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ABSTRACT

An important usage of time sequences is to discover temporal patterns. The discovery process

usually starts with a user-speci�ed skeleton, called an event structure, which consists of a number of

variables representing events and temporal constraints among these variables; and the goal of the dis-

covery is to �nd temporal patterns, i.e., instantiations of the variables in the structure, which frequently

appear in the time sequence. This paper introduces event structures that have temporal constraints

with multiple granularities, de�nes the pattern discovery problem with these structures, and studies

e�ective algorithms to solve it. The basic components of the algorithms include timed automata with

granularities (TAGs) and a number of heuristics. The TAGs are for testing whether a speci�c tempo-

ral pattern, called a candidate complex event type, appears frequently in a time sequence. Since there

are often a huge number of candidate event types for a usual event structure, heuristics are presented

aiming at reducing the number of candidate event types and reducing the time spent by the TAGs

to test whether a candidate type does appear frequently in the sequence. These heuristics exploit the

information provided by explicit and implicit temporal constraints with granularity in the given event

structure. The paper also gives the results of an experiment to show the e�ectiveness of the heuristics

on a real data set.
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1 Introduction

A huge amount of data is collected everyday in the form of event time sequences. Common ex-

amples are recording of di�erent values of stock shares during a day, each access to a computer by

an external network, bank transactions, or events related to malfunctions in an industrial plant.

These sequences represent valuable sources of information not only to search for a particular

value or event at a speci�c time, but also to analyze the frequency of certain events, discover

their regularity, or discover set of events related by particular temporal relationships. These

types of analyses can be very useful for deriving implicit information from the raw data, and for

predicting the future behavior of the process that we are monitoring.

Although a lot of work has been done on identifying and using patterns in sequential data

(see [AIS90, Lai93] for an overview), little attention has been paid to the discovery of temporal

patterns or relationships that involve multiple granularities. We believe that these relationships

are an important aspect of data mining. For example, while analyzing ATM transactions, we

want to discover events having quantitative bounds on their distances such as events occurring

in the same day, or events happening within k weeks from a speci�c one. The system should

not automatically translate these bounds in terms of a basic granularity since it may change the

semantics of the bounds. For example, one day should not be translated into 24 hours since 24

hours can overlap across two consecutive days.

In this paper, we focus our attention to providing a formal framework in which to express

the data mining tasks involving time granularities and propose e�cient algorithms. To this end,

we introduce the notion of event structures. An event structure is essentially a set of temporal

constraints on a set of variables representing events. Each constraint bounds the distance between

a pair of events in terms of a time granularity. For example, we can constrain two events to occur

in the same business day, but one occurring 4 to 6 hours after the other. We consider data mining

tasks where an event structure is given and only some of its variables are instantiated. Possible

instances for the other variables have to be discovered based on the frequency on which the

corresponding events occur in the event sequence matching the structure.

As a simple example, one may be interested in �nding all those events that frequently follow

within 2 business days of a rise of the IBM stock price. For this, we set up two variables, X0

and X1, where X0 is instantiated with the event type \rise of the IBM stock" while X1 is left
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free. The constraint between X0 and X1 is that they have to happen with 2 business days. The

discovery task is to �nd all instantiations of the variable X1 such that the events assigned to X1

frequently follow the rise of the IBM stock. Each such instantiation is called a solution to the

discovery task.

In order to �nd all the solutions for a given event structure, we �rst consider the case that

we call a candidate instantiation of the event structure, where each variable is instantiated to

a speci�c event type. We scan through the time sequence to see if this candidate instantiation

occurs frequently. For this pattern recognition problem, we introduce timed �nite automata with

granularities (TAGs) which are essentially standard �nite automata with the modi�cation that

transitions are conditioned not only by input symbols, but also by the values of the associated

clocks. (Clocks may be running in di�erent granularities.)

To e�ectively perform data mining, however, we cannot naively consider all candidate in-

stantiations, since the number of candidate instantiated structures that we must consider is

exponential. We provide algorithms and heuristics that exploit the granularity system and the

given constraints to reduce the hypothesis space for the pattern matching task. The global

approach o�ers an e�ective procedure to discover patterns of events that occur frequently in a

sequence satisfying speci�c temporal relationships.

In terms of related research, our work is closest to [MTV95], where event sequences are

searched for frequent patterns of events. These patterns have a simple structure (essentially

a partial order) whose total span of time is constrained by a window given by the user. The

technique of generating candidate patterns from sub-patterns, together with a sliding window

method, is shown to provide e�ective algorithms. In contrast, we consider more complex patterns

where events may be in terms of di�erent granularities and windows are given for arbitrary

pairs of events in the pattern. The temporal constraints with granularities introduced in this

paper are closely related to temporal constraint networks and related problems (e.g., consistency

checking) that have been studied mostly in A.I. (cf. [DMP91]); however, these works assume that

either constraints involve a single granularity or, if they involve multiple granularities, they are

translated into constraints in single granularity before applying the algorithms. We introduce

networks of constraints in terms of arbitrary granularities and a new algorithm to solve the related

problems. Finally, the TAGs presented here are extensions of the timed automata introduced
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in [AD94] for modelling real-time systems and checking their speci�cations. We extend the

automata to ones which have clocks \ticking" in di�erent granularities in order to use them to

�nd complex events that have temporal relationships involving multiple granularities.

In Section 2, we begin with a de�nition of temporal types that formalizes the intuitive

notion of time granularities. We formalize the temporal pattern discovery problem in Section 3.

In Section 4, we focus on algorithms for discovering patterns from event sequences; and in

Section 5, we provide a number of heuristics for e�ective data mining. In Section 6 we report

some results obtained through an experiment on a real data set. We conclude the paper in

Section 7 with some discussion.

2 Preliminaries

In order to formally de�ne temporal relationships that involve time granularities, in this section

we review the notion of temporal types given in [WBBJ94]. By de�nition, a temporal type is a

mapping � from the set of the positive integers (the time ticks) to 2R (the set of absolute time

sets1) such that for all positive integers i and j with i < j, the following two conditions are

satis�ed:

1. �(i) 6= ; ^ �(j) 6= ; implies that each number in �(i) is less than all the numbers in �(j),

and

2. �(i) = ; implies �(j) = ;.

Property (1) is the monotonicity requirement. Property (2) disallows a certain tick of � to be

empty unless all subsequent ticks are empty. The set �(i) of reals is said to be the i-th tick of �,

or tick i of �, or simply a tick of �.

Intuitive temporal types, e.g., day, month, week and year, satisfy the above de�nition. For

example, we can de�ne a special temporal type year starting from year 1800 as follows: year(1)

is the set of absolute time (an interval of reals) corresponding to the year 1800, year(2) is the

1We use the symbol R to denote the real numbers. And we assume the underlying absolute time is continuous

and modelled by the reals. However, the results of this paper still hold if the underlying time is assumed to be

discrete.
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set of absolute time corresponding to the year 1801, and so on. Note that this de�nition allows

temporal types in which ticks are mapped to more than one continuous interval. For example, it

is possible to have a temporal type representing business weeks (b-week), where a tick of b-week

is the union of all business days (b-day) in a certain week (i.e., excluding all Saturdays, Sundays,

and general holidays). See Figure 1.

b-month

day

b-day

b-week

Figure 1: Three temporal types covering the span of time from February 26th till April 2nd 1996,

with day as the absolute time.

This is a generalization of most previous de�nitions of temporal types.

When dealing with temporal types, we often need to determine the tick (if any) of a temporal

type � that covers a given tick z of another temporal type �. For example, we may wish to �nd

the month (an interval of the absolute time) that includes a given week (another interval of

the absolute time). Formally, for each positive integer z and temporal types � and �, dze�� is

unde�ned if �(z) 6� �(z0) for all z0; otherwise, dze�� = z0, where z0 is the unique positive integer

such that �(z) � �(z0). The uniqueness of z0 is guaranteed by the monotonicity of temporal

types. As an example, dzemonthsecond gives the month that includes the second z. Note that while

dzemonthsecond is always de�ned, dze
month
week is unde�ned if week z falls between two months. Similarly,

dzeb-dayday is unde�ned if day z is a Saturday, Sunday, or a general holiday.

In this paper, all timestamps in an event sequence are assumed to be in terms of a �xed

temporal type. In order to simplify the notation, throughout the paper we assume that each

event sequence is in terms of second, and abbreviate dze�� as dze� if � = seconds.

3 Formalization of the discovery problem

Throughout the paper, we assume a �nite set of event types. Examples of event types include

\deposit to an account" or \price increase of a speci�c stock". We use the symbol E, possibly
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with subscripts, to denote event types. An event is a pair e = (E; t), where E is an event type

and t, called the timestamp of e, is a positive integer. An event sequence is a �nite set of events

f(E1; t1); : : : ; (En; tn)g. Intuitively, each event (E; t) appearing in an event sequence � means

that event type E occurs at time t. If (E; t) appears in �, then we will say that E occurs in �.

We often write an event sequence as a �nite list (E1; t1); : : : ; (En; tn), where ti � ti+1 for each

i = 1; : : : ; n� 1.

3.1 Temporal constraints with granularities

To model the temporal relationships among events in a sequence, we introduce the notion of a

temporal constraint with granularity.

De�nition Let m � n be non-negative integers and � a temporal type. Then [m;n]�, called a

temporal constraint with granularity or TCG, is the binary relation on positive integers de�ned

as follows: For positive integers t1 and t2, (t1; t2) 2 [m;n]� is true (or t1 and t2 satisfy [m;n]�)

i� (1) t1 � t2, (2) dt1e� and dt2e� are both de�ned, and (3) m � (dt2e� � dt1e�) � n.

Intuitively, for timestamps t1 � t2 (in terms of seconds), t1 and t2 satisfy [m;n]� if there

exist ticks �(t01) and �(t
0
2) covering, respectively, the t1-th and t2-th seconds, and if the di�erence

of the integers t01 and t02 is between m and n (inclusive).

In the following we say that a pair of events satisfy a constraint if the corresponding times-

tamps do. It is easily seen that the pair of events e1 and e2 satisfy TCG [0; 0] day if events e1

and e2 happen within the same day but e2 does not happen earlier than e1. Similarly, e1 and e2

satisfy TCG [0; 2] hours if e2 happens either in the same second as e1 or within two hours after

e1. Finally, e1 and e2 satisfy [1; 1] month if e2 occurs in the next month after the month in which

e1 occurs.

3.2 Event structures with multiple granularities

We now introduce the notion of an event structure. We assume there is an in�nite set of event

variables denoted by X, possibly with subscripts, that range over events.
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De�nition An event structure (with granularities) is a rooted directed acyclic graph (W;A;�),

where W is a �nite set of event variables, A �W �W and � is a mapping from A to the �nite

sets of TCGs.

Intuitively, an event structure speci�es a complex temporal relationship among a number of

events, each being assigned to a di�erent variable in W . The set of TCGs assigned to an edge is

taken as conjunction. That is, for each TCG in the set assigned to the edge (Xi;Xj), the events

assigned to Xi and Xj must satisfy the TCG. The requirement that the temporal relationship

graph of an event structure be acyclic is to avoid contradictions, since the timestamps of a set of

events must form a linear order. The requirement that there must be a root (i.e., there exists a

variable X0 inW such that for each variable X inW , there is a path from X0 to X) in the graph

is based on our interest in discovering the frequency of a pattern with respect to the occurrences

of a speci�c event type (i.e., the event type that is assigned to the root). See Section 4.

Figure 2 shows an event structure.

[1,1]b-day

[0,5]b-day

[0,1]week

[0,8]hours

X 3

X

X

X
0

1

2

Figure 2: An event structure.

We de�ne two additional concepts based on the concept of event structures: a complex event

type, which is an event structure with the event variables instantiated with event types; and a

complex event, which is a an occurrence of a complex event type. Formally:

De�nition Let S = (W;A;�) be an event structure with time granularities. Then a complex

event type derived from S is a pair (S; '), where ' is a mapping from W to the event types; a

complex event matching S is a pair (�; �), where � is an event sequence, and � is a one-to-one

correspondence from W to � such that for each edge (Xi;Xj) in A, if �(Xi) = (Ei; ti) and

�(Xj) = (Ej; tj), then ti and tj satisfy all TCGs in �(Xi;Xj).

A complex event (�; �) matching S is an occurrence of a complex event type (S; ') if for

each X 2 W , '(X) = E implies �(X) = (E; t) for some t. Similar to the notion of an event type
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occurring in an event sequence, a complex event type T is said to occur in an event sequence �0

if there exists � � �0 such that (�; �) is an occurrence of T .

Example 1 Assume an event sequence that records stock-price 
uctuations (rise and fall) every

15 minutes (this sequence can be derived from the sequence of stock prices) as well as the time of

the release of company earnings reports. Consider the event structure depicted in Figure 2. If we

assign the event types for X0;X1;X2 and X3 to be IBM-rise, IBM-earnings-report, HP-rise,

and IBM-fall, respectively, we have a complex event type. This complex event type describes

that the IBM earnings were reported one business day after the IBM stock rose, and in the same

or the next week the IBM stock fell; while the HP stock rose within 5 business days after the

same rise of the IBM stock and within 8 hours before the same fall of the IBM stock. 2

3.3 The discovery problem

We are now ready to formally de�ne the discovery problem.

De�nition An event-discovery problem is a quadruple (S; 
; E0; �), where

(1) S is an event structure,

(2) 
 (the minimum con�dence value) a real number between 0 and 1 inclusive,

(3) E0 (the reference type) an event type, and

(4) � is a mapping which assigns a set of event types to each variable (except the root).

An event-discovery problem (S; 
; E0; �) is to �nd each complex event type T that is derived

from S and has E0 assigned to the root and all other variables assigned with event types agreeing

with �, such that T occurs frequently. The frequency here is calculated against the number of

occurrences of E0. This is intuitively sound: If we want to say that event type E frequently

happens one day after IBM stock falls, then we need to use the events corresponding to falls of

IBM stock as a reference to count the frequency of E. We are not interested in an \absolute"

frequency, but only in frequency relative to some event type. Formally, we have
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De�nition The solution of an event-discovery problem (S; 
; E0; �) on a given event sequence

�, in which E0 occurs at least once, is the set of all complex event types T = (S; '), with the

condition that '(X0) = E0 where X0 is the root of S and '(X) 2 �(X) for all non-root variables

X, each of which occurs in � with a frequency greater than 
. The frequency here is de�ned

as the number of times T occurs for a di�erent occurrence of E0 (i.e., all the occurrences of T

which use the same occurrence of E0 for the root are counted as one) divided by the number of

times E0 occurs.

Example 2 (S; 0:8; IBM-rise; �) is a discovery problem, where S is the structure in Figure 2

and � assigns X3 to IBM-fall and assigns all other variables to all the possible event types.

Intuitively, we want to discover what happens between a rise and fall of IBM stocks, looking at

particular windows of time. The complex event type described in Example 1 where X1 and X2

are assigned respectively to IBM-earnings-report and HP-rise will belong to the solution of

this problem if it occurs in the input sequence with a frequency greater than 0:8 with respect to

the occurrences of IBM-rise. 2

4 Discovering frequent complex events

In this section, we introduce timed �nite automata with granularities (TAGs) for the purpose

of �nding whether a candidate instantiation of an event structure occurs frequently in an event

sequence. TAGs form the basis for our discovery algorithm.

4.1 Timed �nite automata with granularities (TAGs)

We now concern ourselves with �nding occurrences of a complex event type in an event sequence.

In order to do so, we de�ne a variation of the timed automaton [AD94] that we call a timed

automaton with granularities (TAG).

A TAG is essentially an automaton that recognizes words. However, there is a timing infor-

mation associated with the symbols of the words signifying the time when the symbol arrives

at the automaton. When a timed automaton makes a transition, the choice of the next state

depends not only on the input symbol read, but also on values in the clocks which are main-
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tained by the automaton and each of which is \ticking" in terms of a speci�c time granularity.

A clock can be set to zero by any transition and, at any instant, the reading of the clock equals

the time (in terms of the granularity of the clock) that has elapsed since the last time it was

reset. A constraint on the clock values is associated with any transition, so that the transition

can be taken only if the current values of the clocks satisfy the constraint. It is then possible to

constrain, for example, that a transition �res only if the current value of a clock, say in terms of

week, reveals that the current time is in the next week with respect to the previous value of the

clock.

De�nition A timed automaton with granularities (TAG) is a 6-tuple A = (�; S; S0; C; T; F ),

where (1) � is a �nite set (of input letters), (2) S is a �nite set (of states), (3) S0 � S is a set

of start states, (4) C is a �nite set (of clocks), each of which has an associated temporal type,2

(5) T � S �S ��� 2C ��(C) is a set of transitions, and (6) F � S is a set of accepting states.

In (5), �(C) is the set of all the formulas called clock constraints de�ned recursively as follows:

For each clock x� in C and non-negative integer k, x� � k and k � x� are formulas in �(C);

and any boolean combination of formulas in �(C) is a formula in �(C).

A transition hs; s0; e; �; �i represents a transition from state s to state s0 on input symbol e.

The set � � C gives the clocks to be reset (i.e., restart the clock from time 0) with this transition,

and � is a clock constraint over C. Given a TAG A and an event sequence � = e1; : : : ; en, a run

of A over � is a �nite sequence of the form

hs0; v0i
e1�! hs1; v1i

e2�! � � � hsn�1; vn�1i
en�! hsn; vni

where si 2 S and vi is a set of pairs (x; t), with x being a clock in C and t a non-negative integer,3

that satis�es the following two conditions: (1) (Initiation) s0 2 S0, and v0 = f(x; 0)jx 2 Cg, i.e.,

all clock values are 0; and (2) (Consecution) for each i � 1, there is a transition in T of the form

hsi�1; si; ei; �i; �ii such that �i is satis�ed by using, for clock x�, the value t + dtie� � dti�1e�,

where (x�; t) is in vi�1 and ti and ti�1 are the timestamps of ei and ei�1. For each clock x�, if x�

is in �i, then (x�; 0) is in vi; otherwise, (x�; t+ dtie��dti�1e�) is in vi assuming (x�; t) is in vi�1.

2The notation x� will be used to denote a clock x whose associated temporal type is �.

3The purpose of vi is to remember the current time value of each clock.
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A run r is an accepting run if the last state of r is in the set F . An event sequence � is accepted

by a TAG A if there exists an accepting run of A over �.

4.2 Generating TAGs from complex event types

Given a complex event type T , it is possible to derive a corresponding TAG. Formally:

Theorem 1 Given a complex event type T , there exists a timed automaton with granularities

TAGT such that T occurs in an event sequence � i� TAGT has an accepting run over �. This

automaton can be constructed by a polynomial-time algorithm.

The technique we use to derive the TAG corresponding to a complex event type T = (S; ')

is based on a decomposition of S into chains from the root to terminal nodes. For each chain

we build a simple TAG where each transition has as input symbol the variable corresponding to

a node in S (starting from the root), and clock constraints for the same transition correspond

to the TCGs associated with the edge leading to that node. Then, we combine the resulting

TAGs into a single TAG using a \cross-product" technique and we add transitions to allow the

skipping of events. Finally, we use the information in ' to change each input symbol X with the

event type symbol '(X).4 A detailed procedure for TAG generation can be found in Appendix.

Figure 3 shows the TAG corresponding to the complex event type in Example 1.

S0S0’ S3S3’

ANY

b-day
2 hour

2

b-day
0<=x     <=5 {x     x    }2

b-day
2

hour
2

b-day

0<=x     <=5 {x     x    }2x     =1  {x      x    }
b-day

b-day week

1
1

1

x     =1  {x      x    }
b-day

b-day week

1
1

1

0<=x    <=8  {x    x    }hour
2

b-day hour

2

ANY

2

b-day
0<=x    <=1  {x    x    }

week

1 1

week

1

S1S2’

S2S1’

hp-rise

ANY

ANY

S1S1’

ANY

ibm-rise ibm-rep

{reset all clocks}

hp-rise

ibm-rep
S2S2’

ANY

ibm-fall

Figure 3: An example of Timed Automaton with Granularities

4The construction would not work if we use the event types instead of the variable symbols from the beginning;

indeed we exploit the property that the nodes of S are all di�erently labelled.

10



Theorem 2 Whether an event sequence is accepted by a TAG corresponding to a complex event

type can be determined in O(j�j � (jSj �min(j�j; (jV j �K)p))2) time, where jSj is the number of

states in the TAG, j�j is the number of events in the input sequence, jV j is the number of variables

in the longest chain used in the construction of the automata, K is the size of the maximum

range appearing in the constraints, and p is the number of chains used in the construction of the

automata.

The proof basically follows a standard technique for pattern matching using a non-deterministic

�nite automaton (NDFA) (cf. [AHU74, page 328]). For each input symbol, a new set of states

that are reached from the states of the previous step is recorded. (Initially, the set consists of

all the start states.) Note however, clock values, in addition to the states, must be recorded. If

the graph is just a chain, in the worst case, the number of clock values that we have to record

for each state is the minimum between the length of the input sequence and the product of the

number of variables in the chain and the maximum range appearing in the constraints. If the

graph is not a chain we have to take into account the cross product of the p chains used in the

construction of the TAG. Note that, even for reasonably complex event structures, the constant

p is very small; hence, (jV j �K)p is often much smaller than j�j.

4.3 A naive algorithm

Given the technical tools provided in the previous sections, a naive algorithm for discovering

frequent complex events can proceed as follows: Consider all the event types that occur in the

given event sequence, and consider all the complex types derived from the given event structure,

one from each assignment of these event types to the variables. Each of these complex types

is called a candidate complex type for the event-discovery problem. For each candidate complex

type, start the corresponding TAG at every occurrence of E0. That is, for each occurrence of E0

in the event sequence, use the rest of the event sequence (starting from the position where E0

occurs) as the input to one copy of the TAG. By counting the number of TAGs reaching a �nal

state, versus the number of occurrences of E0, all the solutions of the event-discovery problem

will be derived.

This naive algorithm, however, can be too costly to implement. Assume that the maximum

number of event types occurring in the event sequence and in �(X) for all X is n, and the number
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of non-root variables in the event structure is s. Then the time complexity of the algorithm is

O(ns � j�E0
j � Ttag), where j�E0

j is the number of occurrences of E0 in � and Ttag is the time

complexity of the pattern matching by TAGs. Clearly, if n and s are su�ciently large, the

algorithm is rather ine�ective.

5 Techniques for an e�ective discovery process

Our strategy of �nding the solutions of event-discovery problems relies on the many optimization

opportunities provided by the temporal constraints of the event structures. The strategy can be

summarized in the following steps:

1. eliminate inconsistent event structures,

2. reduce the event sequence,

3. reduce the occurrences of the reference event type to be considered,

4. reduce the candidate complex event types, and

5. scan the event sequence, for each candidate complex event type, to �nd out if the frequency

is greater than the minimum con�dence value.

The naive algorithm illustrated earlier is applied in the last step (step 5). Several techniques are

used in the previous steps to immediately stop the process if an inconsistent event structure is

given (1), to reduce the length of the sequence (2), the number of times an automaton has to

be started (3), and the number of di�erent automata (4). Although the worst case complexity

is the same as the naive one, in practice, the reduction produced by steps 1{4 makes the mining

process e�ective.

While the technical tool used for step 5 is the TAG introduced in Subsection 4.1, steps (1{

4) exploit the implicit temporal relationships in the given event structure and a decomposition

strategy, based on the observation that if a discovery problem has a solution, then part of this

solution is a solution also for a \sub-problem" of the considered one.

To derive implicit relationships, we must be able to convert TCGs from one granularity to

another, not necessarily obtaining equivalent constraints, but logically implied ones.
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De�nition A TCG [m0; n0] � is logically implied by a TCG [m;n]� if each pair (x; y) satisfying

the second constraint, satis�es also the �rst one.

We allow any conversion from a TCG constraint into one in terms of a di�erent granularity

such that the resulting constraint is implied by the starting one. More generally, any conversion

should be allowed if the resulting constraint is implied by the global set of constraints in the

event structure, i.e., if the derived constraint is between X and Y , then any pair of values (x; y)

for X and Y , belonging to a solution of the whole set of constraints must also satisfy the derived

constraint. For example, given a single TCG [1; 2] b-week, we can convert it into [3; 18] day

and [0; 1] month, while we cannot convert it into [2; 3] week-end or [1; 3] week, since the resulting

constraints are not implied by [1; 2] b-week.

In Appendix A we report an algorithm to derive implicit constraints from a given set of

TCGs. The algorithm is based on a procedure to perform allowed conversions among TCGs

with di�erent granularities and on a reasoning process called constraint propagation to derive

implicit relationships among constraints in the same granularity.

5.1 Recognition of inconsistent event structures

For a given event structure S = (W;A;�), it is of practical interest to check if the structure is

consistent, i.e., if there exists an complex event that matches S. Indeed, if an event structure is

inconsistent, it should be discarded even before the data mining process starts. Unfortunately,

however, determining the consistency of event structures turns out to be a di�cult problem:

Theorem 3 It is NP-hard to decide if an arbitrary event structure is consistent.

This result suggests to use approximated polynomial algorithms to check consistency of event

structures. The algorithm to derive implicit constraints reported in Appendix A is actually one

of these approximated algorithms. Indeed, if one of the constraints implied by the given ones

and derived by the algorithm is the \empty" one (unsatis�able, independently of a given event

sequence), the whole event structure is inconsistent. We also use additional tests to recognize

some cases of inconsistency not recognized by the algorithm.
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5.2 Reduction of the event sequence

Regarding Step 2, we give a general rule to reduce the length of the input event sequence by

exploiting the granularities. For example, consider the event structure depicted in Figure 2. If a

discovery problem is de�ned on the sub-structure including only variables X0;X1, and X2, the

input event sequence can be reduced discarding any event that does not occur in a business-day.

In general, let � the coarsest temporal type such that for each temporal type � in the

constraints and timestamp in the sequence z, if dze� is de�ned, then dze� must also be de�ned,

and �(dze�) � �(dze�). Any event in the sequence whose time occurrence is not included in any

tick of � can be discarded before starting the mining process.

5.3 Reduction of the occurrences of the reference type

Regarding step 3, we give a general rule to determine which of the occurrences of the reference

type cannot be the root of a complex event matching the given structure. This is done using the

given constraints and the implied ones derived by the conversion and propagation algorithm.

Referring to our example, if no event occurs in the sequence in the next business-day of an

IBM-rise event, this particular reference event can be discarded (no automata is started for it).

In general, we proceed as follows: If X0 is the root, consider all the non-empty sets of

explicit and implicit constraints on (X0;Xi), for each Xi 2 W . Since the constraints are in terms

of granularities, for some occurrences of E0 in the sequence, it is possible that a constraint is

unsatis�able. Referring to our example, if no event occurs in the sequence in the next business-

day of an IBM-rise event, this particular reference event can be discarded (no automata is

started for it). Let N be the number of occurrences of the reference event type in the sequence.

Count the occurrences of reference events (instances of X0) for which one of the constraints

is unsatis�able. These are reference events that are certainly not the root of a complex event

satisfying the given event structure. If these occurrences are N 0 with N 0=N > 1�
, there cannot

be any frequent complex event type satisfying the given event structure and the empty set should

be returned to the user. Otherwise (N 0=N � 1 � 
), we remove these occurrences of E0 and

modify 
 into 
0 = (
 � N)=(N � N 0). 
0 is the con�dence value required on the new event

sequence to have the same solution as for the original con�dence value on the original sequence.
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5.4 Reduction of the candidate complex event types

The basic idea of step 4 is as follows: If a complex event type occurs frequently, then any of its

sub-type should also occur frequently. (This is similar to [MTV95].) Here by a sub-type of a

complex type T , we mean a complex event type, induced by a subset of variables, such that each

complex event that is an occurrence of the sub-type can be \extended" to an occurrence of T .

However, not every subset of variables of a structure can induce a sub-structure. For example,

consider the event structure in Figure 2 and let S 0 = (fX0;X3g; f(X0;X3)g;�0). S 0 cannot be an

induced sub-structure, since it is not possible for �0 to capture precisely the four constraints of

that structure. This forces us to consider approximated sub-structures.

Let S = (W;A;�) be an event structure and M the set of all the temporal types appearing

in �. For each � 2 M , let C� be the collection of constraints that we derive at the end of

the approximate conversion and propagation algorithm of Appendix A. Then, for each subset

W 0 of W , the induced approximated sub-structure of W 0 is (W 0; A0;�0), where A0 consists of all

pairs (X;Y ) � W 0 � W 0 such that there is a path from X to Y in S and there is at least

a constraint (original or derived) on (X;Y ). For each (X;Y ) 2 A0, the set �0(X;Y ) contains

all the constraints in C� on (X;Y ) for all � 2 M . For example, �0(X0;X3) in the previous

paragraph contains [0; 1] week and [1; 175] hour. Note that if a complex event (�; �) matches S,

then there exists a complex event (�0; �0) that matches S 0, where �0 is a sub-sequence of � such

that �(X) 2 �0 for each X 2 W 0 and �0 is a restriction of � on W 0.

By using the notion of an approximated sub-structure, we proceed to reduce candidate event

types as follows: Suppose the event-discovery problem is (S; 
; E0; �). For each variable X

appearing in S, except the root X0, consider the approximated sub-structure S 0 induced from

X0 and X (i.e., two variables). If there is a relationship between X0 and X (i.e., �0(X0;X) 6= ;),

consider the event-discovery problem (called induced discovery problem) (S 0; 
; E0; �
0), where �0

is a restriction of � wrt the variables in S 0. The key observation is ([MTV95]) that if no solution

to any of these induced discovery problems assigns event type E to X, then there is no need to

consider any candidate complex type that assigns E to X. This reduces the number of candidate

event types for the original discovery problem.

To �nd the solutions to the induced discovery problems is rather straightforward and simple

in time complexity. Indeed, the induced sub-structure gives the distance from the root to the
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variable (in e�ect, two distances, namely the minimum distance and the maximum distance).

For each occurrence of E0, this distance translates into a window, i.e., a period of time during

which the event for X must appear. If the frequency (i.e., the number of windows in which

the event occurs divided by the total number of these windows) an event type E occurs is less

than or equal to 
, then any candidate complex type with X assigned with E can be \screened

out" for further consideration. Consider the discovery problem of Example 2 with the simple

variation that � = ;, i.e. all non-root variables are free. (S 0; 0:8; IBM-rise; ;) is one of its induced

discovery problems. �0(X0;X3), through the constraints reported above, identi�es a window for

X3 for each occurrence of IBM-rise. It is easy to screen out all candidate event types for X3

that have a frequency of occurrence in these windows less than 0:8.

The above idea can easily be extended to consider induced approximated sub-structures

that include more than one non-root variable. For each integer k = 2; 3; : : :, consider all the

approximated sub-structures Sk induced from the root variable and k other variables in S, where

these variables (including the root) form a sub-chain in S (i.e., they are all on a particular path

from the root to a particular leaf), and Sk, considering the derived constraints, forms a connected

graph. We now �nd the solutions to the induced event-discovery problem (Sk; 
; E0; �k). Again,

if no solution assigns an event type E to a variable X, then any candidate complex type that

has this assignment is screened out. To �nd the solutions to these induced discovery problems,

the naive algorithm mentioned earlier can be used. Of course, any screened-out candidates from

previous induced discovery problems should not be considered any further. This means that if in

a previous step only k event types have been assigned to variable X as a solution of a discovery

problem, if the current problem involves variable X, we consider only candidates within those k

event types. This process can be extended to event types assigned to combinations of variables.

This results, in practice, in a smaller number of candidate types for induced discovery problems.

6 Experimental Results

In this section, we report the experimental results conducted on a real data set. The purpose is

to test the heuristics provided in the previous sections. The interpretation and discussion of the

signi�cance (or insigni�cance) of the discovered patterns are out of the scope of this paper.
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The data set we gathered is the closing prices of 439 stocks for 517 trading days during the

period between January 3, 1994 to January 11, 1996.5 For each of the 439 trading companies

in the data set, we calculate the price change percentages on consecutive trading days (business

days). The change percentage for day d is calculated by the formula (pd � pd�1)=pd�1, where pd

is the closing price of day d and pd�1 is the closing price of the previous trading day.

The price changes are partitioned into 7 categories: (-1, -5%], (-5%, -3%], (-3%, 0%), [0%,

0%], (0%, 3%), [3%, 5%), and [5%, 1). We consider each event type as characterizing a speci�c

category of price percentage change for a speci�c company. Since not all companies started

trading on January 3, 1994 and stopped on January 11, 1996, the total number of event types

that we consider is 2,978, instead of 3,073 (= 7 � 439). There are 517 business days in the said

period, and our sequence contains 181,089 events, with an average of 350 events per business

day.

Figure 4 shows the event structure S which we use in our experiment. The reference event

X0
[0,2]b-day

X1 X2 X3
[1,2]b-day [0,0]b-week

Figure 4: The event structure used in the experiment.

type we use for X0 is the event type corresponding to a drop of the IBM stock of less than 3%

(i.e., the category is (-3%, 0%)). There is no other assignment of event types to variables X1,

X2 and X3. The minimum con�dence value we use is 0:7, i.e., the minimum frequency is 70%.

The data mining task is to discover all the combinations of frequent event types E1, E2 and

E3 with the constraints that E1 occurs after E0 but within the same or the next two business

days, E2 occurs the next business day of E1 or the day after, and E3 occurs after E2 but in the

same business week of E2. The choices we made for the reference type, the constraints and the

minimum con�dence value are arbitrary. We expect that the results regarding the performance

of our heuristics apply to other choices.

In this experiment, we focus our attention on Step 4 of our strategy, namely reduction of the

5The prices are available from the StockMaster at the M.I.T. Arti�cial Intelligence Laboratory

http://www.ai.mit.edu/stocks.html.
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candidate complex event types by using sub-structures. We display our results in Figure 5. The

No. of candidate types No. of frequent

Stage Substructure Naive algorithm Using heuristics event types

1 X1
[0,2]b-day

X0 2,978 2,978 323

2
[1,4]b-day

X0 X2 2,978 2,978 472

3
[1,8]b-day

X0 X3 2,978 2,978 720

4 X2X1X0
[0,2]b-day [1,2]b-day

8,868,484 152,456 267

5 X3X1X0
[0,2]b-day [1,6]b-day

8,868,484 42,480 26,771

6 X0 X2 X3
[1,4]b-day [0,0]b-week

8,868,484 3,211 2,637

7
X0 X1 X2

[1,2]b-day
X3

[0,2]b-day [0,0]b-week

2.64*1010 14,561 2

Figure 5: Reduction of candidate event types.

second column of the table in Figure 5 shows the induced sub-structures considered at each stage

of our discovery process. We explored six sub-structures before the original one (shown as stage

7 in the table). From the application of the algorithm to derive implicit temporal constraints,

the substructures of our example should have an edge from the root to each other variable in

the substructure, and two constraints (one for each temporal type in the experiment, namely

b-day and b-week) labelling each edge. In the table, for simplicity, we omit some of the edges

and one of the two constraints on each edge, since it is easily shown that in this example, for

each edge, one constraint (the one shown) implies the other (the one omitted), and some edges

are just \redundant", i.e., implied by other edges.

The third column shows the number of candidate event types that we need to consider if

the naive algorithm (Section 4.3) is used. The number of candidate event types under the naive
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algorithm is simply the multiplication of the combinations of candidate event types for each

non-root variable (2; 978s if s is the number of non-root variables).

The fourth column shows the number of candidate event types under our heuristics. The

basic idea is to use the previous stages to screen out event types (or combination of event types)

that are not frequent. Obviously, the number of candidate types under our heuristics is much

smaller in the cases of two and three variables. For example, since the number of frequent

types for the combination X0, X1 and X2 are, respectively, 1, 323 and 472, it follows that the

number of candidate types we need to consider is 152,456 (= 1 � 323 � 472), instead of 8,868,484

(= 1 � 2; 978 � 2; 978). Thus, we only need to consider 2% of the event types required under

the naive algorithm. The number of candidate types for the original event structure we need to

consider in the last stage is only 14; 561, instead of 2:64 � 1010.

The �rst three sub-structures we explored were those with a single non-root variable. We �nd

frequent event types for each induced sub-structure. The next stage was the one with variables

X0, X1 and X2. The number of complex event types is 267, while the single event types for

X1 and X2 are only 59 and 70, respectively. Hence, in stage 5, we only need to consider as

candidates 42; 480 (= 1 � 59 � 720) di�erent temporal types, instead of 232; 560 (= 1 � 323 � 720)

or even 8; 868; 484 (= 1 � 2978 � 2978). Stage 5 also �nds that the number of event types for

X3 is 587. In stage 6, we only need to consider those combinations of events e2 and e3 with the

condition that there exists e1 such that e1, e2 is frequent in stage 4 and e1, e3 is frequent in stage

5. We only �nd 3; 211 candidate types. The number of candidate event types in the last stage

is calculated by taking all the pairs from stages 4, 5 and 6, and performing a \join". That is, a

combination of e1, e2 and e3 will be considered as a candidate only if (i) e1 and e2 appear in the

result of stage 4, (ii) e1 and e3 in stage 5, and (iii) e2 and e3 in stage 6.

Finally, the �fth column gives the number of (complex) event types discovered which are

frequent (with minimum con�dence 0:7). These event types are used in later stages to screen

out event types as explained above. Figure 6 show the two complex event types found in the last

stage.
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-3%

0%
+3%

0%I

-3%

0%

0%

-3%

+3%

0%

IBM KMB AVP
[1,2]b-day[0,2]b-day { }GM

Legend: 
IBM  = Intl Business Machines

KMB = Kimberly Clark Corp

AVP  = Avon Products

I        = First Interstate Bancorp

Price drops in (-3%, 0%)

Price rises in (0%, +3%)

GM    = General Motors Corp

[0,0]b-week

Figure 6: The two frequent event combinations discovered in the experiment.

7 Discussion and conclusion

In this paper, we introduced and studied the notion of temporal constraints with granularities

and event structures. We also presented a timed automaton with granularities for �nding event

sequences that match event structures. And lastly, we de�ned event-discovery problems and

provided a practical procedure that exploits the properties of granularities and event structures.

It is important to note that a real system can only treat �nite temporal types or in�nite

temporal types that have �nite representations. Hence, a real system can use only a subset of

the temporal types that we have de�ned. Various proposals on representing granularities have

appeared in the literature (e.g., [NS92, LMF86, CSS94]). The granularities expressible in these

languages are all instances of our temporal types. Furthermore, software packages that implement

calendars are available [Soo93]. However, all the algorithms of this paper are implementable in

a system using any of the above representations or systems.

The event discovery problem can easily be extended in two di�erent directions. First, the

event type E0 in the event-discovery problem needs not be a \regular" event type. It can be the

event type, say, \the beginning of a week." By using this, we can discover complex events such
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as \what happens in most of the weeks?" Another direction is to include certain constraints on

the event types allowed on the variables of an event structure; for example, two or more variables

could be constrained to be assigned to the same (or di�erent) event types. We can easily adapt

our procedure to accommodate these extensions.

Another research direction is to study the user interface for the pattern discovery. We believe

that the complex temporal patterns are arrived at only after the user explores the data set using

simpler temporal patterns. That is, temporal patterns \evolve" from simple ones to complex ones.

Hence, some friendly user interface is needed to help the users. Also, optimization strategies that

exploit such an evolutionary pattern speci�cation process will be an interesting research topic.
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A Deriving implicit constraints with granularities

We consider here an approximate algorithm for checking consistency and deriving implicit constraints.

Given an event structure, there are possibly in�nite implicit TCGs. Intuitively, we want to derive those

that give us more information about temporal relationships. Formally, a constraint [m;n]� is said to

be tighter than a constraint [m0; n0]� if m � m0 and n � n0. We are interested in deriving the tightest

possible implicit constraints in all of the granularities appearing in the event structure. From the result

of Theorem 3 follows that this goal is not likely to be achieved in polynomial time, hence the choice of

an approximate algorithm. The approach we take is called constraint propagation. However, traditional

techniques for constraint propagation (e.g. [DMP91]) have to be integrated with procedures to convert

among TCGs with di�erent granularities.

A.1 Conversion of constraints in di�erent granularities

Consider the problem of converting a constraint [n;m]�1 into an implied constraint in terms of a

granularity �2. If we only have a total order of granularities, like e.g. minute,hour, and day, then

the conversion algorithm is trivial since �xed conversion factors can be used. However, if incomparable

types like week and month, or types with \gaps" like b-day are considered, the conversion becomes

more complex. In Figure 7 we propose an algorithm that is su�ciently general to apply to any pair of

temporal types, provided that the target type covers a span of time equal or larger than the span of

time covered by the source type. For example, we can convert a constraint in terms of b-week into a

constraint in terms of week, month, or b-day, but not into a constraint in terms of week-ends. The

above condition on the target type is quite restrictive and could be relaxed, but it ensures that the

proposed algorithm performs only allowed conversions.

The algorithm assumes the existence of a primitive type � (e.g. second) in the considered granu-

larity system such that any tick of the other types can be obtained as union of ticks of the primitive

type. The algorithm uses an approximation of the relation between each type and the primitive type,

and hence, in some cases, it does not give the tightest possible bounds as an output.

To specify the algorithm we �rst have to introduce some notation. Letminsize(�; k) andmaxsize(�; k)

be respectively the minimum and maximum length of k contiguous ticks of �, expressed in ticks of the

primitive type. For example, minsize(month; 1) = 28, maxsize(month; 1) = 31, and maxsize(b-day,

2)= 4 if day is used as the primitive type. We also use mingap(�; k) to denote the minimal dis-

tance in terms of the primitive type between each tick of � and the kth one after it. Formally,
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mingap(�; k) = minifsi j si = min(�(i + k)) � max(�(i))g. With respect to minsize(), mingap()

considers even ticks that have gaps in between. For consistency with standard constraint notation, in

the algorithm we represent a TCG [n;m]� labelling an arc from X to Y in an event structure with

the constraint Y � X 2 [m;n] in terms of granularity �. Steps (1) and (3) compute respectively the

maximum span of time covered by m + 1 ticks of the source type and the minimum span of time be-

tween a tick of the source type and its nth successor. This time is measured in terms of the primitive

granularity. The three factors in the formulas are used to get a more accurate measurement than using

a single conversion factor. Indeed, consider for example the source granularity month: the maximal

length of a month is 31, but the maximal length of three contiguous months is not 3 � 31, but 91. m+1

is used in the conversion instead of m, since an event could occur at the very beginning of tick i and

the other at the very end of tick i+m. Their distance is m, but the period that they cover is actually

m+ 1 ticks.

Steps (2) and (4) compute respectively the new maximum and minimum in terms of the target

granularity. We use again the trick of considering the length of 1, 2, and 3 contiguous ticks to get a

more accurate conversion among granularities. Intuitively, we want to �nd the minimal \combination"

of 1, 2, and 3 ticks of the target unit, that covers the previously computed spans of time. For the

maximum we use the minimal length (minsize()) of the ticks, since we want to maximize the number

of ticks needed to cover the span of time. Analogously, we use the maximal length (maxsize()) in the

computation of the minimum value.

Note that using 3 as the number of factors for the approximation is just for illustrative purpose. A

real implementation should use a variable factor depending on source and target granularities.

A.2 An approximate algorithm for TCGs propagation

Let S = (W;A;�) be an event structure and M the set of temporal types appearing in �. The algorithm

proceeds as follows. It �rst partitions TCGs in an event structure into groups, each group having TCGs

in the same temporal type. That is, for each � inM , let C� be the set of all the constraintsX�Y 2 [m;n],

where X , Y are in W and [m;n]� 2 �(X; Y ). Now, the propagation within C� is a problem known

as the Simple Temporal Problem [DMP91]. We apply the path consistency algorithm [DMP91] within

each group. Since constraints expressed in a granularity could imply constraints in other granularities,

we should try to convert them and add the derived constraints to the corresponding groups. Hence, for

each pair of temporal types � and � in M such that a conversion is allowed, we convert each constraint

in C� into one in terms of � and add it into C� . This conversion is done using the procedure reported in
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INPUT: a constraint Y � X 2 [m;n], a source type �1, a target type �2

s.t. 8i; t (t 2 �1(i) ! 9j t 2 �2(j)), values minsize(�2; k), maxsize(�2; k),

mingap(�1; k), and maxsize(�1; k) for each k = 1; 2; 3.

OUTPUT: a constraint Y �X 2 [m;n] in terms of �2 implied by Y �X 2 [m;n]

in terms of �1.

METHOD:

1. Maxspan = (n+ 1) DIV 3 �maxsize(�1; 3) + ((n+ 1) MOD 3) DIV 2 �

maxsize(�1; 2) + ((n+ 1) MOD 3) MOD 2 �maxsize(�1; 1)� 1

2. n = min(S)� 1 where S satis�es the following equations:

r3 � 3 + r2 � 2 + r1 = S

r3 �minsize(�2; 3)+ r2 �minsize(�2; 2)+ r1 �minsize(�2; 1) > Maxspan

3. Minspan = m DIV 3 � mingap(�1; 3) + (m MOD 3) DIV 2 �

mingap(�1; 2) + (m MOD 3) MOD 2 �mingap(�1; 1)

4. m = min(S)� 1 where S satis�es the following equations:

r3 � 3 + r2 � 2 + r1 = S

r3 �maxsize(�2; 3)+ r2 �maxsize(�2; 2)+ r1 �maxsize(�2; 1) > Minspan

Figure 7: Algorithm for the conversion of constraints
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Subsection A.1. The process is repeated with the path consistency algorithm and the conversion, until

no new constraints appear in any group.

The above algorithm is sound if the converted constraints are logically implied by the original ones.

By sound we mean that if a complex event (�; �) matches the given event structure S = (W;A;�), then

it also matches S 0 = (W;A0;�0), where A0 and �0 are given by the algorithm (e.g., if X � Y 2 [m;n] is

in C�, then (Y;X) 2 A0 and [m;n]� 2 �0(Y;X)).

The aforementioned algorithm is an approximate propagation for two reasons. First, translation

between groups cannot be done precisely since a constraint in one granularity cannot be translated to

one in another granularity without losing precision. Second, the set of temporal types we use are only

those that appear in the event structure. The algorithm may derive tighter constraints (in the sense of

logical implication) if the translation is done more precisely using additional temporal types.

Theorem 4 The proposed algorithm is sound, terminates, and requires time polynomial in the size of

the constraint graph.

We note that the NP-hardness of the consistency checking implies that a complete, sound algorithm

for constraint propagation on event structures is not likely to be polynomial. A complete algorithm

here is one that always derives the tightest constraints between all pairs of variables. Indeed, if such a

polynomial algorithm existed, consistency checking would be polynomial since the tightest constraint

between each pair of variables in an inconsistent event structure is \false" (i.e., not satis�able).

B Proofs

Proof of Theorem 1

We give the procedure for the construction of the timed automata TAGT corresponding to a complex

event type T .

INPUT: a complex event type T = (S; '), where S = (W;A;�)

OUTPUT: a TAG such that an event sequence � is accepted by the TAG i� a complex event of type T

occurs in �.

METHOD:

Step 1. Decompose S into the minimal number of chains such that (1) each chain starts from the root

and ends with a variable having no outgoing arcs, and (2) each arc of the graph is contained in at least

one chain.
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Step 2. For each chain l with the variables X1, . . . , Xnl (in this order), build a TAG

Al = (W;Sl; fsl0g; C
l; T l; fslnlg), where S

l = fsl0; : : : ; s
l
nl
g, Cl = fxl�1 ; : : : ; x

l
�s
g if �1; : : : ; �s are all the

temporal types appearing in the constraints of the chain, and T l consists of the following transitions:

(1) hsl0; s
l
1; X1; C

l; truei, and (2) hslj�1; s
l
j; Xj; C

l; �lji for each j = 2; : : : ; nl, where �
l
j is the conjunction

V
[m;n]�2�(Xj�1;Xj)

(m � xl� � n). Note that di�erent clocks are used for each chain and all the clocks

are reset at each transition.

Step 3. Combine all Al into a single TAG by using a \cross product" technique as follows: Assume

there are k chains. Then the resulting TAG is

A = (W;S; fs10 � � �s
k
0g; C

1 [ : : :[ Ck; T; fs1n1 : : : s
k
nk
g);

where S = fs1 � � �sk jsl 2 Sl for each lg and T consists of all the transitions hs; s0; X; �; �i, with X being

in W , that satisfy the following two conditions:

(1) For each chain l, if the corresponding TAG contains a transition hslj�1; s
l
j; X; C

l; �lji, then s con-

tains the label slj�1, s
0 contains the label slj , C

l � �, and �lj is a conjunct in �;

(2) � and � are the minimal sets satisfying these requirements.

Step 4. According to the mapping ' substitute each input symbol X in the transitions of the automata

obtained in the previous step with the event type symbol '(X). Note that some of the variable symbols

can be mapped to the same event type6. For each state s in the automaton, we add a re
exive transition

hs; s; e; ;; truei (i.e., a loop) for each e 2 E. This last step is to allow the automaton to \skip" events,

so that an event sequence is accepted by this �nal automaton if a subset of its events is accepted by the

automaton built at step 3 above.

It is clear from the procedure that the automata can be constructed in polynomial-time. It is also

easy to show that if the event sequence � does not contain simultaneous events, T occurs in an event

sequence � i� TAGT has an accepting run over �. With a straightforward extension of the above TAG

construction and using the event sequence as a set of elements of the form (E1; : : : ; Ek; t), i.e., all the

event types that occur at the same time are combined together, we can eliminate the restriction to

non-simultaneous events. The basic idea is to �nd the \0-length" paths from the TAG built at step 4 in

the above procedure and add a transition that (1) the time elapsed must be 0 and (2) the event types

that �red this 0-length transition must contain all the event types in this path. For more details, we

refer the interested reader to [BWJ95].

6The construction would not work if we use the event types instead of the variable symbols from the beginning;

indeed we exploit the property that the nodes of the constraint graph are all di�erently labelled.
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Proof of Theorem 2

The TAG obtained from a complex event type is non-deterministic. We simulate the non-deterministic

TAG using a standard technique presented in [AHU74, page 328]. The standard simulation of a NDFA

by a DFA stores a set of states. For each input symbol, the algorithm scans the states and for each state

scanned, consider all possible transitions and generate another set of states. So, for each state, jSj is

needed if S is the set of states. Hence, jSj2 time is needed for each input symbol and the complexity of

the whole pattern matching is O(j�j � jSj2) Consider �rst a simple case for our simulation: the complex

event type is representable as a chain. The corresponding automaton will have a transition from each

non-starting state to the same state (i.e., loops), labelled with all the event types as input symbols.

Hence, it will be non-deterministic, since another outgoing transition labelled with one of the event

types will also be present. If a transition from state S1 to state S2 is labelled with an event type, a

constraint k1 � x� � k2, and a reset on x�, to perform the simulation we have to consider k2 � k1 new

pairs (state, clocks-assignment). If the transition has more than one constraint and clock, the number

of new 'states' equals the size of the maximum range in the constraints. Since in our construction from

the chain the number of transitions leading to a di�erent state equals the number of variables (jV j) in

the chain, an upper bound on the number of 'states' that we need to record in the simulation is jV j �K

where K is the maximum range in all the constraints of the chain. It is also possible that j�j < jV j �K,

where j�j is the number of events in the input. Since the di�erent values in clocks are essentially given

by the events in the input, in this case the number of 'states' that we need to record in the simulation is

j�j. If we use the analogy with the standard simulation of NDFA by DFA, for the TAG corresponding

to the chain this translates into O(j�j�(jSj�min(j�j; jV j�K))2) where � is the event sequence (possibly

reduced), and jSj is the number of states in the TAG. Now, let's consider a general complex event type.

Our construction obtains the corresponding TAG as a \crossproduct" of the TAGs corresponding to the

chains in which the complex event has been decomposed. Hence, the upper bound for the 'states' that

we have to record translates to (jV j �K)p, where p is the number of chains in the crossproduct. The

global simulation, then, analogously to standard simulation of NDFA would have a complexity upper

bound of O(j�j � (jSj �min(j�j; (jV j �K)p))2).

Proof of Theorem 3

Given a set of constraints, is there an assignment to the variables that satis�es the constraints? We

show that answering this question is at least as hard as solving the SUBSET SUM problem (a knapsack

variant). Consider a set of positive integers n1; : : : ; nk and s. The SUBSET SUM problem consists
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in �nding a subset such that the sum of its numbers is s. For each instance of this problem we can

construct an instance of our problem as follows: LetW = X1; : : : ; Xk+1; V1; : : : ; Vk; U1; : : : ; Uk. Consider

the granularities n-month for n = n1; : : : ; nk de�ned by grouping each consecutive n ticks of month into

a single tick. For each i = 1; : : : ; k, create the following two constraints:

(Xi; Xi+1) 2 [0; ni] month.

(X1; Xk+1) 2 [s; s] month.

We now add another set of constraints with the only purpose to rule out all values between 1 and ni�1

in the �rst of the above two constraints. For each i = 1; : : : ; k we add:

(Vi; Xi) 2 [0; 0] ni-month,

(Vi; Xi) 2 [ni � 1; ni � 1] month,

(Ui; Xi+1) 2 [0; 0] ni-month.

(Ui; Xi+1) 2 [ni � 1; ni � 1] month.

This set of constraints implies the disjunctions:

(Xi; Xi+1) 2 [0; 0] month _ [ni; ni] month for each i = 1; : : : ; k. If an assignment is found to satisfy the

whole set of constraints speci�ed above, the distance between the value of Xi+1 and Xi will be 0 or

ni for each i = 1; : : : ; k. The set of indices i for which that value is di�erent from 0 determines the

subset of fn1; : : : ; nkg being a solution of the SUBSET SUM problem. It is also easy to show that if an

assignment is not found such a subset does not exist. Since the SUBSET SUM problem is NP-hard, and

the transformation in the consistency problem can be done in polynomial time, determining consistency

is also NP-hard.

Proof of Theorem 4

Soundness. Trivial.

Termination.

Step 1 (path consistency of an STP) is known to terminate. Step 2 (conversion of constraints) trivially

terminates. Hence, we only have to show that we cannot in�nitely iterate between steps 1 and 2.

Since we do not allow +1 nor �1 in the constraints and the constraints form a dag, any explicit

or implicit constraint between two variables will have only �nite (possibly negative) values. Consider

S =
Pk

i=1(t
i
e � tib) where k is the number of constraints after the �rst iteration, and tie and tib are

respectively the ending and beginning values of constraint i. We show that S is monotonically decreasing

at each iteration, and, since it cannot be negative, this means that the algorithm terminates in a �nite

number of iterations. After the �rst iteration, the number of constraints does not change any more.

Indeed, we'll have jM j constraints, where M is the set of temporal types appearing in the constraints,
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for each pair of variables. Step 1 results in `shrinking' the interval of some of the constraints and leaving

the rest of them untouched. Step 2 translates each constraint in terms of other granularities. If a

constraint C1 is translated into a constraint C0
1 for type � at iteration j, then, at iteration j + 1, either

C1 is the same or it has a reduced interval. Based on the translation procedure, this means that C0
1 at

iteration j + 1 is either the same or it has a reduced interval. This argument shows that S, the sum

of all the interval lengths, can only decrease at each iteration. The condition to continue the iteration

of steps 1 and 2, imposing that some new constraint must appear, ensures that the decreasing of S is

strictly monotonic.

Complexity.

Step (1) in the worst case takes time O(n3 � jM j), where n is the number of variables (nodes in the

graph) and jM j is the number of temporal types appearing in the explicit constraints. Step (2) in the

worst case takes time O(c � n2 � jM j), where c is the constant time required to translate a constraint

from a granularity to an other one. Hence, their combination takes time O(n3 � jM j). We have shown

above that both steps can only reduce the range of values in the constraints. In the worst case, at each

iteration (steps 1 + 2), only one constraint range is reduced and it is reduced by only one unit. Thus,

the upper bound on the number of iterations is n2 � jMj � w, where w is the maximal range appearing

in the constraints. Hence, the overall worst case complexity is O(n5 � jM j2 � w).
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