
Subsumption of Condition Coverage Techniques by

Mutation Testing

Technical Report ISSE-TR-96-01

A. Je�erson O�utt �

ISSE Department

George Mason University

Fairfax, VA 22030

phone: 703-993-1654

fax: 703-993-1638

email: ofut@isse.gmu.edu

Je�rey M. Voas

Reliable Software Technologies Corp.

Suite 250

11150 Sunset Hills Road

PO Box 2393

Reston, VA 22090

phone: 703-742-8873

fax: 703-742-9836

email: jmvoas@isse.gmu.edu

January 1996

| DRAFT |
Keywords|branch testing, condition coverage, software testing, mutation testing, subsumption.

Abstract

Condition coverage testing is a family of testing techniques that are based on the logical
ow of con-

trol through a program. The condition coverage techniques include a variety of requirements, including

that each statement in the program is executed and that each branch is executed. Mutation testing is

a fault-based testing technique that is widely considered to be very powerful, and that imposes require-

ments on testing that include, and go beyond, many other techniques. In this paper, we consider the

six common condition coverage techniques, and formally show that these techniques are subsumed by

mutation testing, in the sense that if mutation testing is satis�ed, then the condition coverage techniques

are also satis�ed. The fact that condition coverage techniques are subsumed by mutation has immediate

practical signi�cance because the extensive research that has already been done for mutation can be used

to support condition coverage techniques, including automated tools for performing mutation testing and

generating test cases.

1 INTRODUCTION

A testing criterion is a rule or set of rules that impose requirements on a set of test cases used to test a

program. Path-testing criteria state requirements in terms of the execution paths in the program. Test

engineers measure the extent to which we have satis�ed a criterion in terms of coverage; a test set achieves

100% coverage if it completely satis�es the criterion. Myers [Mye79] gives a variety of coverage criteria that

are based on conditional expressions within the program. These criteria have been widely used, and are

currently required by the FAA for certi�cation of
ight-critical software [SC-92].

�Partially supported by the National Science Foundation under grant CCR-93-11967.

1

Myers de�ned six condition coverage criteria. We brie
y introduce them here, and de�ne them more

formally in Section 2. A condition in a program is a pair of algebraic expressions related by one of the

relational operators f>; <; =; �; �; 6=g. Conditions evaluate to one of the binary values TRUE or FALSE

and can be modi�ed by the negation operator NOT. A decision is a list of one or more conditions connected

by the two logical operators AND (^) and OR (_) and used in a statement that a�ects the
ow of control of

the program. Decisions represent branches in the control
ow of the program.

Statement Coverage (SC) requires that every statement in the program be executed at least once.

Decision Coverage (DC) requires that every decision evaluate to both TRUE and FALSE at least once. DC is

also known as branch testing and all-edges [Whi87]. Condition Coverage (CC) requires that each condition

in each decision evaluate to both TRUE and FALSE at least once. Decision / Condition Coverage (DCC)

requires that each condition in each decision evaluate to both TRUE and FALSE at least once, and that every

decision evaluate to both TRUE and FALSE at least once. DCC combines DC and CC. Modi�ed Condition

/ Decision Coverage (MC/DC) requires that every decision and every condition within the decision has

taken every outcome at least once, and every condition has been shown to independently a�ect its decision.

Multiple-Condition Coverage (MCC) requires that all possible combinations of condition outcomes in each

decision be covered, that is, the entire truth table for the decision has been satis�ed. MCC is also known as

extended branch coverage [Whi87].

In this paper, we show that mutation testing subsumes each of the condition coverage criteria. We also

explore the possibility of automating multiple-condition coverage.

1.1 Mutation Testing

Fault-based testing techniques guide the tester to develop test cases that detect a well-de�ned class of faults.

Mutation testing is a fault-based testing technique introduced by DeMillo et al. [DLS78] and Hamlet [Ham77].

Mutation testing is based on the assumption that a program will be well tested if all so called \simple faults"

are detected and removed. The coupling e�ect [DLS78, O�92] states that complex faults are coupled to

simple faults in such a way that a test data set that detects all simple faults in a program will detect most

complex faults.

Simple faults, called mutations, are introduced into the program by mutation operators. Each mutation

produced by a mutation operator produces a mutant program. A mutant is killed by a test case that

causes the mutant program to produce incorrect output. A test case that kills a mutant is considered to

be e�ective at �nding faults in the program, and the mutant(s) it kills are not executed against later test

cases. Equivalent mutants are mutant programs that are functionally equivalent to the original program and

therefore cannot be killed by any test case. Determination of equivalent mutants is usually done by hand.

The goal of mutation is to �nd test cases that kill all non-equivalent mutants; a test set that does so is said

to be adequate relative to mutation. The mutation score is the ratio of the number of dead mutants to the

number of non-equivalent mutants; it measures the adequacy of the test case set.

The Mothra mutation system [DGK+88, DO91] is the latest mutation testing system. It automates

the process of mutation testing by creating and executing mutants, managing test cases, and computing

2

Type Description
AAR array reference for array reference replacement
ABS absolute value insertion
ACR array reference for constant replacement
AOR arithmetic operator replacement
ASR array reference for scalar variable replacement
CAR constant for array reference replacement
CNR comparable array name replacement
CRP constant replacement
CSR constant for scalar variable replacement
DER DO statement end replacement
DSA DATA statement alterations
GLR GOTO label replacement
LCR logical connector replacement
ROR relational operator replacement
RSR RETURN statement replacement
SAN statement analysis (replacement by TRAP)
SAR scalar variable for array reference replacement
SCR scalar for constant replacement
SDL statement deletion
SRC source constant replacement
SVR scalar variable replacement
UOI unary operator insertion

Table 1: Mothra Mutation Operators.

the mutation score. Mutation operators are represented as a set of rules that describe syntactic changes to

elements of the program. Mothra uses twenty-two mutation operators [KO91].

The complete set of mutation operators used by the Mothra mutation system is shown in Table 1. These

were derived from studies of programmer errors and correspond to mistakes that programmers typically make

and enforce common testing heuristics (such as execute every statement). This particular set of mutation

operators represents more than ten years of re�nement through several mutation systems. The operators in

this set not only require that the test data meet statement and branch coverage criteria, extremal values

criteria, and domain perturbation, but also directly model many types of errors. Each of the 22 mutation

operators is represented by the three-letter acronym given on the left. For example, the \array reference

for array reference replacement" (AAR) mutation operator causes each array reference in a program to be

replaced by each other distinct array reference in the program.

1.2 Overview

In the remainder of this paper, we give formal proofs that mutation subsumes each of the condition coverage

criteria de�ned in Myers [Mye79]. We then give data from using the Mothra mutation testing tool to achieve

Multiple-Condition Coverage, and give example mutants for a small function. Finally, we give a related

proof that mutation subsumes one of the data
ow testing criteria, All De�nitions data
ow, and present

conclusions to the paper.

3

2 SUBSUMPTION OF CONDITION COVERAGE BY

MUTATION

Subsumption has been widely used as a way to analytically compare testing techniques. We follow Weiss

[Wei89] and Frankl and Weyuker [FW88] for our de�nition of subsumption. A criterion C1 subsumes another

criterion C2 i� for every program, any test set T that satis�es C1 also satis�es C2 [FW88] 1.

We show that mutation subsumes the condition coverage criteria by showing that speci�c mutation

operators impose requirements that are identical to a speci�c coverage criterion. For each speci�c requirement

of a criterion (e.g., each decision), there is a single mutant that can only be killed by test cases that satisfy the

requirement. Therefore, the coverage criterion is satis�ed i� the mutants associated with the requirements

for the criterion are killed. We say that the mutation operators that ensure coverage of a criteria cover

the criteria. If a criteria is covered by one or more mutation operators, then mutation testing subsumes

the criteria. We begin to show in Section 2.2 exactly how mutation operators can ensure various structural

coverages.

There is one problem with relating mutation testing to the condition coverage criteria. The condition

coverage criteria impose only a local requirement; for example, decision coverage requires that each branch

in the program be executed. Mutation, on the other hand, imposes global requirements in addition to local

requirements. That is, mutation also requires that the mutant program produce incorrect output. For

DC, there are speci�c mutants that can only be killed if each branch is executed and the �nal output of

the mutant is incorrect. Although this means that mutation imposes stronger requirements than do the

condition coverage criteria, this also means that in some cases a test set that satis�es a coverage criteria will

not kill all the associated mutants. Thus, mutation as de�ned earlier will not strictly subsume the condition

coverage criteria.

We solve this problem by basing our subsumptions on weak mutation. Weak mutation was originally

suggested by Howden [How82] and has been experimentally veri�ed [OL94]. Weak mutation is exactly the

same as mutation (called strong mutation) except that only the local requirements are imposed. That is,

instead of the �nal output of the program being incorrect, only an intermediate state of the mutant program

needs to be incorrect. Thus, we actually show that the coverage criteria are subsumed by weak mutation,

not strong mutation. In practice, there is seldom any real di�erence [OL94].

Although our proofs refer to only two conditions per predicate, we can easily show that these arguments

hold in general, because we have a one-to-one mapping between the mutants and the individual criteria. For

instance, suppose we have: if a and b then, and we wish to satisfy branch coverage. Since we are required

to take both branches, we create two mutants:

if (a and b == FALSE) then mutant1 = killed

and

if (a and b == TRUE) then mutant2 = killed.

1Frankl and Weyuker actually used the term includes. The term subsumption was de�ned by Clarke et al.: A criterion C1

subsumes a criterion C2 i� every set of execution paths P that satis�es C1 also satis�es C2 [CPRZ85]. The term subsumption
is currently the more widely used and the two de�nitions are equivalent; we follow Weiss's suggestion to use the term subsumes

to refer Frankl and Weyuker's de�nition.

4

When both of these mutants are killed, branch coverage at this statement is satis�ed. Further, suppose

that we have a decision of the form: if a and b and c then. Since there is an implicit precedence in this

example, either (a and b) and c or a and (b and c), then we can make the four condition-adequate

mutants:

if (a and b == FALSE) then mutant1 = killed,

if (a and b == TRUE) then mutant2 = killed,

if (c == FALSE) then mutant3 = killed, and

if (c == TRUE) then mutant4 = killed

for our �rst precedence example, and:

if (b and c == FALSE) then mutant1 = killed,

if (b and c == TRUE) then mutant2 = killed,

if (a == FALSE) then mutant3 = killed, and

if (a == TRUE) then mutant4 = killed

for the second precedence. Thus our mutants can guarantee that each condition has each outcome exercised,

regardless of the complexity of the decision.

2.1 Control Flow Graph

We formally de�ne the coverage criteria in terms of the control
ow graph of a program. A program unit

P is considered to be an individual subprogram (main program, procedure, or function). A subprogram is

decomposed into a set of basic blocks (BB), each of which is a maximal sequence of simple statements with

one entry point such that if the �rst statement is executed, all statements in the block will be executed. The

subprogram is represented by a control
ow graph (CFG), in which the nodes are basic blocks and the edges

correspond to possible
ow of control between the basic blocks. For simplicity, we will assume that each

node has at most two outgoing edges; that is, all decisions are binary-valued. For language constructs that

have multi-way branches (such as Fortran's arithmetic-if), we will assume that the CFG is built by splitting

the multi-way branches into several nodes with two outgoing edges.

As an example, consider the following subprogram:

Function CFG_Example (A : Integer, B : Integer) : Integer

O1, O2 : Integer;

BEGIN

IF (A > 0) THEN

O1 = B*B;

ELSE

O1 = B+B;

WHILE (B < A) LOOP

O1 = O1+1;

B = B+B;

END LOOP

5

O2 = O1 - A;

END IF

O3 = O2 + O1*2;

PRINT (O3);

END CFG_Example

The corresponding CFG for this subprogram is shown in Figure 1. Although they are not strictly

part of the CFG, we annotate the edges with the appropriate program predicates and computations. Such

information is often desirable and included with the graph.

1

2 3

4

5

6

A <= 0

B < A

B >= A

A >
 0

Figure 1: CFG for program CFG Example.

2.2 Statement Coverage

The statement coverage criterion (SC) requires that each node in the CFG be executed at least once. Note

that by executing a node, we are guaranteed to execute each statement in the corresponding basic block.

The statement analysis mutation operator (SAN) replaces the entry statement of each basic block in the

program by a special TRAP statement. The semantics of the TRAP statement is that when it is executed,

it always signals a failure, which immediately kills the mutant. To kill all SAN mutants, we are required to

�nd test cases that reach each basic block. Since this is exactly the requirement of SC, the SAN operator

covers SC.

6

2.3 Decision Coverage

The decision coverage criterion (DC) requires that each edge in the CFG be executed at least once. The

logical connector replacement mutation operator (LCR), among other modi�cations, replaces each decision

in a program by TRUE and FALSE. To kill the TRUE mutant, a test case must take the FALSE branch, and

to kill the FALSE mutant, a test case must take the TRUE branch. Thus, the LCR operator forces us to

execute each branch in the CFG, and it covers DC.

2.4 Condition Coverage

For decisions that have more than one condition, decision coverage can be satis�ed without fully testing each

condition. For example, if we have the decision if (A ^B), decision coverage can be satis�ed with the two

test cases: (A = T;B = T) and (A = T;B = F), neither of which ever cause A to be FALSE. To make up

for this, condition coverage requires that each condition in each decision evaluate to TRUE and FALSE at

least once.

The relational operator replacement mutation operator (ROR), among other modi�cations, replaces

each condition in each decision by TRUE and FALSE. To show that ROR covers CC, we must look at the two

cases where the logical operator is AND and OR. By the argument above, if CC is covered with 2 conditions,

it is also covered for arbitrary numbers of conditions.

1. AND Case.

We will assume the decision is of the form: if (A^B), where A and B are boolean conditions. Below

is the truth table for (A ^ B), and two ROR mutations. Since TRUE ^ B has the same result as the

original decision for three of the four truth assignments, we must have the truth assignment (F T) to

kill that mutant. Likewise, the mutant A ^ TRUE requires the truth assignment (T F). Thus, these

two mutants are killed if and only if CC is satis�ed, and ROR covers CC for the AND case.

T T T F F T F F
A ^B T F F F

TRUE ^B T F T F

A ^ TRUE T T F F

2. OR Case.

We will assume the decision is of the form: if (A_B), where A and B are boolean conditions. Below

is the truth table for (A _B), and two ROR mutations. Since FALSE _B has the same result as the

original decision for three of the four truth assignments, we must have the truth assignment (T F) to

kill that mutant. Likewise, the mutant A_FALSE requires the truth assignment (F T). Thus, these

two mutants are killed if and only if CC is satis�ed, and ROR covers CC for the OR case.

T T T F F T F F
A _B T T T F

FALSE _B T F T F

A _ FALSE T T F F

7

if A ^B thenMC/DC =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

show that two decision outcomes occur:
if A ^B = TRUE
if A ^B = FALSE
show that two condition outcomes for condition a occur:
if A = TRUE

if A = FALSE

show that two condition outcomes for condition b occur:
if B = TRUE

if B = FALSE

show that two conditions independently a�ect decision outcome:
if A ^ TRUE = if A ^B then
if B ^ TRUE = if A ^B then

if A _ B thenMC/DC =

8>>>>>>>>>><
>>>>>>>>>>:

if A _B = TRUE

if A _B = FALSE

if A = TRUE

if A = FALSE

if B = TRUE

if B = FALSE

if A _ FALSE = if A _B then
if B _ FALSE = if A _B then

Figure 2: Modi�ed Condition/Decision Adequate Mutants for OR and AND.

2.5 Decision / Condition Coverage

Although CC forces conditions to take on all possible values, it says nothing about the decisions. Thus, CC

can be satis�ed without executing all edges; for example, in the OR case above, the decision evaluates to

TRUE in both cases. Decision / condition coverage combines CC and DC and requires that each condition

in each decision be evaluated to TRUE and FALSE at least once, and each edge in the CFG be taken at least

once.

Since DCC is simply a combination of DC and CC, and DC is covered by the LCR operator, and CC is

covered by the ROR operator, DCC is covered by LCR and ROR.

2.6 Modi�ed Condition / Decision Coverage

MC/DC is de�ned in FAA standard DO178-B [SC-92] such that:

\Every point of entry and exit in the program has been invoked at least once, and every

condition in a decision in the program has taken on all possible outcomes at least once, every

decision in the program has taken on all possible outcomes at least once, and each condition

in a decision has been shown to independently a�ect that decision's outcome. (A condition is

shown to independently a�ect a decision's outcome by varying just that condition while holding

all other conditions possible �xed.)"

8

To show that each condition independently a�ects a decision's outcome, we need to assure that if

a compiler short-circuits while evaluating a decision, the condition that we are concerned with receives

evaluation �rst.2 The mutation rules for doing this are shown in Figure 2. Here we are showing the rules

that provide MC/DC for the decisions A^B and A_B. Note that we ensure both outcomes of the decision,

that both internal conditions are exercised for both TRUE and FALSE. And �nally we show the mutants

that provide that each condition independently a�ect the outcome of the decision for these two examples.

2.7 Multiple-Condition Coverage

MCC recognizes that for a decision with N conditions, there are 2N possible combinations of values for the

conditions. These combinations correspond to the full truth table of the decision. Whereas DC, CC, DCC,

and MC/DC choose subsets of these combinations, MCC requires that all combinations of decision truth

assignments be exercised.

Again, we use the ROR operator and the LCR operator to cover this criterion. To show that these

operators cover MCC, we must look at the two cases where the logical operator is AND and OR.

1. AND Case.

If the original predicate is A^B, then the mutants required to ensure MCC are in the following table.

The entry above the line, A^B, gives the truth values of the original predicate for each of the possible

values of A and B. Each of the following rows represent a mutant of the predicate, and give the

resulting truth values of the mutated predicate. The cells where the mutant's value di�ers from the

original predicate indicate truth assignments for A and B that would kill that mutant.

Since the mutant TRUE ^ B has the same result as the original decision for three of the four truth

assignments, we must have the truth assignment (F T) to kill it. Likewise, FALSE ^B requires the

truth assignment (T T), A ^ TRUE requires (T F), and A = B requires (F F). Thus, these four

mutants are killed if and only if MCC is satis�ed, and ROR and LCR covers MCC for the AND case.

T T T F F T F F
A ^B T F F F

1 TRUE ^B T F T F

2 FALSE ^B F F F F

3 A ^ TRUE T T F F

4 A = B T F F T

A 6= B is actually NEQV, which means \not equivalent", or exclusive OR.

2. OR Case.

If the original predicate is A_B, then the mutants required to ensure MCC are in the following truth

table. The entry above the line, A _ B, gives the resulting truth values of the original predicate for

each of the possible values of A and B. Each of the following rows represent a mutant of the predicate,

2A compiler short-circuits a decision evaluation by halting the evaluation after enough information has been evaluated to
determine the value of the entire decision.

9

and give the resulting truth values of the mutated predicate. The cells where the mutant's value di�ers

from the original predicate indicate truth assignments for A and B that would kill that mutant.

Since the mutant TRUE _ B has the same result as the original decision for three of the four truth

assignments, we must have the truth assignment (F F) to kill it. Likewise, FALSE _ B requires the

truth assignment (T F), A _ FALSE requires (F T), and A 6= B requires (T T). Thus, these four

mutants are killed if and only if MCC is satis�ed, and ROR and LCR covers MCC for the OR case.

T T T F F T F F
A _B T T T F

1 TRUE _B T T T T

2 FALSE _B T F T F

3 A _ FALSE T T F F

4 A 6= B F T T F

3 Mothra and Multiple-Condition Coverage

We used the Mothra mutation testing system [DGK+88] to investigate the e�ectiveness of using mutation to

automatically achieve multiple-condition coverage for sixteen program units. Mothra includes an automated

test data generator, Godzilla [DO91, DO93], that attempts to generate test cases to kill all mutants. We used

Mothra to create the mutants that were necessary to cover multiple-condition coverage, and then Godzilla to

generate test cases to attempt to kill those mutants. We used the weak mutation version of Mothra [OL94]

to execute the Godzilla-generated test cases against the mutants. The results of this procedure is shown in

Table 2.

Executable Test Percent
Program Statements Mutants Live Dead Cases Killed
Banker 39 14 7 7 3 50
Bisect 21 10 4 6 3 60
BinSearch 20 7 2 5 2 71
Bubble 11 3 0 3 1 100
Cal 29 21 6 15 5 71
DeadLk 52 25 7 18 5 72
EBC 12 8 0 8 4 100
Euclid 11 2 0 2 1 100
Find 28 14 0 14 5 100
Insert 14 6 0 6 1 100
Mid 16 10 0 10 7 100
Newton 14 8 3 5 3 62
Pat 17 7 1 6 3 86
Quad 10 2 0 2 2 100
TriSmall 13 49 0 43 6 88
TriTyp 28 56 13 43 10 77
Warshall 11 5 0 5 1 100
Total 346 247 43 198 62 80

Table 2: Multiple-Condition Coverage by Godzilla.

10

The Mutants column gives the number of mutants required to ensure MCC for each program, Live and

Dead indicates how many were unkilled and killed by Godzilla, and Test Cases gives the number of test

cases that Godzilla generated. Percent Killed gives how many mutants were killed { these numbers are

also the percent of MCC combinations that were covered. The fact that we were able use Godzilla to cover

four out of �ve MCC combinations indicates that automation of MCC testing is feasible.

4 Example SAN, LCR, and ROR Mutants

This section contains an example program, with the LCR and ROR mutants necessary to ensure MCC. The

program is a small example with two decisions, each containing two conditions:

Function EBC (A : Integer, B : Integer) : Integer

Rslt : Integer

if (A > 0 || B > 0) then

Rslt = 1;

else

Rslt = 0;

endif

if (A > 0 && B > 0) then

Rslt = Rslt + 2;

else

Rslt = Rslt + 4;

endif

return (Rslt);

end EBC;

Next we show the relevant mutants embedded into the program. Each line that begins with a \#"

represents a mutant program, where the preceding statement is replaced by the mutated statement. Thus,

eight mutants are represented. Each mutant is annotated with its mutation operator type, and a unique

number for referencing the mutant.

Function EBC (A : Integer, B : Integer) : Integer

Rslt : Integer

if (A > 0 || B > 0) then

ror 20 if (FALSE || (B > 0)) then

ror 21 if (TRUE || (B > 0)) then

ror 27 if ((A > 0) || FALSE) then

lcr 3 if ((A > 0) != (B > 0)) then

Rslt = 1;

else

Rslt = 0;

endif

if (A > 0 && B > 0) then

ror 34 if (FALSE && (B > 0)) then

ror 35 if (TRUE && (B > 0)) then

ror 42 if ((A > 0) && TRUE) then

lcr 9 if ((A > 0) == (B > 0)) then

11

Rslt = Rslt + 2;

else

Rslt = Rslt + 4;

endif

return (Rslt);

end EBC;

5 All De�nitions Data Flow

Data
ow testing is a family of testing criteria due to Rapps, Frankl and Weyuker [FW88]. Data
ow testing

assumes that to adequately test a program, we need to test combinations of de�nitions of data and uses of

data.

A data de�nition of a variable is a location where a value is stored into memory (assignment, input,

etc.), and a data use is a location where the value of the variable is accessed. Uses are subdivided into 2

types: a computation use (c-use) directly a�ects a computation or is an output, and a predicate use (p-use)

directly a�ects the
ow of control. c-uses are considered to be on the nodes in the CFG and p-uses are on

the edges. Thus, in the CFG in Figure 1, there are p-uses of A on edges 12 and 13, and c-uses of O1 and B

on node 2. A de�nition-clear subpath for a variable X through the CFG is a sequence of nodes that does not

contain a de�nition of X.

The All-defs data
ow criterion requires that each de�nition of a variable reach at least one use. That

is, for each de�nition of a variable X on node n, there must be a de�nition-clear subpath for X from n to a

node or an edge with a use of n.

Although mutation testing does not explicitly have this requirement, the requirement is met implicitly

through the sdl mutation operator. For each statement in the program, the sdl operator (statement deletion)

creates a mutant by deleting the statement. To show subsumption of All-defs, we restrict our attention to

only statements that contain variable de�nitions. Assume thatM1 is an sdl mutation that deletes statement

Si containing a de�nition of a variable X. To killM1 under strong mutation, a test case t must 1) cause the

mutated statement to be reached (reachability), 2) cause the execution state of the program after execution

of Si to be incorrect (necessity), and 3) cause the �nal output of the program to be incorrect (su�ciency)

[DO91]. Any test case that reaches Wi will cause an incorrect execution state, because the mutated version

of Si will not assign a value to X. For the �nal output of the mutant to be incorrect, there are two cases.

First, if X is an output variable, t must have caused an execution of a subpath from the deleted de�nition

of X to the output without an intervening de�nition. Since the output is considered a use, this satis�es the

criterion. Second, if X is not an output variable, then the nonde�nition ofX at Si must result in an incorrect

output state. This is only possible if X is used at some later point during execution without being rede�ned.

Thus, t will satisfy the All-defs criterion for the de�nition of X at Si, and the sdl mutation operator ensures

that mutation subsumes All-defs.

12

6 Conclusions

This paper has shown how weak mutation testing can be used to generate coverage adequate test suites.

To do so, we have restricted the mutants to only those that guarantee that certain conditions are exercised.

Since we are creating restricted mutants in this scheme, we are able to ignore problems such as semantically

equivalent mutants. In our scheme, there is a mutant for each requirement that we are attempting to

satisfy. We believe that our scheme can be implemented e�ciently, and that it represents a cost e�ective of

performing coverage (unit) testing. The data in section 3 supports this view.

It is interesting to note that recent experimentation [OLR+96] has indicated that only �ve mutation

operators may be needed for e�ective mutation testing, including ROR and LCR. This leads us to hypothesize

that MCC is in some sense a major part of mutation.

We admit that there is a down-side to automatic test case generation for structural coverage: since a

machine is generating test cases versus a person manually inspecting the code to create the test cases, the

possibility of a person �nding faults via manual inspection no longer exists. However, the cost savings of

such a scheme can still be applied to inspections or other techniques that are aimed towards fault detection

and fault removal.

In this paper, we have focused our examples towards Fortran and the mutant operators of Mothra.

However for practical considerations, most avionics software that must be certi�ed according to DO178-B is

not coded in Fortran, but rather C, Ada or PLM (similar to Pascal). This then includes additional constructs

that alter the
ow of control such as CASE statements and switches. And for non-avionics applications, we

acknowledge that issues of side-e�ects in conditional expressions must be handled by a tool that implements

this scheme.

References

[CPRZ85] L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A comparison of data
ow path
selection criteria. In Proceedings of the Eighth International Conference on Software Engineering,
pages 244{251, London UK, August 1985. IEEE Computer Society.

[DGK+88] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, and A. J. O�utt. An extended
overview of the Mothra software testing environment. In Proceedings of the Second Workshop
on Software Testing, Veri�cation, and Analysis, pages 142{151, Ban� Alberta, July 1988. IEEE
Computer Society Press.

[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for the
practicing programmer. IEEE Computer, 11(4):34{41, April 1978.

[DO91] R. A. DeMillo and A. J. O�utt. Constraint-based automatic test data generation. IEEE Trans-
actions on Software Engineering, 17(9):900{910, September 1991.

[DO93] R. A. DeMillo and A. J. O�utt. Experimental results from an automatic test case generator.
ACM Transactions on Software Engineering Methodology, 2(2):109{127, April 1993.

[FW88] P. G. Frankl and E. J. Weyuker. An applicable family of data
ow testing criteria. IEEE
Transactions on Software Engineering, 14(10):1483{1498, October 1988.

13

[Ham77] R. G. Hamlet. Testing programs with the aid of a compiler. IEEE Transactions on Software
Engineering, 3(4), July 1977.

[How82] W. E. Howden. Weak mutation testing and completeness of test sets. IEEE Transactions on
Software Engineering, 8(4):371{379, July 1982.

[KO91] K. N. King and A. J. O�utt. A Fortran language system for mutation-based software testing.
Software{Practice and Experience, 21(7):685{718, July 1991.

[Mye79] G. Myers. The Art of Software Testing. John Wiley and Sons, New York NY, 1979.

[O�92] A. J. O�utt. Investigations of the software testing coupling e�ect. ACM Transactions on Software
Engineering Methodology, 1(1):3{18, January 1992.

[OL94] A. J. O�utt and S. D. Lee. An empirical evaluation of weak mutation. IEEE Transactions on
Software Engineering, 20(5):337{344, May 1994.

[OLR+96] A. J. O�utt, Ammei Lee, Gregg Rothermel, Roland Untch, and Christian Zapf. An experimental
determination of su�cient mutation operators. ACM Transactions on Software Engineering
Methodology, 1996. To appear.

[SC-92] RTCA Committee SC-167. Software considerations in airborne systems and equipment certi�ca-
tion, Seventh draft to Do-178A/ED-12A, July 1992.

[Wei89] S. N. Weiss. What to compare when comparing test data adequacy criteria. ACM SIGSOFT
Notes, 14(6):42{49, October 1989.

[Whi87] L. J. White. Software testing and veri�cation. In Marshall C. Yovits, editor, Advances in
Computers, volume 26, pages 335{390. Academic Press, Inc, 1987.

14

