from which neither T23 nor T12 can complete.

At this point in our presentation we have described a method by which transactions

can be decomposed into steps in a manner that supports reasoning about the correctness

of the decomposition. The decomposition process introduces additional database objects

and additional preconditions on steps. The additional objects and preconditions are present

exclusively to support analysis. For e�cient implementation, we want to avoid instantiating

the objects and checking the preconditions. Successor sets are the mechanism we use to

achieve this objective.

4 Successor Sets

4.1 Conict

For the semantic-based decomposition in this paper to be useful, the speci�cations must be

implementable in the framework of some concurrency control mechanism. The speci�cation

given so far indicates what operations are performed by the steps. Corresponding to the

speci�cation, an implementation must describe the details of the steps in term of database

read and write operations and also some local processing. Our eventual aim is to get a

concurrency control mechanism in which steps need not be executed atomically, but the

read, write operations of one step can be interleaved with those of another. To meet this

requirement we introduce the notion of conicting operations, conicting steps, and conict-

oriented histories.

16

Type of Step Variables Read Variables Written

R1 res , total res

R2 ST ST

R3 RM , guest RM , guest

ValidReport ST , RM

ValidCancel res , ST , RM , guest res , ST , RM , guest

Table 2: Read and Write Sets for Steps of Hotel Example

De�nition 10 [Conicting Operations] Two operations are said to conict if they both

operate on the same data item and at least one of them is a Write.

De�nition 11 [Conicting Steps] Two steps Tij and Tkl conict if they contain con-

icting operations.

It is easy to determine the set of conicting steps once an implementation is given.

However at this stage we only have the speci�cation. From the speci�cation, we would

like to de�ne a notion of conict. In a speci�cation, it is not always possible to accurately

identify the exact set of variables that will be read or written in the �nal implementation.

Nonetheless we de�ne the following variables as being written in the speci�cation:

1. Explicitly modi�ed variables { Any state variable where the after state has some new

explicit value, or

2. Unconstrained variables { Any state variable where the after state is unconstrained.

In such cases the implementation is free to alter the variable, and we assume that the

variable is, in fact, modi�ed.

Similarly, we de�ne the following variables as being read in the speci�cation:

1. Any state variable referenced in a precondition, or

2. Any state variable x referenced in a postcondition other than x 0 = x .

The read and write set of the steps of the Hotel Database, as obtained from the speci�-

cations is given in Table 2. Table 3 gives the set of conicting steps in the Hotel Database.

Armed with a notion of conict that is valid for both speci�cations and implementations,

we can now proceed to de�ne a history in terms of conicts in a manner similar to [BHG87].

17

Type of Step Types of Conicting Steps

R1 R1, ValidCancel

R2 R2, ValidReport , ValidCancel

R3 R3, ValidReport , ValidCancel

ValidReport R2, R3, ValidCancel

ValidCancel R1, R2, R3, ValidReport , ValidCancel

Table 3: Conicting Steps for Hotel Example

De�nition 12 [History]A historyH de�ned over a set of transactionsT= fT1;T2; : : : ;Tmg,

where each transaction Ti has been decomposed into in steps, is a partial order with ordering

relation �H where:

1. H = [mi=1 [
in
j=1 Tij ;

2. �H � [
m
i=1[

in
j=1 �ij ; and

3. for any two conicting operations p; q 2 H , either p �H q or q �H p.

Condition (1) says that the execution represented by H involves precisely the operations

of the steps of T1, T2, : : :, Tm . Condition (2) says that the H preserves the order of

operations of the steps. Condition (3) says that every pair of conicting operations are

ordered in H .

We point out that in an actual implementation, the set of conicts may be di�erent than

those obtained at the speci�cation level. For example, two steps may conict in the spec-

i�cation but not at the implementation. Consider the hotel example. In the speci�cation,

the object RM covers the entire hotel; the guest information for all rooms is integrated into

a single object. An reasonable implementation may use a separate object for each room.

Thus, updates to RM always conict at the speci�cation level, but only conict at the

implementation level if the updates are to the same speci�c room.

4.2 Avoiding Precondition Checks

Decomposing transactions into steps yields improved performance, but the interleaving of

these steps must be constrained so as to avoid inconsistencies. In the decomposition we

have given so far, which is based on generalizing invariants with auxiliary variables, the

interleaving is constrained by additional preconditions on the auxiliary variables. Although

the generalized invariants facilitate analysis, it is expensive to implement the auxiliary

18

variables. Also performing checks on the additional preconditions (which may be quite

complex) involves extra run time overhead. To avoid implementing auxiliary variables and

to avoid additional precondition checks we introduce the concept of successor sets.

Before formally introducing successor sets, let us consider one of the problems associated

with the interleaving of steps of di�erent transactions in an implementation. This will

help us to establish the necessary background for our notion of successor sets. Suppose

a transaction Ti introduces an inconsistency in step Tij and removes the inconsistency in

some later step Tik . Another transaction, say Tpq , is not allowed to see the inconsistency

introduced by step Tij . Now, Tpq will see an inconsistency caused by Tij only if Tpq tries to

read or write a variable which has been modi�ed by Tij . In other words, Tpq must conict

with Tij . In such a case Tpq should not be allowed to execute after step Tij , Ti(j+1), : : :,

Ti(k�1) as shown below.

Ti1

Tpq can execute
z }| {
Ti2 : : : Ti(j�1)Tij Ti(j+1) Ti(j+2) : : : Ti(k�1)

| {z }
Tpq cannot execute

Tik

Tpq can execute
z }| {
Ti(k+1) : : : Tin)

Note that this goal can be achieved if we implement the steps obtained using the decom-

position based on generalized invariants. In the generalized invariant scheme, preconditions

are used to control the interleaving of steps of di�erent transactions, and in any semantic

history, resulting from the implementation of the generalized invariant scheme, the precon-

ditions involving auxiliary variables is false if Tpq appears between steps Tij and Tik . In

other words, preconditions involving auxiliary variable are false if we try to execute Tpq

after Til , where Tpq conicts with Til or any step previous to Til . However, as mentioned

earlier, such a scheme will be undesirably costly.

We now formally introduce our notion of successor sets.

De�nition 13 [Successor Set] The successor set of ty(Tij), denoted SS(ty(Tij)), contains

a set of types of steps such that if ty(Tpq) 2 SS(ty(Tij)), then step Tij leaves the database

in a state where it may be safe for Tpq to execute.

Note that, at this point, the notion of successor sets is purely syntactic. Subsequently,

we de�ne the constraints under which a successor set description is correct with respect to a

particular decomposition; the correctness characterization is speci�ed in terms of semantic

histories.

With the help of successor sets we wish to eliminate the preconditions involving auxiliary

variables. For this purpose, we need to ensure that in all the allowable histories obtained

from the successor set description, the precondition being removed always evaluates to true.

The computation of successor sets is done statically at the speci�cation level; however it is

19

not always possible to determine statically how the precondition being removed will actually

evaluate during execution. For example, the precondition may depend in some subtle way

on the order of prior steps in the history. Fortunately, the uncertainty about preconditions

can be overcome easily.

Suppose steps of type B have a precondition involving an auxiliary variable. We wish

to replace this precondition check with successor set description. Our problem is to decide

whether B should be in the successor set of step A. There can be three cases,

1. The precondition of a step of type B is always falsi�ed by the execution of a step of

type A. In this case we exclude B from the successor set of A.

2. The precondition of a step of type B is never falsi�ed by the execution of a step of

type A. In this case we include B in the successor set of A.

3. The precondition of a step of type B is sometimes, but not always, falsi�ed by the

execution of a step of type A. In this case we act conservatively and exclude B from

the successor set of A.

We do not want the conservative approach taken in the third case above to overly

constrain the implementation. Let Til be a step of type A and Tpq be a step of type B .

During execution, if Tpq does not conict with step Til , or any step previous to Til , then

step Tpq may proceed concurrently with step Til . On the other hand if a step Tpq conicts

with step Til , or some step previous to Til , we allow Tpq to execute only if B is in the

successor set of A. Note that preconditions involving auxiliary variables evaluate to false

only when Tpq is executed after Til where Tpq conicts with Til or some step previous to

Til .

More generally, any semantic history H generated using successor sets must meet the

following additional requirement besides those given in either De�nition 8 or De�nition 9,

depending on whether H is partial or complete:

De�nition 14 [Correct Successor Set History] In a correct semantic history H , if Tij

is the last step in Ti such that

1. Tij conicts with Tpq and

2. Tij precedes Tpq in H

then ty(Tpq) 2 SS(ty(Tij)).

The above successor set rule enforces the requirement that in any correct successor set

history, the step Tpq must be in the successor set of step Tij where Tij is the last step of

Ti which conicts with and precedes step Tpq .

20

Successor Set of Type of Step Types of Steps in Successor Set

SS(R1) R1, R2, R3, ValidReport , ValidCancel

SS(R2) R1, R2, R3, ValidCancel

SS(R3) R1, R2, R3, ValidReport , ValidCancel

SS(ValidReport) R1, R2, R3, ValidReport , ValidCancel

SS(ValidCancel) R1, R2, R3, ValidReport , ValidCancel

Table 4: Successor Sets for the Hotel Example

Example 4 Successor set descriptions are obtained by examining the preconditions with

auxiliary variables. In the hotel example, the only precondition with auxiliary variables is

tempassigned = ? in step type ValidReport . This precondition is satis�ed as long as a step

of type ValidReport does not appear between a step of type R2 and a step of type R3 of

reserve transaction. We specify the successor sets as in Table 4. Also note that after the

last step of a transaction has been executed, it should be possible to execute any step of

any other transaction. Thus the successor set of R3, ValidReport and ValidCancel contains

all types of steps.

The successor set for R1 includes every other possible type of step; it is possible to exe-

cute a step of type R1, and then execute a step of any other type R1, R2, R3, ValidCancel ,

ValidReport . The successor set for R2 is more restrictive. ValidReport 62 SS(R2) means

that any step of type ValidReport cannot execute after step of type R2 if a step of type

ValidReport conicts with a step of type R2 or R1. In other words, ValidReport is not

allowed to the see the inconsistencies with respect to the original invariants that are intro-

duced by a step of type R2.

Note that for the hotel example, all of the preconditions in auxiliary variables are cap-

tured by the successor set description, and so none of the auxiliary variables need to be

implemented. For some applications, it may not be possible to eliminate all of the pre-

conditions in auxiliary variables, and so the referenced auxiliary variables must indeed be

implemented. 2

Successor set descriptions are intended to allow the removal of predicates that reference

auxiliary variables, and ultimately the auxiliary variables themselves. Therefore, with re-

spect to the speci�cations given with generalized invariants and auxiliary variables, not all

successor set descriptions are valid. Informally, a successor set is valid with respect to a

generalized invariant speci�cation if any correct successor set history can also be generated

by the generalized invariant speci�cation. Although desirable, the converse property does

not hold in general since �rst-order logic preconditions have more expressive power than

21

the successor set mechanism. Formally, we describe valid successor set descriptions with

the valid successor set property:

De�nition 15 [Valid Successor Set Property] A speci�cation S2 that employs a suc-

cessor set description is valid with respect to speci�cation S1 with generalized invariants

if

1. Any correct successor set history generated by S2 is also a correct semantic history

generated by S1.

2. S2 satis�es the complete execution property.

If the set of correct semantic histories generated by S1 is identical to the set of correct

successor set histories generated by S2, then it follows that S2 enjoys the complete execution

property if and only if S1 does. In the case where S2 generates fewer correct semantic

histories than S1 { a byproduct of the successor set descriptions of S2 being less expressive

than the �rst order logic preconditions of S1 { the complete execution property needs to be

explicitly reveri�ed with respect to S2. The appendix contains a proof of the valid successor

set property for the hotel example, where it turns out that the successor set speci�cation

generates exactly the same set of histories as the speci�cation with preconditions in auxiliary

variables.

Before concluding this section, we give one more de�nition. Consider the following

scenario. Suppose that in a partial correct successor set history step Tij of transaction Ti

has been executed, and suppose we wish to execute step Tpq , where Tpq conicts with Tij

or some step previous to Tij . The next function, de�ned below, gives the earliest step in Ti

after Tij where Tpq is allowed to execute such that the resulting history remains correct.

(The next function is exactly the F function in [F�O89].)

De�nition 16 [Next Function] The next function, denoted by NF (Tij ;Tpq), gives the

�rst step Tik of Ti in the sequence Tij , Ti(j+1), : : :, Ti(j+n) such that ty(Tpq) 2 SS(ty(Tik)).

Stated more formally, Tik = NF (Tij ;Tpq) if the following conditions hold:

1. ty(Tpq) 2 SS(ty(Tik)), k � j and

2. for each step Tir appearing between Tij and Tik in Ti (if any), ty(Tpq) 62 SS(ty(Tir)).

Example 5 Consider two transactions T1 and T2 from our Hotel example.

T1 = T11;T12;T13

T2 = T21

ty(T11) = R1; ty(T12) = R2; ty(T13) = R3
ty(T21) = ValidReport

22

Successor set descriptions are given in Table 4.

Some of the next functions of the above example are given by:

NF (T11;T21) = T11

NF (T12;T21) = T13

NF (T13;T21) = T13

2

Suppose a step Tkl conicts with a step Tij and suppose ty(Tkl) 62 SS(ty(Tij)). Let

NF (Tij ;Tkl) = Tip . Tkl is not allowed to execute after the steps Tij , Ti(j+1), Ti(j+2), : : :

Ti(p�1), but Tkl is allowed to execute after Tip . It must be the case that Tip alters the

database state in such a way that Tkl can execute. Thus Tkl and Tij must conict. We

capture this property as an explicit constraint in our model.

Constraint 1 If Tkl conicts with Tij or some step in Ti previous to Tij and ty(Tkl) 62

SS(ty(Tij)), then Tkl also conicts with NF (Tij ;Tkl). 2

5 Correct Stepwise Serializable Histories

Recall that for every pair of steps in a correct successor set history, all operations of one

step appear before any operations of the other step. However if the steps of a transaction

execute atomically and without any interleaving, the database system uses resources poorly.

In this section we describe the notion of a correct stepwise serializable history. In a correct

stepwise serializable history the steps of transactions need not be executed serially, but

nevertheless the e�ect is the same as that of a correct successor set history.

De�nition 17 [Equivalence of Histories] Two histories H and H 0 are said to be equiv-

alent if [BHG87]:

1. they are de�ned over the same set of steps (transactions) and have the same operations;

and

2. they order conicting operations of steps in the same way; that is, for any conicting

operations pij and qkl belonging to steps Tij and Tkl (respectively), if pij �H qkl , then

pij �H 0 qkl . [pij �H qkl denotes pij precedes qkl in H].

De�nition 18 [Correct Stepwise Serializable History] A correct stepwise serializable

history is one which is equivalent to a correct successor set history.

23

C,S C,SC,SC,S

II11T T T

T

12 13

21

II

C C,S S

T T

T

T11 12 13

21

Figure 6: Precedence Graph For Histories In Examples 6,7

5.1 Acyclic Graph Model

In this section we show how to decide whether a history is a correct stepwise serializable

history by analyzing a graph, called a precedence graph, derived from that history.

De�nition 19 [Precedence Graph][F�O89] Let H be a history de�ned over a set of trans-

actions T = fT1;T2; : : : ;Tmg. The precedence graph of H , denoted by PG(H), is a directed

graph where the nodes are the steps of the transactions in T and the edges graph are of

three types constructed as follows:

1. Internal Edges { For each pair of consecutive steps Tij and Ti(j+1) of transaction Ti ,

there is an internal or I edge (Tij ,Ti(j+1)).

2. Conict Edges { For each pair of conicting steps Tij and Tkl belonging to di�erent

transactions Ti and Tk , there is a conict or C edge (Tij ,Tkl) if there is an operation

in Tij that conicts with and precedes another operation in Tkl .

3. Successor Edges { There is a successor or S edge according to the following recursive

rule. For each pair of steps Tij and Tkl , belonging to di�erent transactions Ti and

Tk respectively, such that there is a path from Tij to Tkl , there is a successor edge

(NF (Tij ;Tkl),Tkl).

Each edge Tij ! Tkl in PG(H) means that at least one of Tij 's operation should precede

Tkl . This means that in a correct successor set history equivalent to H , Tij precedes step

Tkl .

Example 6 Consider the following history H :

H =< T11;T21;T12;T13 >

24

where

ty(T11) = R1
ty(T12) = R2
ty(T13) = R3
ty(T21) = ValidCancel

Successor set descriptions are given in Table 4. Conicting steps in the Hotel Database

are given in Table 3. The precedence graph is shown in the left of �gure 6. The labels I,C,S

on the edges of the graph shown in the �gure denote internal, conict and successor edge

respectively. Note that the precedence graph is acyclic. 2

Example 7 Consider the following history H :

H =< T11;T12;T21;T13 >

where

ty(T11) = R1
ty(T12) = R2
ty(T13) = R3
ty(T21) = ValidReport

The precedence graph is shown in the right of �gure 6. Note that the precedence graph is

cyclic. 2

Theorem 1 A history H is a correct stepwise serializable history i� PG(H) is acyclic.

Proof:

(: Since PG(H) is acyclic it can be topologically sorted. Let Hc be any topological sort

of PG(H). We prove Hc is a correct successor set history by contradiction. Suppose Hc

is not a correct successor set history. There must be some step Tpq which interleaves with

transaction Ti such that Tij is the last step in Ti conicting with and preceding Tpq , and

ty(Tpq) 62 SS(ty(Tij)). Let NF (Tij ;Tpq) = Tik . Since ty(Tpq) 62 SS(ty(Tij)), Tik is some

step after Tij . In PG(H) there must be a successor edge (Tik ;Tpq) corresponding to the

conict edge (Tij ;Tpq). By Constraint 1 Tpq and Tik conict. As Tij is the last operation

which conicts and precedes Tpq , Tpq must precede Tik , and the edge (Tpq ;Tik) is in H .

As �gure 7 shows, the result is a cycle in PG(H) { a contradiction. The assumption that

Hc is not a correct successor set history is wrong. Since H is equivalent to Hc , H is also a

correct stepwise serializable history.

): Since H is a correct stepwise serializable history, it must be equivalent to some correct

successor set history H 0. Let PG(H 0) be the precedence graph of the history H 0. Since H

25

T

T

Tij

pq

Internal Edge
in

TInternal EdgeTim ik

Conflict Edge

Successor EdgeConflic
t Edge

Figure 7: Edges of Precedence Graph involving Tij ,Tik ,Tpq

and H 0 are equivalent, the internal edges and the conict edges in PG(H 0) are the same as

the corresponding edges in PG(H). Successor edges (NF (Tij ,Tkl),Tkl) are added recursively

if there is a path between Tij and Tkl where (i 6= k). Since the set of internal edges and

conict edges are the same for PG(H) and PG(H 0) and the successor sets are the same for

H and H 0, the set of successor edges is the same for PG(H) and PG(H 0). Thus PG(H) =

PG(H 0). Assume there is a cycle in PG(H). Let the cycle be Tij ! Tkl ! Tmn � � �Tij .

This implies that in H 0, Tij � Tkl � Tmn � � � � Tij { a contradiction since H 0 is serial.

Hence PG(H) is acyclic. 2

The theorem presented here is stronger than the corresponding result in [F�O89]. Specif-

ically, the result in [F�O89] also requires that there exist a linearization that corresponds to

a correct successor set history. Constraint 1 permits us to avoid the additional requirement.

6 Implementation

In this section, we implement our mechanism in a two-phase locking environment. Although

the mechanism we propose is based on the scheme in [F�O89], ours is considerably simpler;

see Section 7 for details. Our mechanism uses the standard two phase locking on the steps

of the transactions. There are two modes in which a data item may be locked by a step -

shared mode or exclusive mode. The appropriate lock is acquired before the step reads or

writes the data item. A lock can be acquired only if the current step is in the successor set

of all the active transactions that have locked the data item. In our mechanism the locks

acquired by a step are released when the step commits.

Before describing our mechanism, we describe some notation. A step is a sequence of

read and write operations followed by a commit operation:

Tij = Oij (x1);Oij(x2); : : : ;Oij (xn);Cij ;

where Oij (x) is either Rij (x) or Wij (x). A transaction is a sequence of steps followed by a

26

termination operation:

Ti =< Ti1;Ti2; : : : ;Tin ;TR(Ti) >

6.1 Data Structures

In addition to the data structures required by the standard two phase locking protocol, we

require the following data structures.

1. Active-Set - Set of Active Transactions

2. Int-Set - Interleaving Sets

Active-Set(x) { The active set for x keeps the list of all active transactions that have

accessed x. Whenever any step Tij reads or writes x, the transaction Ti is added to Active-

set(x). After the transaction Ti terminates, Ti is removed from the Active-Set(x).

Int-Set(Ti ,x) - The interleaving set for x is associated with each active transaction Ti

that accesses x. The interleaving set gives the types of the steps that can access the data

item. The interleaving set Int-set(Ti ,x) is initialized to empty at the time a step Tij of

Ti reads or writes x. If data item x has been accessed by step Tij of Ti and Tij or any

step occurring after Tij commits, then Int-set(Ti ,x) is replaced by the successor set of the

corresponding committed step.

6.2 Algorithms

The mechanism requires the following assumptions:

1. The steps of a transaction are submitted in order; that is, an operation in step Tr(s+1)

is submitted only after step Trs commits.

2. If a transaction reads and writes the same data entity x, the read operation precedes

the write operation.

Algorithm 1 Algorithm for Read

Procedure Process-read (Rij (x))

begin

if a step Tlm is holding an exclusive lock on x

begin

delay Rij (x);

exit;

27

end

for each Tk 2 Active-set(x)

if ty(Tij) 62 Int-set(Tk ,x)

begin

delay Rij (x);

exit;

end

if Ti 62 Active-set(x)

Active-set(x) = Active-set(x) [Ti ;

lock x in shared mode;

accept(Rij (x));

Int-set(Ti ,x) = ?;

end

Algorithm 2 Algorithm for Write

Procedure Process-write (Wij (x))

begin

if a step Tlm is holding any lock on x

begin

delay Wij (x);

exit;

end

for each Tk 2 Active-set(x)

if ty(Tij) 62 Int-set(Tk ,x)

begin

delay Wij (x);

exit;

end

if Ti 62 Active-set(x)

Active-set(x) = Active-set(x) [Ti ;

lock x in exclusive mode

accept(Wij (x));

Int-set(Ti ,x) = ?

end

Algorithm 3 Algorithm for Step Commit

Procedure Process-stepcommit(Cij)

28

begin

for each x locked by the transaction in this or previous step do

Int-set(Ti ,x) = SS(ty(Tij));

for each entity x locked by the transaction in this step do

Release the lock on x which was acquired by Tij ;

end

Algorithm 4 Algorithm for Transaction Terminate

Procedure Process-terminate(TR(Ti))

begin

for each entity x which was accessed by Ti do

begin

delete the values Int-set(Ti ,x) ;

Active-set(x) = Active-set(x) � Ti ;

end

end

6.3 Correctness of the Mechanism

Theorem 2 Any history generated by our mechanism is a correct stepwise serializable

history.

Proof: This proof proceeds in two parts.

1. Any history generated by our mechanism is equivalent to some semantic history H .

2. The semantic history H is a correct successor set history.

(Proof of Part 1)

Consider any history generated by our mechanism. Assume we have a centralized lock

manager and the lock release operation takes place atomically. The order of �rst lock

release establishes a serialization order on the steps. The serialization order represents

some semantic history H . All histories generated by our mechanism are conict equivalent

to H .

(Proof of Part 2)

We prove by induction on the number of steps in H that H is a correct successor set history.

In basis case where H has exactly one step, it is clear that H is a correct successor set

history.

29

Assume that the result holds for any semantic history Hn consisting of n steps. Let

the order of the �rst lock release of the steps be given by < S1; S2; � � � ; Sn >, where Si

denotes a step Tkl which has been renamed for convenience. Thus, by assumption, Hn =<

S1; S2; � � � ; Sn > is a correct successor set history.

Consider Hn+1, a semantic history of n + 1 steps. Let the order of steps in which locks

are released be given by < S1; S2; � � � ; Sn ; Sn+1 >. Thus Hn+1 =< S1; S2; � � � ; Sn+1 >.

Let Sn+1 = Tpq . To show that Hn+1 is a correct successor set history, we need to show

that for all active transactions Ti , if Tij is the last step of Ti which conicts with Tpq and

precedes Tpq , then ty(Tpq) 2 SS(ty(Tij)).

We proceed by contradiction. Let Tij be the last step of an active transaction Ti that

conicts with and precedes Tpq . Assume that Tpq 62 SS(Tij). Let NF (Tij ;Tpq) = Tir .

Since ty(Tpq) 62 SS(ty(Tij)), Tir 6= Tij . In other words Tir is some step after Tij . By

Constraint 1, Tir conicts with Tpq . Clearly Tir does not occur before step Tpq , as Tij is

the last step which precedes and conicts with Tpq . (The semantic history Hn+1 does not

contain step Tir). Since Tij and Tpq conict, Tij and Tpq must be accessing some common

data item x. Let Tik be the last step of Ti to be executed before Tpq . The order in which

Tpq , Tij , Tik occur in the Hn+1 is given by the relation Tij � Tik � Tpq . Now before the

execution of Tpq , Int-set(Ti ,x) = SS(ty(Tik)). Since our mechanism allowed Tpq to access

item x, ty(Tpq) 2 Int-set(Ti ,x). This implies that ty(Tpq) 2 SS(ty(Tik)). But this is a

contradiction, since Tik occurs after Tij and from the de�nition of next function, Tir is

the �rst step after Tij , such that ty(Tpq) 2 SS(ty(Tir)). Therefore the assumption that

ty(Tpq) 62 SS(ty(Tij)) is false, and Hn+1 is a correct successor set history.

2

7 Related Work

Most transaction-oriented models enforce a very low level, syntactic notion of consistency,

namely serializability with respect to read/write conicts [BHG87]. Some researchers

[Her87, HW91, LMWF94, Wei84, Lyn83, Wei88] have expanded on this notion using the

theory of abstract data types or ADTs. In these works, the data objects are classi�ed

into ADTs and high level operations are de�ned for the ADTs. These operations are the

only means by which the transactions can access the data objects. Commutativity of the

operations of the ADT, and not the read/write operations, is used to determine conicts

between transactions - this results in more concurrency. Still further concurrency can be

achieved if recoverability [BR92] of operations is used instead of commutativity. In our

work, we also adopt the theory of ADTs for the purpose of de�ning correctness of trans-

30

action execution. However, there is a signi�cant di�erence in the two approaches. Unlike

[Her87, HW91, Wei88], we de�ne the entire database as an ADT, with the transactions

being the operations on the ADT. Furthermore we are interested in achieving more concur-

rency by expanding the set of correct execution histories such that some transactions need

not be atomic.

Other extensions to the classical transaction model include generalizing the notion of

serializability and proposing new correctness criteria for transaction executions [AAS93,

DE90, SLJ88, KS88, KS94, F�O89, GM83]. For example, in [DE90], the authors develop

quasi-serializability as a correctness criterion for transactions executing on heterogeneous

distributed database systems. In some of these works, researchers have decomposed transac-

tions into steps [AAS93, F�O89, GM83, JM87, KS88, KS94, SLJ88, SSVR92] and developed

semantic based correctness criteria [AAS93, F�O89, GM83]. Researchers have variously in-

troduced the notions of transaction steps, countersteps, allowed vs. prohibited interleavings

of steps, and implementations in locking environments. Among these, the work of Farrag

and �Ozsu [F�O89] and Korth and Speegle [KS88, KS94] bear close resemblance to our work

and are discussed in separate subsections.

In [SSVR92], the authors describe how a transaction can be decomposed into steps,

without using any semantic knowledge of the transactions. The authors use the standard

notion of serializability as the correctness criterion. The authors show that if the steps

of the transactions in a history are serializable, then the history is equivalent to a serial

history. Unlike our work, the decomposition of transactions into steps is based on conict

information only. Also, certain decompositions are valid in our model that are not allowed

by their system. Speci�cally, the decomposition of the Reserve transaction into steps R1,

R2 and R3 in the Hotel Database, will not be a correct decomposition according to their

model.

In [SLJ88], the authors propose a notion of correctness based on database partitioning

and transaction decomposition. The database is partitioned into atomic data sets using the

knowledge of consistency constraints. The transactions are decomposed into elementary

transactions using only the semantic information associated with a transaction. An ele-

mentary transaction must maintain the consistency constraints of the accessed atomic data

sets. The authors introduce a correctness criteria known as generalized setwise serializable,

in which it is required that the e�ect of execution of the elementary transactions on any

atomic data set is equivalent to a serial execution of the elementary transactions on the

data set. Generalized setwise serializable schedules maintain database consistency and also

satisfy the post conditions of the transactions.

The authors in [AAS93] propose three correctness criteria - consistency, orderability and

strong orderability for non-serializable executions. The data objects in their model are clas-

31

si�ed into various abstract data types. These objects are accessed through user programs.

User programs are characterized by the presence of consistency assertions. Consistency

assertions are predicates on database objects that are required to hold before an operation

accessing the data objects are executed. The correctness criterion, consistency, is based

on the users speci�cations and allows nonserializable executions that are acceptable to the

users. The other two correctness criteria, viz. orderability and strong orderability are

generalizations of view serializability and conict serializability respectively. The user is re-

sponsible for writing correct programs and for specifying the correct consistency assertions

in the user programs.

The work of Garcia-Molina [GM83] is based on the classi�cation of the transactions

into a number of semantic types. Compatibility sets are associated with each of these

types. The author de�nes the notion of sensitive transactions and semantically consistent

schedules. A transaction is sensitive if it has to output consistent database data to be

viewed by the user. A semantically consistent schedule is one such that it maintains the

consistency of the database, and any sensitive transaction in it obtains a consistent view

of the data. In a semantically consistent schedule, the steps of transactions belonging to

the same compatibility set can be interleaved arbitrarily, whereas steps of transactions that

do not belong to the same compatibility set can be interleaved as much as permitted by

the serializability constraints. The user is responsible for classifying the transactions into

types, for decomposing the transaction into steps, and for providing the compatibility sets.

ACTA [CR94] is a framework for formally specifying extended transaction models.

ACTA provides components, (e.g. operations, signi�cant events, conditions on events, trans-

action dependencies) for describing the transaction models. However, our model cannot be

represented within the ACTA framework. This is because ACTA conditions cannot be used

to express the preconditions and postconditions of a semantic history. Thus extensions to

the ACTA framework are required to represent our model.

7.1 Korth and Speegle

In [KS88, KS94] the authors introduce a transaction model called NT/PV model for long

duration transactions. The NT/PV model incorporates the idea of nested transactions,

multiple versions and explicit predicates to increase concurrency. A transaction, denoted

by (T ;P ; I ;O), is characterized by the set of subtransactions T constituting the transaction,

the partial order P among the subtransactions, the input conditions or preconditions I and

the output conditions or postconditions O . An execution of a transaction is characterized

by a pair (R;X), where R is a run time dependency relation between the subtransactions

of the transaction, and X denotes the state associated with the transaction. An execution

32

of a transaction is NT/PV correct if (i) the subtransactions are executed in a state that

satis�es the preconditions of the subtransactions, and (ii) the post conditions of the last

subtransaction satisfy the post conditions of the transaction. An execution of an interleaved

set of transactions is NT/PV correct if every transaction in the set executes correctly.

The authors show how classical transactions and various notions of serializability can be

represented by their model and propose an implementation which generates only NT/PV

correct executions.

Though a transaction in our model can be represented as a NT/PV transaction, our

notion of correct execution of a set of transaction is very di�erent from that proposed

in [KS94]. A transaction in our model can be represented in their framework as follows

- t = (T ;P ; I ;O), where the set T represents the set of steps of the transactions, P is

a total order on the steps, I represent the preconditions of the transaction, O represent

the post conditions of the transaction. In the NT/PV model, the post conditions of top

level transactions imply the satisfaction of database integrity constraints. As stated in

[KS94], one of the requirements for correct executions is that the post conditions of the

last subtransaction of a transaction should satisfy the transaction's post conditions. This

implies that in a correct execution, the last subtransaction of a top level transaction should

satisfy the database integrity constraints. In our notion of correct execution of a set of

transactions (which we call correct semantic history) we do not require the post condition

of last step of a transaction to satisfy the database integrity constraints.

Example 8 For example consider the following history.

H =< T11;T21;T12;T13 >

where ty(T11) = R1, ty(T12) = R2, ty(T13) = R3, ty(T21) = ValidCancel .

The history H is shown in Figure 8. Recall that ST represent the consistent database

states (i.e. states satisfying the original invariants), and dST represent the states satisfying

the relaxed invariants. The ring in the �gure denotes the states dST�ST, that is the states

that satisfy the modi�ed invariants but do not satisfy the original invariants. Executing the

�rst step of the reserve transaction,T11, takes us to a state in dST�ST. After executing the

only step of the Cancel transaction,T21, we are still in one of the states in dST� ST. Note

that such an execution is correct in our model. Since the last step of the Cancel transaction

does not satisfy the integrity constraints of the database, this is not a correct execution

according to the NT/PV model. 2

However we do have other requirements for a correct execution. For example, we require

the post condition of any step of any transaction to satisfy the modi�ed invariants (which

are the relaxed integrity constraints). For a correct execution of a set of transactions, we

33

Set of inconsistent
but acceptable states

ST

ST

T11

T

T
T

21

12

13

Set of inconsistent states

Figure 8: Example Execution Not Permitted by the NT/PV Model

also require that after the execution of all steps of all the transactions, the database be in

a consistent state.

The mechanism proposed by the authors for generating NT/PV correct executions re-

quires support for multiple versions. As our transaction model does not deal with multiple

versions, and our notion of correct execution is di�erent from that proposed by the authors

in [KS94], our implementation di�ers from that in [KS94].

7.2 Farrag and �Ozsu

Our work is closely related to that of [F�O89] and hence we discuss this work at a more

detailed level. In [F�O89] the authors introduce the notion of breakpoint sets associated

with the steps of transactions. The breakpoint set of a step Tij , of a transaction Ti , gives

the types of transactions that may interleave transaction Ti after step Tij . The burden of

specifying breakpoint sets lies with the application developer and the authors assume that

the developer will de�ne a correct breakpoint set description. A schedule is correct if it is

stepwise serial and for every transaction Ti that appears between steps Tjk and Tj (k+1) of

another transaction Tj , Ti is in the breakpoint set of the step Tjk . To identify a larger

class of allowable schedules, called relatively consistent schedules, the authors propose a

precedence graph. For a schedule to be relatively consistent, the precedence graph of the

schedule must satisfy two criteria - (i) the precedence graph must be acyclic and, (ii) there

must be a topological sort of the graph that gives a correct schedule. As noted, our model

requires only the �rst constraint.

The authors describe a lock based mechanism that generates only relatively consistent

34

schedules. The mechanism uses four types of locks - relatively shared, relatively exclusive,

shared and exclusive. Before reading or writing a data item, the appropriate lock (shared

or exclusive) is acquired. The lock on an item can be acquired only if the transaction is in

the breakpoint set of the most recently executed steps of the transactions holding relatively

shared or relatively exclusive lock on the data item. After a step completes, all shared locks

and exclusive locks acquired by this step are converted to relatively shared and relatively

exclusive locks respectively. After a transaction terminates, a release graph is checked to see

whether the locks of the transaction can be released. In addition to its inherent complexity,

the mechanism requires breakpoint sets to satisfy an additional assumption that may be

di�cult to obtain in practice.

Our successor set notion is similar to the breakpoint sets of [F�O89]. However, the

semantics of the successor set di�ers from that of breakpoint sets. Th most signi�cant

di�erence is that successor sets are sets of types of steps, whereas breakpoint sets are sets

of types of transactions. Successor sets have the exibility to express that type of step Tkm

is in the successor set of type of step Tij even though the type of some other step Tkl of Tk

may not be in the successor set of type of step Tij .

The mechanism we propose is simpler than that of [F�O89]. We use only two kinds of

locks - shared and exclusive as opposed to the four kinds of locks of [F�O89]. Before reading

or writing a data item, the appropriate lock (shared or exclusive) has to be acquired. A lock

can be acquired only if the type of the current step is in the successor set of all the active

transactions that had locked the data item. The lock release process is also very di�erent.

The locks acquired by a step are released when the step commits. In contrast, in [F�O89] the

earliest time when locks acquired by a step can be released is after the entire transaction

terminates. Our mechanism can be adapted more easily to a standard two-phase locking

environment.

Example

In this subsection we repeat the motivating example from Section 2 of [F�O89]. It turns out

that this example fails to satisfy Assumption 5.1 in [F�O89], which is important because the

mechanism given in [F�O89] requires this assumption. Afterwards, we show that our model

{ and mechanism { can indeed handle this example.

The example in Section 2 of [F�O89] involves three transaction types, RESERVE, CAN-

CEL, and REPORT. We only show the details of the RESERVE and CANCEL transaction

types.

RESERVE Transaction

Step 1: if Res < Total

35

then begin

Res Res + 1;

add new guest gi to database;

end

else exit;

Step 2: Find a (free) room rk with ST(rk) = A;

Step 3: RM(gi) rk ;

ST(rk) U ;

CANCEL Transaction

Step 1: if RM(gi) = rk

then begin

ST(rk) A;

Res Res - 1;

remove guest gi from database

end

else exit;

The prohibition on interleaving is that a RESERVE transaction may not begin at the

second breakpoint of another RESERVE transaction, or else the same room might be as-

signed to multiple guests. The interleaving is formalized as follows. Let Ti be a RESERVE

transaction. Let Bi1, Bi2, Bi3 be the breakpoints associated with the three steps of the

transaction Ti . Let Tk be a CANCEL transaction. Let Bk1 be the breakpoint associated

with the single step of the CANCEL transaction Tk . The notation ts(Bx) denotes the set

of transaction types that may interleave at breakpoint Bx . The allowed interleavings are

describe by:

RESERVE 2 ts(Bi1),

RESERVE 62 ts(Bi2),

RESERVE 2 ts(Bi3),

RESERVE 2 ts(Bk1),

CANCEL 2 ts(Bi1),

CANCEL 2 ts(Bi2),

CANCEL 2 ts(Bi3).

The Farrag and �Ozsu mechanism requires the following assumption [F�O89, Assumption

5.1]:

Suppose that transaction Tj is allowed to interleave at a breakpoint Bip of

transaction Ti . Then any other transaction that can interleave at any breakpoint

36

in Tj can also interleave at the breakpoint Bip . (Stated formally: If ty(Tj) 2

ts(Bip) and ty(Tk) 2 ts(Bjq) then ty(Tk) 2 ts(Bip).)

The above assumption is very strong, and the speci�cations of the breakpoint sets in the

motivating example of [F�O89] fail to satisfy it. Speci�cally, since a CANCEL transaction

can interleave at the breakpoint Bi2, and since RESERVE is in the breakpoint Bk1 of the

CANCEL transaction, RESERVE must be in the breakpoint set of Bi2, which it is not.

Implementing the Example by Our Model

As the semantics of successor sets are di�erent from those of breakpoint sets, it is not

possible to directly map breakpoint sets into successor sets. In this subsection we give

a possible successor set speci�cation which conforms to our model, and also achieves the

restrictions on the interleavings from the example given above.

Let RES1, RES2, RES3 be the types of the three steps of the RESERVE transaction.

Let CANCEL be the type of the single step in CANCEL. As above, we ignore the REPORT

transaction.

A reasonable successor set description is given below. Our mechanism easily implements

this description.

SS(RES1) = fRES1;RES2;RES3;CANCELg
SS(RES2) = fRES3;CANCELg
SS(RES3) = fRES1;RES2;RES3;CANCELg
SS(CANCEL) = fRES1;RES2;RES3;CANCELg

8 Conclusion

In this paper, we have provided the database application developer writing the speci�cation

conceptual tools necessary to reason about systems in which transactions that ideally should

be treated as atomic { for reasons of analysis { must instead be treated as a composition

of steps { for reasons of performance. The developer begins with a speci�cation produced

via standard formal methods, transforms some transactions in the speci�cation into steps,

and assesses the properties of the resulting system. The formal analysis at each step of this

process provides assurance that the resulting system possesses the desired properties.

We have provided a two-phase locking implementation that ensures execution histories

that are stepwise conict-serializable and also respect the successor set constraints. The

implementation is substantially simpler than the corresponding implementation in [F�O89].

We can easily permit ad hoc transactions to be dynamically added in our model, al-

though they will require some special intervention. An ad hoc transaction could be executed

37

as an atomic, sensitive transaction, which means that all integrity constraints relevant to

the calculation of any output will have to be included as explicit preconditions for the

transaction (see section 3.4). Alternatively, an ad hoc transaction could be included at the

successor set stage by simply excluding it from all successor set descriptions. Deletion of a

transaction in our model is somewhat problematic since deletion may impact the complete

execution property, which ensures that any transaction that has been partially executed

can eventually complete.

References

[AAS93] D. Agrawal, A. El Abbadi, and A. K. Singh. Consistency and orderabil-

ity: Semantics-based correctness criteria for databases. ACM Transactions on

Database Systems, 18(3):460{486, September 1993.

[AJR95] Paul Ammann, Sushil Jajodia, and Indrakshi Ray. Using formal methods to

reason about semantics-based decomposition of transactions. In VLDB '95:

Proceedings of the Twenty-First International Conference On Very Large Data

Bases, Zurich, Switzerland, September 1995. To appear.

[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley, Reading, MA, 1987.

[BR92] B.R. Badrinath and K. Ramamritham. Semantics-based concurrency control:

Beyond commutativity. ACM Transactions on Database Systems, 17(1):163{

199, March 1992.

[CR94] P. K. Chrysanthis and K. Ramamritham. Synthesis of extended transaction

models using ACTA. ACM Transactions on Database Systems, 19(3):450{491,

September 1994.

[DE90] W. Du and A.K. Elmagarmid. Quasi serializability: A correctness criterion for

global concurrency control in interbase. In Proc. 16th VLDB, pages 347{355,

1990.

[F�O89] A. A. Farrag and M. T. �Ozsu. Using semantic knowledge of transactions to

increase concurrency. ACM Transactions on Database Systems, 14(4):503{525,

December 1989.

[GM83] H. Garcia-Molina. Using semantic knowledge for transaction processing in a

distributed database. ACM Transactions on Database Systems, 8(2):186{213,

June 1983.

38

[Her87] M. Herlihy. Extending multiversion time-stamping protocols to exploit type

information. IEEE Transactions on Computers, 36(4):443{448, April 1987.

[HW91] M. P. Herlihy and W. E. Weihl. Hybrid concurrency control for abstract data

types. Journal of Computer and System Sciences, 43(1):25{61, August 1991.

[JM87] S. Jajodia and C. Meadows. Managing a replicated �le in an unreliable net-

work. In Proceedings of 3rd IEEE International Conference on Data Engineer-

ing, pages 396{404, Los Angeles, CA, February 1987.

[KS88] H. F. Korth and G. D. Speegle. Formal model of correctness without serializabil-

ity. In Proceedings of ACM-SIGMOD International Conference on Management

of Data, pages 379{386, June 1988.

[KS94] H. F. Korth and G. Speegle. Formal aspects of concurrency control in long-

ouration transaction systems using the NT/PV model. ACM Transactions on

Database Systems, 19(3):492{535, September 1994.

[LMWF94] N. Lynch, M. Merritt, W. Weihl, and A. Fekete. Atomic Transactions. Morgan

Kaufmann Publishers, San Mateo, CA, 1994.

[Lyn83] Nancy A. Lynch. Multilevel atomicity|A new correctness criterion for database

concurrency control. ACM Transactions on Database Systems, 8(4):484{502,

December 1983.

[OG76] S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic

approach. Communications of the ACM, 19(5):279{285, May 1976.

[PST91] B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Speci�cation and

Z. Prentice-Hall, New York, 1991.

[SLJ88] L. Sha, J. P. Lehoczky, and E.D. Jensen. Modular concurrency control and

failure recovery. IEEE Transactions on Computers, 37(2):146{159, February

1988.

[Spi89] J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, New York,

1989.

[SSVR92] D. Shasha, E. Simon, P. Valduriez, and P. Rodin. Simple rational guidance for

chopping up transactions. In Proceedings of the ACM-SIGMOD International

Conference on Management of Data, pages 298{307, San Diego, CA, June 1992.

[Wei84] W. E. Weihl. Speci�cation and Implementation of Atomic Data Types. PhD

thesis, Massachusetts Institute of Technology, Cambridge, MA, 1984.

39

[Wei88] W. E. Weihl. Commutativity-based concurrency control for abstract data types.

IEEE Transactions on Computers, 37(12):1488{1505, December 1988.

Appendix A { Properties of the Decomposition

We show that the decomposition as given in Section 4.5 has the necessary properties.

The Composition Property

In the Hotel Database, the original invariants I are satis�ed when the auxiliary variables

tempreserved and tempassigned satisfy the following conditions:

tempreserved = 0 ^ tempassigned = ?

The reserve transaction is the only transaction in the Hotel Database that has been

decomposed into multiple steps. For the reserve transaction the proof obligation is :

Reserve , (R1 o

9 R2 o

9 R3) ^ tempreserved = 0 ^ tempassigned = ? : : : (i)

The right hand side of the equivalence (,) in the expression (i) obtained by schema

composition [PST91] evaluates to:

(R1 o

9
R2 o

9
R3) ^ tempreserved = 0 ^ tempassigned = ?

�ValidHotel
g? : Guest
r ! : Room

res < total

g? 62 guest
ST (r !) = Available

res 0 = res + 1
guest 0 = guest [fg?g
ST 0 = ST � fr ! 7! Unavailableg

RM 0 = RM [fg? 7! r !g
tempreserved 0 = 0
tempassigned 0 = ?

The schema for the original Reserve transaction is given by:

40

Reserve

�Hotel
g? : Guest
r ! : Room

res < total

g? 62 guest
ST (r !) = Available

res 0 = res + 1
guest 0 = guest [fg?g
ST 0 = ST � fr ! 7! Unavailableg
RM 0 = RM [fg? 7! r !g

The constraints on tempreserved , tempreserved 0, tempassigned , and tempassigned 0 are

implied by the invariants in �Hotel . The converse is also true. Thus the predicate parts of

the schemas are equivalent, and hence the schemas are equivalent.

The Sensitive Transaction Isolation Property

In the hotel database we have two sensitive transactions which are of type Report and

Reserve. In each case, the proof of the Sensitive Transaction Isolation Property is by

construction.

First we consider transactions of type Report. We compute the subset of the original

invariants that must be satis�ed as a precondition for Report. We obtain these from Hotel

by hiding the state variables not involved in producing the outputs of Report. The state

variables not involved in producing the output of Report are res and guest. Hiding the

variables res and guest from Hotel produces the following schema:

Hotel n (res ; guest)
RM : Guest 7� Room

ST : Room 7! Status

9 res : N; guest : PGuest �
#RM = res

dom(ST B fUnavailableg) = ranRM

The constraint simpli�es to

dom(ST B fUnavailableg) = ranRM � � � (i)

The constraint is implied by an invariant in Î , namely,

dom(ST B fUnavailableg) = ranRM [tempassigned

41

and tempassigned = ?. Hence we include tempassigned = ? as a precondition forValidReport.

Next we consider the transactions of type Reserve. The output of a Reserve transaction

is the room r ! assigned to the guest. The only constraint on r ! is that the function ST

evaluated at r ! be Available. Therefore, to compute the subset of the original invariants

that must hold as a precondition on Reserve, we hide all the state variables except ST in

Hotel. The schema obtained by hiding all the variables but ST is as follows:

Hotel n (res ; guest ;RM)
RM : Guest 7� Room

ST : Room 7! Status

9 res : N; guest : PGuest ; RM : Guest 7� Room �

#RM = res

dom(ST B fUnavailableg) = ranRM

The constraint simpli�es to true, which means that no additional preconditions need

be placed in the steps R1, R2, or R3 of the reserve transaction.

The Consistent Execution Property

For the hotel database system, the original invariants in I are satis�ed when tempassigned =

? and tempreserved = 0. Thus we have to prove that if the initial state of a complete

semantic history satis�es tempassigned = ? and tempreserved = 0, the �nal state of the

history will also satisfy tempassigned = ? and tempreserved = 0.

Let n1, n2 and n3 be the number of steps of type R1, R2 and R3 respectively present in

any complete history. The variable tempreserved is modi�ed by steps of type R1 and R3 of

a reserve transaction. tempreserved is incremented in steps of type R1 and is decremented

in step of type R3. Thus tempreserved is given by the following expression

tempreserved = n1 � n3

The variable tempassigned is modi�ed in steps of type R2 and R3. In step of type R2 a

room is added to the set tempassigned and in step of type R3 of the reserve transaction the

room is taken out from the set tempassigned. Thus we can write,

j tempassigned j= n2 � n3

In a complete history since all the reserve transactions have completed, the number of

steps of type R1, R2 and R3 that have been executed are equal, and so

n1 = n2 = n3

Therefore, in a complete history,

42

1. tempreserved = 0 and

2. j tempassigned j= 0 or tempassigned = ?.

Hence we can conclude that the hotel database has the consistent execution property.

The Complete Execution Property

To prove that the Hotel Database System has the complete execution property, we take

any partial correct semantic history and show that it is the pre�x of some complete correct

semantic history.

In the Hotel Database, only the reserve transactions have been broken into steps. So

in any partial semantic history the only incomplete transactions are reserve transactions.

Suppose we have n incomplete reserve transactions in the correct partial semantic history.

We show how an incomplete reserve transaction can be completed, thereby decreasing the

number of incomplete reserve transactions from n to n�1. By repeated applications of our

argument, it is possible to reduce the number of incomplete reserve transactions to zero, at

which point the history is a complete correct semantic history.

Consider an incomplete reserve transaction. If the reserve transaction has completed a

step of type R1, the preconditions of the next step, which is of type R2, is always satis�ed

and so the next step can be executed. If the reserve transaction has completed step of type

R2, the precondition of the next step, which is of type R3, (g? 62 guest) may or may not

be satis�ed. If the precondition of the step of type R3 is not satis�ed, the precondition of

another transaction, which is of type ValidCancel (g? 2 guest), is satis�ed. Moreover the

postcondition of step of type ValidCancel establishes the precondition of step of type R3,

and so the step of type R3 can complete. Thus all reserve transactions can complete.

Appendix B { Properties of the Histories Generated using

Successor Set Mechanism

The Valid Successor Set Property

Part 1

In the �rst part, we prove that the set of correct semantic histories generated using the

successor set mechanism is a subset of the set of correct histories generated using invariants

and precondition checks.

Let

H1 = set of correct semantic histories generated by decomposition of transactions and

43

H2 = set of correct semantic histories generated by the queuing and successor set mecha-

nism.

The proof obligation is H2 � H1, i.e. we have to show that for any correct semantic history

in H2, there is a corresponding correct semantic history in H1.

Let H2 be any correct semantic history generated using the queuing and successor set

mechanism. From H2 we construct a semantic history H1 as follows:

1. make the initial state of H1 the same as that of H2,

2. for any step in H2, include the same step in H1,

3. add the precondition tempassigned = ? to any and all occurrence(s) of steps of type

ValidReport in H1.

Clearly H1 is the history corresponding to H2, which uses precondition checks to control

the ordering instead of successor set mechanism as done in H2. It remains to be shown that

H1 2 H1, i.e. the semantic history H1 is a correct semantic history. Note that the only way

in which history H1 di�ers from H2 is that, some preconditions present in the steps of type

ValidReport in H1 are not present in the corresponding steps in H2.

Let us consider the precondition (tempassigned = ?) that was added to ValidReport in

H1. From the speci�cations of R1, R2, R3, ValidCancel , and ValidReport we see that the

only situation in which the precondition of a step of type ValidReport is not satis�ed, is

when at least one step of type R2 has been executed but the next step, which is of type R3,

has not yet been executed. However, as ValidReport 62 SC (R2), a step of type ValidReport

will never be allowed to execute between a step of type R2 and a step of type R3. Thus in

H2 tempassigned = ? is always satis�ed before ValidReport is executed.

Note that the set of operations that modify the database state are the same for steps in

H1 and H2. The initial states are the same for both the histories. So the state obtained by

applying a step in H1 is the same as that obtained by applying H2.

Summing up, for the semantic history H1, the following observations can be made.

1. The initial state is in ST because it is the same as that of the correct semantic history

H2.

2. The state obtained by applying each step of the history is in dST because it is the

same as applying the corresponding step in the correct semantic history H2.

3. Preconditions are satis�ed for each step.

Thus the history H1 is a correct semantic history, i.e. H1 2 H2. Therefore for any history

H2 2 H2, we have a corresponding H1 2 H1.

44

For the Hotel Database example, we can also show that corresponding to any history

in H1 we can generate a corresponding history in H2 using the successor set and queuing

mechanisms. In any correct history in H1, the preconditions are satis�ed at each step and a

step of type ValidReport can never appear between steps of type R2 and R3. The successor

set mechanism ensures that a step of type ValidReport does not occur between steps of type

R2 and an R3 and does not impose any further restrictions. Thus for any history in H1,

we have a corresponding history in H2.

Thus for the hotel database example, the set of histories in H1 is equivalent to the set

of histories in H2.

Part 2

In the second part of the valid successor set property, it is required to show that all partially

correct semantic histories will eventually complete. For the Hotel Database the set H1 is

equivalent to the setH2. Since we have proved earlier that the set of histories in H1 has the

complete execution property, it is implied that the set of histories in H2 has the complete

execution property.

45

