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Abstract

Constraints provide a 
exible and uniform way to conceptually represent diverse data capturing
spatio-temporal behavior, complex modeling requirements, partial and incomplete information etc, and
have been used in a wide variety of application domains. Constraint databases have recently emerged
to deeply integrate data captured by constraints in databases. This paper reports on the development
of the �rst constraint object-oriented database system, C3, and describes its speci�cation, design and
implementation. The C3 system is designed to be used for both implementation and optimization of
high-level constraint object-oriented query languages such as LyriC or constraint extensions of OQL,
and for directly building software systems requiring extensible use of constraint database features. The
C
3 data manipulation language, Constraint Comprehension Calculus, is an integration constraint calculus

for extensible constraint domains within monoid comprehensions, which serve as an optimization-level
language for object-oriented queries. The data model for constraint calculus is based on constraint spatio-
temporal (CST) objects that may hold spatial, temporal or constraint data, conceptually represented by
constraints. New CST objects are constructed, manipulated and queried by means of constraint calculus.
The model for monoid comprehensions, in turn, is based on the notion of monoids, which is a gener-
alization of collection and aggregation types to structures over which one can iterate and apply merge
operator; this includes disjunctions and conjunctions of constraints. The focal point of our work is achiev-
ing the right balance between expressiveness, complexity and representation usefulness, without which
the practical use of the system would not be possible. To that end, C3 constraint calculus guarantees
polynomial time data complexity, and, furthermore, is tightly integrated with monoid comprehensions
to allow deep global optimization.

1 Introduction

Constraints provide a 
exible and uniform way to conceptually represent diverse data capturing spatio-
temporal behavior, complex modeling requirements, partial and incomplete information etc, and have been
used in a wide variety of application domains. Constraint databases have recently emerged to deeply integrate
data captured by constraints in databases. Although a relatively new realm of research, constraint databases
have drown much attention and increasing interest, more in aspects of expressibility and complexity, but
also in algorithms and optimization.

While many fundamental research questions are yet to be answered, we believe that the area of constraint
databases became mature for a reliable research prototype that could serve as a stable platform for exper-
imentation with algorithms and optimization as well as for real-life case studies of a number of promising
application domains. Building such a system is a necessary and important step toward proving the validity
of constraint databases as a technology with signi�cant practical impact.

The contribution of the work reported in this paper is the development, i.e. the speci�cation, design
and implementation, of the �rst constraint object-oriented database system, C3. The C3 data manipulation
language, Constraint Comprehension Calculus1, is an integration constraint calculus for extensible constraint

1which C3 stands for
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domains within monoid comprehensions, which were suggested as an optimization-level language for object-
oriented queries [FM].

The data model for constraint calculus is adapted from constraint spatio-temporal (CST) objects [BK95],
that may hold spatial, temporal or constraint data, conceptually represented by constraints (i.e. symbolic
expressions). In the current version, linear arithmetic constraints (i.e. inequalities and equations) over reals
2 are implemented. New CST objects are constructed using logical connectors, existential quanti�ers and
variable renaming, within constraint calculus. Constraints module also provides predicates such as for testing
satis�ability, implication etc, that are used as selecting conditions in the hosting monoid comprehension
query.

In general, CST objects possess great modeling power and as such can serve as a uniform data type for
conceptual representation of heterogeneous data, including spatial and temporal behavior, complex design
requirements and partial and incomplete information. Moreover, constraint calculus operating on CST is
highly expressive and compact language. For example, just linear arithmetic CSTs and its calculus currently
implemented in the system, allow the description and powerful manipulation of a wide variety of data,
including 2- or 3-D geographic maps; geometric modeling objects for CAD/CAM; �elds of vision of sensors; 4-
D (3 + 1 for time) trajectories of objects moving in 3-D space, based on the movements equations; translations
of di�erent system of coordinates; operations research type models such as manufacturing patterns describing
interconnections among quantities of manufactured products and resource materials. It is important to note
that while constraint objects are conceptually represented by constraints, their physical structure may very
much di�er for the purpose of e�cient storage and manipulation.

The general framework of the C3 language is, so-called, monoid comprehensions query language, in
which CST objects serve as a special data type, and are implemented as a library of interrelated C++
classes. In turn, many operations of constraint algebra working on CST objects are expressed through nested
monoid comprehensions, which allows potentially deep global optimization. The data model for monoid
comprehensions is based on the notion of monoid, which is a conceptual data type capturing uniformly
collections, aggregations, and other types over which one can \iterate", including (long) disjunctions and
conjunctions of constraints. The C3 system is designed to support:

1. Besides CST objects, any (complex) data structures expressible in C++.

2. Extensible family of parameterized and possibly nested collection monoids currently including sets,
bags, lists, as well as (long) disjunction and conjunctions of CST objects.

3. Extensible family of aggregation monoids such as sum, count, some and all.

4. Extensible family of search structures implemented as parameterized monoids and currently including
B-trees, hashing and kD-trees (for multidimensional) rectangles, serving as approximations of con-
straints.

5. Extensible family of special-purpose algorithms, such as constraint joins, implemented as parameterized
monoids.

6. Approximation-based �ltering, indexing and regrouping based on internal components of nested col-
lection monoids.

Moreover, because C3 system is implemented using the commercial OODB ObjectStore, it inherits fea-
tures including persistence, transaction management, data integrity and crash recovery, version management,
and multi-client/multi-server architecture.

The functionality of the C3 system, depicted in Figure 1, is the combination of the new C3 layer, and
ObjectStore. Note that C3 as a virtual system (1) inherits \lower" features of ObjectStore, (2) replaces
\middle" ObjectStore's features with those of the C3 layer, and (3) adds \upper" features of the C3 layer.
The implementation of the C3 layer, in turn, uses ObjectStore and the linear programming package CPLEX.
We feel important to note that while C3 is a research prototype, it is a reliable system designed to carry
out implementations of serious, massive data applications. That is due to the use of commercially available
components (i.e. ObjectStore and CPLEX).

2using �nite precision arithmetic
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Figure 1: C3 Functional Components

C3, similar to ObjectStore, can be better viewed as a powerful extension of C++ with (constraint)
database features, rather than a full-scale DBMS, and is currently to be used from within a hosting C++
program. As a C++ extension, C3 uses the native C++ data structures and the type system. In fact, in
the current implementation only monoid comprehensions are pre-compiled, and all the other C3 features,
including constraint calculus, are implemented as C++ libraries; hence the native C++ syntax is preserved.

The use of the \dirty" C++ data model, as opposed to \clean" and formally de�ned models such as of
ODMG OQL [ABD+96] or XSQL [KKS92] was our pragmatic choice due to the intended purpose of C3:
intermediate optimization-level language, i.e. one in which an optimizer or a programmer can (manually)
write deeply optimized queries, using appropriate order, nesting and built-in optimization primitives. Be-
cause of the intended use as an intermediate language, we prefer to regain the 
exibility of and uniformity
with the underlying programming language, C++. We designed C3 to be used both for implementation
and optimization of high-level constraint object-oriented query languages such as LyriC or constraint exten-
sions of OQL, and for directly building software systems (by application or system programmers) requiring
extensible use of constraint database features.

The potential applications of C3 include engineering design; manufacturing and warehouse support;
command and control (such as spatio-temporal data fusion and sensor management [ABK95] and maneuver
planning [BVCS93]); distribution logistics; and market analysis. The focal point of our work is achieving
the right balance between expressiveness, complexity and representation usefulness [?] without which the
practical use of the system would not be possible. To that end, C3 constraint calculus guarantees polynomial
data complexity, and, furthermore, tightly integrated with monoid comprehensions to allow deep global
optimization.

The paper is organized as follows. Following the introduction, Section 2 informally discusses C3 queries,
including CST objects, constraint calculus and monoid comprehensions by examples. In Section 3, we
review formal de�nitions of monoid comprehensions, explain implementation of monoids in C3 and syntax
and semantics of C3 queries. Section 4 describes the design and implementation of CST families and their
operations, on which constraint calculus is based. C3 primitives for optimization using approximation-based
�ltering, regrouping and indexing are discussed in Section 5. Section 6 brie
y surveys the related work.
Finally, in Section 7 we conclude and mention topics of future work.
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Figure 2: An instance of a desk with drawer in the room

2 CST Objects and C3 Queries by Example

In this section we informally discuss C3 queries, including CST objects, constraint calculus and monoid
comprehensions using an architectural design example similar to the one in [BK95]. We assume, brie
y,
that the database stores a collection of o�ce objects such as desks, �le cabinets etc, which have extents (or
shapes) and moving parts, such as drawers, as well as other attributes. A designer then may ask queries
such as: Given a room and location of a number of objects in it, can we put an additional desk such that
its drawer will not touch any other object in the room, and still have an unoccupied 4� 4 feet space? Can
we put in a room two desks, two �le cabinets and two chairs such that (1) no two objects or their opened
drawers will touch each other or the walls, and (2) there will be at least 4 feet between the front of each desk
and the opposite wall? Can the system give constraints describing possible interconnections of centers of
objects such that the above goals are achieved? What would be the location of the above mentioned objects
if we want to maximize the size of a square of available empty space? Given a collection of objects in the
room, show a projection of their cut at the height of 1/2 feet. Those queries can be e�ciently answered in
C3without using user implemented predicates or functions.

2.1 Constraints, CST objects and Schema by Example

Consider a two-dimensional desk ``my-desk'' depicted in Figure 2 as a larger rectangle. The smaller square
is the desk's drawer, which may open, i.e. move relatively to the desk. Similarly, the desk may be moved
in the room. There are three systems of coordinates used in Figure 2: U; V , the room's (or global) system;
W;Z, the desk's coordinate system used to describe the desk's shape independently of the location of the
desk in the room; and W1; Z1, the drawer's coordinate system. The pair of variables (x; y) describes the
center of the desk in the room's coordinates; similarly, (p; q) describe the center of the drawer in the desk's
coordinates.

The basic idea in constraint databases is the introduction of constraint formulae as a basic data type in
databases. For example, a constraint (formula)

(�4 � w � 4) ^ (�2 � z � 2)

with the variables ranging over reals can be viewed as a set of points

f(w; z)j(�4 � w � 4) ^ (�2 � z � 2)g

in two-dimensional space and describes, say, the extent of my-desk (Figure 2) given in the desk's coordinates.
More accurately, the constraint formula (�4 � w � 4) ^ (�1 � z � 2) will be interpreted as an in�nite
relation over the schema W;Z, that contains all tuples (w; z) satisfying the constraint.

4



int   CatalogNo

string   Name

string   Color

CST(w,z)   extent

string    Color

CST(p,q)   center

CST(w1,z1)   extent

CST(w1,z1,p,q,w,z)

             drawers

FILE_CABINET

DESK

DRAWER

OFFICE_OBJECT

is-a

is-a

DRAWER *  drawer

LIST(DRAWER*)                  translation

Figure 3: An Object-Oriented Database Schema

Similarly, the extent of the desk's drawer in the drawer's coordinates can be described by the constraint
(�1 � w1 � 1)^ (�1 � z1 � 1). The possible locations (p; q) of the drawer's center in the desk's coordinates
can be described by p = �2^�3 � q � �1; note that the horizontal component of the center, p, equals to a
constant since the drawer in the example cannot move left or right; note also that the vertical component,
q, is between �3, when the drawer is fully open, and �1 when it is closed.

The translation between the desk's W;Z and the room's U; V systems of coordinates can be captured by
the constraint u = x + w ^ v = y + z, meaning that if the desk's center is at (x; y), then a point (w; z) in
desk's coordinates is (u; v) in the global (room's) coordinates. Suppose that the desk's center has room's
coordinates (6; 4), i.e. x = 6 ^ y = 4. Then, for example, we can �nd the extent of the desk in the room's
coordinates by simplifying the following formula:

(9x; y; w; z)[[(�4 � w � 4) ^ (�2 � z � 2)] ^ [u = x+ w ^ v = y + z] ^ [x = 6 ^ y = 4]]

where the �rst []-component is the desk's extent in local coordinates, the second is the translation of coordi-
nate systems and the third is the position of the desk's center. Finally, since we only interested in the free
variables u; v, representing 2D-points in the room's coordinates, we existentially quantify all other variables.
If we substitute the constants into x; y we get u = 6 + w ^ v = 4 + z, and then, by using it in the �rst
inequality we �nally get (2 � u � 10) ^ (2 � v � 6). >From Figure 2 we can easily see that this is exactly
the extent of my-desk described in the room's coordinate system.

In the C3 syntax the above formula will look as follows:

(u,v) | ((-4 <= w <= 4) && (-2 <= z <= 2) &&

(u == x + w && v == y + z) &&

(x == 6 && y == 4))

The (u,v) | ... notation is a projection, where we indicate all free variables in the result, rather rather
than variables to be existentially quanti�ed. We also use && and == instead of ^ and =, correspondingly,
to preserve the C++ style. Interestingly, the above constraint syntax is native in C++, which is achieved by
exploiting C++ operators' overloading mechanism. Users can intuitively think of a constraint with d free
variables as a (possibly) in�nite relation of d-tuples, as an object in d-dimensional space (i.e. set of points),
or in or as a symbolic expression, interchangeably, depending on the application and the context of its use.
Thus, we will be referring to a constraint by a generic name CST (i.e. constraint spatio-temporal) object.

Consider now an architectural design example schema depicted in Figure 3. We assume that the database
keeps a bag collection (i.e. multiset) all-office-objects, i.e. it is declared as Bag<OFFICE OBJECT*>, where
\*" denotes reference (i.e. pointer in C++) to. Similarly, all-desks and all-file-cabinets are kept,
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which are declared as Bag<DESK*> and Bag<FILE CABINET*> correspondingly. Note that the same object
may appear more than once in a bag collection.

Objects of class OFFICE OBJECT have standard attributes such as catalog#, name and color, and also the
extent attribute, describing the object's shape. The extent attribute is declared as CST(w,z), to indicate
that it must be represented as a constraint with free variables w and z. Note that, unless otherwise stated,
we use the term \class" in this paper in the C++ sense. For instance, there is no class extent automatically
associated with each class, as usually assumed in OO database models.

The classes DESK and FILE CABINET are subclasses of OFFICE OBJECT, and, therefore, inherit all its
attributes. This is indicated by double arrows in Figure 2. In addition, the class DESK has the attribute
drawer, which is declared as reference to an object of the class DRAWER. Similarly, an additional attribute of
the class FILE CABINET is drawers that declared as a list of references to objects of class DRAWER. Note,
that the single arrows in Figure 2 indicate the composition hierarchy.

Each drawer, in turn, is characterized by possible locations of its center, declared as CST(p,q)*; its
extent declared as CST(w1,z1); and translation, declared as CST(w1,z1,p,q,w,z), that would hold an
equation describing the interconnection between (w1; z1), a point in the drawer's coordinates and (w; z), the
same point in the desk's coordinates, provided the center of the drawer is at (p; q) in the desk's coordinates.

Below is an example of the C3 (in fact, C++) de�nition my desk of the class DESK:

DESK my_dsk = DESK(

22354, // catalog#

``one-drawer-desk'', // name

``red'', // color

(-4 <= w <= 4 && -2 <= z <= 2), // extent

*new DRAWER( // drawer

``blue'', // color

(p == -2 && -3 <= q <= -1), // center

(-1 <= w1 <= 1 && -1 <= z1 <= 1), // extent

(w == w1 + p && z == z1 + q) // translation

)

);

2.2 C
3 Queries by Example

Consider the following C3 query, yet without CST objects, which �nds a bag of all red file cabinets, that
have at least one blue drawer:

SELECT fc // for file cabinet

INTO {Bag<FILE_CABINET*>} result // result is a bag-collection

FROM all_file_cabinets

AS {FILE_CABINET*} fc // iterator: fc iterates over BAG

WHERE fc->color == ``red'' // predicate, i.e. condition

FROM fc->drawers AS {DRAWER*} dr // iterator: dr iterates over LIST

WHERE dr->color == ``blue'' // predicate

The WHERE clause consists of an possibly interleaved list of FROM-clause iterators, bounding variables to the
write of AS, and predicates, i.e. conditions, in the WHERE clauses. Any order of iterators and predicates,
in which variables are only used after they are bound in iterators is allowed. However, in general, di�erent
order may lead, as we shall see, to di�erent resulting collections. In the SELECT clause we may have any C++
expression, possibly using the variables bounded in the iterators, or invoking another monoid comprehension.

The semantics of the query is best understood, intuitively, through the following nested loop program,
which is a conceptual skeleton of the actual algorithm evaluating monoid comprehensions.3

result = empty_bag;

3The real algorithm also deals with many other issues such as persistency, dynamic bu�er management, type management
and interface with C++ etc.
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FOREACH fc IN {BAG} all_file_cabinets DO

IF fc->color == ``red'' THEN

FOREACH dr IN {LIST} fc->drawers DO

IF dr->color == ``blue'' THEN

INSERT fc INTO result

If the bag collection all file cabinets contains a �le cabinet fc which has 3 blue drawers, it will be inserted
in the result 3 times, creating 3 copies of fc in the result bag collection. However, if the collection type
of the result were SET, then the insertion of fc into the result more than once would be equivalent to
a single insertion. If, on the other hand, the result collection were of type LIST, the order in which the
insertions are made would also impact the result collection.4 Also important to note is that a query can be
always written with just one FROM clause, with all the iterators, followed by just one WHERE clause, with
all the conditions. However, we allow any order of interleaved iterators and conditions, in order to control
the evaluation of the query, as is necessary for optimization-level languages such as C3.

The next query demonstrates the construction of CST objects in the SELECT clause; it �nds, for each
desk in all desks, its extent in the rooms coordinates, assuming the center of the desk is located at the point
(6; 4) and the desk orientation is aligned with the rooms walls, i.e. translation equation is u = w+x^v = z+y.

SELECT new CST( (u,v) | (dsk->extent && // recall: in var's w and z

u == w + x && v == z + y && // translation of coord.

x == 6 && y == 4) ) // location of the center

INTO {Bag<CST*>} result

FROM all_desks AS {DESK*} dsk // iterates over BAG

Note that Bag<CST*> in the INTO clause indicates the type of the result. The notion dsk->extent, in
C3 as well as in C++, stands for (*dsk).extent i.e. the attribute extent of the object referenced by (i.e.
pointed to) variable dsk. The next query �nds all pairs (dsk, dsk->extent), for all desks that, if centered
at (6; 4), would intersect the area (3 <= u <= 4 && 8 <= v <= 10) in the room.

SELECT new pair(dsk,dsk->extent)

INTO {Bag<pair*>} result

FROM all_desks AS {DESK*} dsk

DEFINE area AS {CST} (3 <= u <= 4 && 8 <= v <= 10)

DEFINE transl AS {CST} (u == x + w && v == y + z)

WHERE SAT(area && dsk->extent && transl && x == 6 && y == 4)

Here, pair(dsk, dsk->extent) is a constructor of the class pair; expressions DEFINE expr1 AS expr2

cause the replacement expr1 by expr2 in the remainder of the comprehension; they are used simply as
shortcuts. SAT stands for satis�ability test of the constraint expression inside the parentheses, to check
whether the area intersects the desk's extent.

The following query exempli�es the use of IMPLY predicate in the where clause and some geometrical
manipulation of CST objects in the SELECT clause. For all desks that, if located at (6; 4), contain the
area 3 <= u <= 4 && 8 <= v <= 10, it �nds the desk's extent above the diaganal (45 degree) through its
center. .

SELECT new CST(dsk->extent && w <= z) // Note: w <= z for above

INTO {Bag<CST*>} result // 45 degree diagonal

FROM all_desks AS {DESK*} dsk

DEFINE area AS {CST} (3 <= u <= 4 && 8 <= v <= 10),

DEFINE transl AS {CST} (u == x + w && v == y + z),

DEFINE dsk_ext_in_room AS

{CST} (u,v) | (dsk->extent && transl && (x == 6 && y == 4))

WHERE IMPLY(area, dsk_ext_in_room) // To test containment

// of area in dsk_ext_in_room

4In fact, as discussed in further sessions, the formal de�nition of monoid comprehension disallows to create LIST collection
in the result in our example, since it has more \structure" than BAG, on of the collection types used inside; we, however, do
allow such situation.
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Note that dsk ext in room stands for the desk's extent in the room's coordinates. Finally, the last query
�nds all desks whose drawer may intersect, if closed or partly or fully open, the desk area (-1 <= w <= 1

&& -1 <= z <= 1)

SELECT dsk

INTO {Bag<DESK*>} result

FROM all_desks AS {DESK*} dsk

DEFINE dr_ext AS {CST} dsk->drawer->extent,

DEFINE dr_loc AS {CST} dsk->drawer->center,

DEFINE dr_transl AS {CST} dsk->drawer->translation,

DEFINE dr_ext_in_dsk AS

{CST} (w,z) | (dr_ext && dr_loc && dr_transl),

WHERE SAT(dr_ext_in_dsk && -1 <= w <= 1 && -1 <= z <= 1)

3 C3 Monoids and Monoid Comprehensions

In this section we describe the syntax, semantics and implementation of C3 monoids and monoid compre-
hension. The formal counterpart of C3 monoid comprehensions is monoid comprehensions of [FM], which
is a restricted version of monoid homomorphizms [BTBN, BTS, BTBW] written using the syntax of monad
comprehensions [Wad], as is done by [BLS+94]. . We �rst review the formal de�nition of monoids and
monoid comprehensions borrowing heavily from [FM] and [BW95].

3.1 Review of Monoid Comprehensions

BAG f fc | fc  all file cabinets,

fc->color == ``red'',

dr  fc->drawers,

dr->color == ``blue'' g

This is the original monoid comprehension syntax for the �rst C3 query in Subsection 2.2. Here, BAG
indicates the type of the resulting collection (monoid); fc to the left of j is what we SELECT;  is used to
denote an iterator, i.e. all statements in the FROM clauses; and the rest are predicates, i.e. logical conditions
appearing anywhere in the WHERE clauses. The intuitive meaning is given by the nested loop program in
Subsection 2.2.

In addition to collections, we can also compute aggregation functions. For example,

SUM f 1 | fc  all file cabinets,

fc->color == ``red'',

dr  fc->drawers,

dr->color == ``blue'' g

will count the number of file cabinets in the result.
More formally, a set of basic data types given, e.g., int, real and char, and a set of type constructors,

e.g., set, list, bag. A data type is de�ned recursively as a basic data type or a constructed type T (�)
determined by the type parameter �.

A monoid is a triple (T; zero; merge), where T is a data type and merge is an associative function, of
type T �T ! T , with left and right identity zero. For example, sum = (int; 0;+) is a monoid. A collection
monoid is a quadruple (T (�); zero; unit; merge), where (1) T (�) is a constructed type determined by the
type parameter �, (2) (T (�); zero; merge) is a monoid, and (3) unit is a function of type �! T (�). As an
example, (list(int); []; f;++), where [] is the empty list, f(i) = [i] for each i and ++ is the concatenation
operation on lists.5 Finally, a primitive monoid is a quadruple (T; zero; unit; merge), where (T; zero; merge)
is a monoid and unit is the identity function of type T ! T . Examples of primitive monoids include
prod = (int; 1; id; �), where id(i) = i for each integer.

5We use [a1; : : : ; an] to denote a list and ffa1; : : : ; akgg to denote a bag.

8



Intuitively, a monoidM = (T; zero; merge) is an abstract de�nition of a data type. Collection monoids
capture the bulk types, and primitive monoids capture the basic types. Each instance of the collection
type M = (T (�); zero; unit; merger) is expressed as compositions of functions zero, unit and merge on
instances of type �. As an example, the monoid (list(int); []; f;++) given earlier de�nes a data type of
the integer lists. An instance of the type is intuitively a list of integers and the list is expressed as a
composition of functions [], u and ++ applying on integers. For example, the list f1; 2; 3; 1g can be expressed
as + + (u(1);++ (u(2);++ (u(3);++ (u(1); [])))).

A monoid (T; zero; merge) is called commutative (idempotent, resp.) if function merge is commutative
(idempotent, resp.). For monoidsM and N , we say N �M if that N is commutative (idempotent, resp.)
implies that M is commutative (idempotent, resp.). For example, the monoid set� = (set(�); fg; f 0;[g,
where f 0(i) = fig for each instance i of type �, is a commutative and idempotent monoid, and bag� =
(bag(�); ff gg; f 00; [̂), where f 00(i) = ffigg for each instance i of type � and [̂ is the additive bag union, is a
commutative monoid. It is easily seen that bag� � set�. If N � M, then an instance of type N can be
\translated" deterministically, by using the merge function of the monoidM, into an instance of the type
M, but not necessarily vice versa.

Queries on monoids are expressed as monoid comprehensions. A monoid comprehension over the monoid
M takes the form

Mfe j r1; : : : ; rng

where e is an expression called the head of the comprehension, and r1; : : : ; rn is a list of quali�ers, each of
which is either

� a iterator of the form v  e0, where v is a variable, and e0 is an expression that evaluates to an instance
of a collection monoid of type which is �M or

� a selection-predicate, which is an expression that evaluates to true or false.

An expression in turn can include monoid comprehensions. An important condition for the monoid compre-
hension is that for each 1 < i � n, each free variables (i.e., free variables in the expressions and predicates)
appearing in ri; : : : ; rn must appear as the variable of a iterator among r1, . . . , ri�1, and each free variables
in the e must appear as the variable of a iterator among r1, . . . , rn.

It is assumed that each instance of a monoid appearing as argument in a monoid comprehension is
represented as an expression involving merge, unit and zero functions. For example BAGf1; 2; 1; 3g can be
represented as

merge( merge(unit(1),unit(2)),
merge(unit(1),unit(3)))

or, since merge is associative and zero is a left (and right) identity, as

merge( merge( merge( merge( zero,

unit(1)),
unit(2)),

unit(1)),
unit(3))

We will assume that every monoid instance is (conceptually) represented this way, and, thus, the notation
Nfa1; a2; : : : ; ang will denote the expression

merge(: : : merge(merge(zero,unit(a1)),unit(a2)), : : :,unit(an))

Furthermore, Nfg, and Nfa1; a2; : : : ; ang where n = 0 will both denote zeroN , i.e. the empty monoid
instance. .

A monoid comprehension M over a (collection or primitive) monoid M = (T; zero; unit; merge) de-
�nes an instance of type T 6 by �rst initializing result with zeroM, and then invoking the procedure
insert MC(result,M) de�ned recursively by the following reduction rules:

6Our de�nition here is di�erent from, but equivalent to the original one; ours is closer to the implementation.
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(r1) insert MC(result,Mfe jg) ! result := mergeM(result,unitM(e))
(r2) insert MC(result,Mfe j false; ~rg) ! nil (i.e. do nothing)
(r3) insert MC(result,Mfe j true; ~rg) ! insert MC(result,Mfe j ~rg)
(r4) insert MC(result,Mfe j x Nfa1; : : : ; ang; ~rg) ! for i = 1 to n do

insert MC(result,Mfe j ~rg[x=ai])

where N is a collection monoid (S; zeroN ; unitN ; mergeN ) with the condition N � M. Note that Mfe j
~rg[x=ai] denote the replacement of x with ai inMfe j ~rg.

3.2 Monoids in C3

To understand the minimum requirements from primitive and collection monoids, consider the recursive
rules de�ning the result of a monoid comprehension. For a monoidM to appear in the result of a monoid
comprehension, we only need (1) to use zeroM and (2) to know to perform

result = mergeM(result,unitM(e))

which is, in fact the insertM(result,e) operation (i.e. we de�ne insertM this way). 7 In order for a
collection monoid N to appear inside a comprehension, we only need to be able to iterate overNfa1; : : : ; ang,
i.e. to perform the for loop.

The representation (and implementation) of collection monoids in C3 is based on two C++ template
classes, parameterized with the type A of collection elements: CollectionMonoid and Iterator:

template < class A > class CollectionMonoid

{

friend class Iterator<A>;

public:

CollectionMonoid(); // C++ constructor used as zero

virtual void Insert( A& ) = 0;

virtual Iterator<A>* CreateIterator() = 0;

private: // specific subclasses contain

// actual implementation

};

The class CollectionMonoid re
ects the minimum requirements: it has zero, implemented as a class con-
structor, Insert and CreateIterator. An Iterator object, created by CreateIterator, has member func-
tions First, More and Next allowing the use of the C++ for-loop. Speci�c collection monoids implemented
in C3, depicted in Figure 3.2, are implemented each with two classes derived from classes CollectionMonoid
and Iterator, correspondingly, by overloading the public member functions. The collection monoids list,
set, and bag are currently implemented using ObjectStore collections. It is important to note that most
monoids have other member functions as well, such as merge, unit (i.e. constructor with an element as
argument), delete etc., for convenience; we have only explained here the required minimum.

As opposed to collection monoids, primitive ones only require zero and insert member functions, since
they are not used in iterators.

template< class T > class PrimitiveMonoid

{

public:

PrimitiveMonoid( ); // Note: creates zero of monoid

virtual void Insert( T& ) = 0;

operator T ();

static T zero;

protected:

7For a primitive monoid the name insert is probably strange; we really mean by insert exactly result

:= merge(result,unitM(e)). For example, for primitive monoid sum (int;+; 0; identity), insertM(result,5) is
result:=result+ 5.
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Figure 4: Collection Monoids in C3

T value;

};

Primitive monoids, as opposed to collection ones, are parameterized with the type T . Extensible family of
primitive monoids and monoid templates in C3, depicted in Figure 3.2, include Prod<T>, Max<T>, Sum<T>,
Some and All. Note, that the type used in Some and All is Boolean (encoded as integer in C++) and work
as disjunction and conjunction of conditions respectively.

3.3 Syntax and Semantics of C3 queries

The syntax of C3 comprehension has been explained by examples. More accurately, it is of the form:

SELECT C++expr

INTO [{monoid_type}] [result]

[from-where-define-list]

The C++expr in the SELECT clause is an arbitrary C++ expression that evaluates to the type T of result's
elements. Note that C++expr may involve variables instantiated in the FROM clauses and also may con-
tain nested monoid comprehensions (since they evaluate to types de�ned in C++). The �rst (optional)
parameter in the INTO clause speci�es the type of result i.e. the constructed monoid instance and the
type of its parameter. If this argument is omitted, the system assumes that result is de�ned elsewhere
in the C++ program. When monoid comprehension is nested result argument may be omitted. The
from-where-define-list] is a sequence of FROM, DEFINE and WHERE clauses (explained earlier by
examples) in any order. Note that any number of iterators, separated by commas, may appear in each
FROM clause; further, any number of predicates (conditions) may appear in each WHERE clause. Also
important is that nesting is recursively allowed anywhere in the monoid comprehension, provided that the
nested monoid comprehension returns an appropriate type. For instance, collection monoid comprehensions
may stand anywhere a collection monoid can; or, monoid comprehensions returning TRUE or FALSE may
stand in place of any predicate.

The semantics of C3 monoid comprehension queries is de�ned by the corresponding formal monoid
comprehension. Furthermore, the basic evaluation is by the nested loop algorithm, with dynamic bu�er
management. Important, however, is that nested monoid comprehension in the FROM clause do not create
physical intermediate results, but rather supporting the overall pipe-lining during query evaluation.
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Figure 5: Primitive Monoids in C3

4 CST Objects and Constraint Calculus

4.1 Framework for Constraint Algebra and Calculus

C3 uses the framework of [Bro], which we review here. As seen in examples, the notion of CST data relies
on a simple and fundamental duality: a constraint (formula) � in free variables x1; : : : ; xn is interpreted as a
set of tuples (a1; : : : ; an) over the schema x1; : : : ; xn that satisfy �; and, conversely, a �nitely representable
object in (x1; : : : ; xn) space can be viewed as a constraint. That is, the syntax is constraints, i.e. symbolic
expressions; the semantics are the corresponding, possibly in�nite, relations.

CST objects are represented by a sub-family of �rst order logic, (i.e. with logical connectors ^, _, :
and 9) and a family of atomic constraints, such as linear arithmetic over reals, as in C3, polynomial or
dense order. CST objects are manipulated by means of a constraint calculus/algebra that we explain in
this section: a sub-family �rst-order logic, renaming of variables, and atomic (e.g. arithmetic) constraints.
For example, if P and Q are CST objects in x1; : : : ; xn, their intersection can be represented by P ^ Q;
union by P _Q; a test of containment of P in Q by 8x1; : : : ;8xn(P �! Q) (this is, in fact, the implication
test, IMPLY); emptiness of P by 8x1; : : : ;8xnP (this is, in fact satis�ability test, SAT) disjointness of P
and Q by :(9x1; : : : ; 9xn(P ^ Q); projection of P on axes x1; : : : ; xi, 1 � i < n, by 9xi+1 : : : 9xnP etc. If
we only use linear constraint over reals, as implemented in C3, within �rst-order logic we can express any
linear transformation such as rotation, translation and stretch; check convexity, discreteness and boundness
[VGG95]; compute convex hull, augment objects, change coordinate systems; etc.

Thus, constraint objects can be manipulated by a very expressive language. Moreover, since this language
uses only a small number of operators (i.e. logical connectors and quanti�ers), it is also very compact, as
compared to using a separate operator for each speci�c type of transformation, which is typically done
in extensible or spatial database systems. It is also claimed, that for linear constraints, query languages
manipulating constraint objects are deeply optimizable, in terms of indexing and �ltering (e.g. [BLLM95,
KRVV93, Sri92], and constraint algebra algorithms and global optimization (e.g. [BJM93, GK]).

More speci�cally, constraint algebras operate on a family F of canonical representations of constraint
expressions (objects). For constraint objects C1; : : : ; Cn a �rst-order logic formula �(C1; : : : ; Cn) such as
9y(C1[u1=y; v1=z]^: : :^Cn[un=y; vn=z]), where [ui=y; vi=z] denotes variable replacement, de�nes the following
constraint algebra operator op: (1) replace each Ci by the corresponding constraint expression, (2) do all
variable replacements and (3) transform the resulting constraint expression into the required (equivalent)
canonical representation in F . Thus, op can be seen as a function from F � : : : � F to F . On the other
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hand, the operator op can be interpreted as a calculus query

I(op) = f(x1; :::; xm) j �(I(C1); : : : ; I(Cn))g

where I(Ci), 1 � i � n, is the relational interpretation of Ci and x1; : : : ; xm are all free variables; thus I(op)
is a function that maps n relations to one. Clearly, the duality between constraints and point sets carries
over to the constraint algebra/calculus, that is, the following commutative property holds:

I(op(C1; : : : ; Cn)) = I(op)(I(C1); : : : ; I(Cn))

A constraint family F is de�ned by choosing (1) an atomic constraint domain, (e.g. polynomial over reals
or linear over integers), (2) the structure of the logical formula allowed (e.g. disjunction of conjunctions or
existentially quanti�ed disjunction) and (3) the required canonical form (e.g. whether eliminate existential
quanti�ers, eliminate each redundant disjunct, extract all implicit equalities in conjunction, or eliminate
redundancy in conjunctions). The de�nition of constraint algebra amounts to choosing the structure of
�rst-order formulae and the atomic constraints allowed in the query.

The challenge here (and a major area of research) is the development of constraint families and algebras,
that strike, for each application realm, a careful balance between (1) expressiveness, (2) computational
complexity and, very importantly, (3) representation usefulness.

As one extreme, if the entire �rst-order logic (as studied in [ACGK94, VGG95]), and the same atomic
constraints are allowed in both constraint family F and algebra, we get a very expressive algebra with low
data complexity, since no actual manipulation of constraints would be required. However, the representation
of the result might consist of a very large unsimpli�ed constraint expression that might be not useful to
the user. For instance, the answer to a query \is constraint object C empty" would be 9x1 : : : 9xnC, where
x1; : : : ; xn are all free variables, whereas the user expects a true or false answer.

An example of a very expressive, but having high (exponential) time data complexity is the DISCO
(Datalog with Integer and Set order COnstrains) query language [BR]. Constraint representation is DISCO
is useful in many, but not all applications. For example, to express satis�ability of a simple propositional
formula, the user needs to encode the formula by a datalog (with constraints) program, in a fairly unnatural
way.

Close to the other end, the framework [KKR90] requires a fairly restricted sub-family of �rst-order logic
in constraint objects: disjunction of (unquanti�ed) conjunctions of atomic constraints (the algebra, however,
allows more, including quanti�er elimination). This representation is useful for many, but not all applications:
for example a constraint representation of a triangle given by vertices (a1; b1); (a2; b2); (a3; b3),

9t19t29t3(x = a1t1 + a2t2 + a3t3 ^ y = b1t1 + b2t2 + b3t3 ^ t1; t2; t3 � 0 ^ t1 + t2 + t3 � 1)

is not directly representable in that framework. Still, for some atomic constraint families, such as linear
inequalities over reals, this framework may be computationally unmanageable: the quanti�er elimination
may result in a constraint exponential in the size of the original conjunction, although for many sub-families
more e�cient algorithms were developed (e.g. [GK, JMSY92, HLL90, LL91]). A more 
exible �rst-order
logic structure that allows the entire linear constraints over reals while controlling computational complexity
was described in [BJM93, BK95].

4.2 C3 Constraint Families and Canonical Forms

In C3 we concentrate on linear constraint over reals, which are expressive and useful in a variety of application
domains. However, in order to control computational complexity, we design a more 
exible �rst-order logic
structure by constructing a number of interrelated constraint families. This continues the line work in
[BJM93, BK95].

The six interrelated constraint families in C3 are depicted in Figure4.2. Four main families are for
unrestricted linear constraints over reals: C LIN, for conjunctive linear, stands for constraints represented in
the form ^ni=1Ci, where Ci is a linear inequality; EC LIN, for Existential Conjunctive, corresponds to the form
9~x ^ni=1 Ci; DC LIN, for Disjunctions of Conjunctions, corresponds to the form _mi=1 ^

n
j=1 Cij ; and DEC LIN,

for Disjunctions of Existential Conjunctive, corresponds to the form 9~x_mi=1^
n
j=1Cij . The other two families
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Figure 6: Families of CST Objects

are for range constraints, i.e. of the form aop x opb, where op is either < or � and a and b are either real
numbers of �1 or 1. Namely, C RANGE, for Conjunctive Range, stands for constraints represented in the
form ^ni=1Ci, where Ci is a range constraint; and DC RANGE corresponds to the form _mi=1 ^

n
j=1 Cij .

We use the C3 notation for operations: not, &&, ||, and (...) for projection. We distinguish between
projections on one variable, denoted (one); on zero attributes, denoted (), i.e. all free variables are exis-
tentially quanti�ed; on all variables, denoted (all+), i.e. no variables are quanti�ed; and, on any number
of attributes, denoted (any), for arbitrary projection. The user is recommended to use the most speci�c
projection operator in order to achieve the strongest (i.e. lowest) resulting types.

Not only projection in C3 can eliminate existing free variables, but they can also add new ones. For
example, a CST (1 <= x >= 5) can be transformed by the "projection" on (x,y) into (x,y) | (1 <= x

<= 5), thus adding new free variable y, and getting new interpretation as a relation over x,y of all tuples with
x as required and arbitrary real number y. However, in the classi�cation of the projection cases discussed
earlier, we only consider free variables physically appearing in the constraint expressions.

Thick arrows indicate type hierarchy. For example, C LIN is a sub-type of DC LIN, EC LIN and, transitively,
of DEC LIN, meaning that a CST object of type C LIN may be used as argument wherever its supertypes are
allowed.

Thin arrows indicate, for each constraint family, the allowed operations and the type of the result, which
may belong to a di�erent constraint family. For example, && is allowed in C LIN, returning the result in
the same family, while (), and (one) return the result in C RANGE (which is also in C LIN as a supertype of
C RANGE). Note, that the result of || on arguments from C LIN will be in DC LIN, not in C LIN. Some of the
operations are implicit: for instance, while || does not explicitly appear in C LIN, it can be applied since it
is allowed for a supertype DC LIN.

Operators may be overloaded: for example && in C LIN is di�erent from && in DC LIN; they are im-
plemented di�erently and return results of di�erent types (with di�erent representations). The actual
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operator applied depends on the types of its arguments. As an example, &&(C LIN,C LIN will use the
C LIN operator; whereas, &&(DC LIN,DC LIN, as well as &&(C LIN,DC LIN will use the operator from DC LIN.
In general, for the application of op(arg1,arg2) we use the lattice structure of type hierarchy, where
sub� type � super� type (i.e. the higher the bigger). The actual op chosen is the one of the CST type
that is the least upper bound of type(arg1) and type(arg2) in which op is de�ned. Note, that the CST
families are constructed in such a way that, for every op used, such least upper bound, if exists, is unique;
hence, there is no ambiguity. If no such bound exists, op is not allowed on arg1 and arg2 and would result
in a compile-time error.

For users of the C3 CST library it is easy to remember what's allowed and what's not. On arguments
of any CST family &&, ||, and () can be freely applied. Only not is restricted: it can only be applied to
arguments of the type C LIN (and thus its sub-type C RANGE). The system will always produce the strongest
(i.e. least) type possible for the resulting constraint.

In addition to logical algebraic operators, all families have the following operators:

1. RENAME(CST-obj,[x1/e1,...,xN/eN]) where x1,...,xN are variables to be replaced with variables
or constants e1,...,eN.

2. SAT(CST-obj) to check satis�ability of a CST object O, i.e. whether there exists assignment of real con-
stants into its free variables that make O true. MUT SAT(CST-obj-1, CST-obj-2) which is equivalent
to SAT(CST-obj-1 && CST-obj-2).

3. TRUTH VALUE(TV-ASSIGN,CST-obj) returns the truth value of CST under an assignment of VAR-ASSIGN
of constants into CST-obj free variables.

4. MIN-POINT(lin-func,CST-obj) and MAX-POINT(lin-func,CST-obj)where lin-func is a linear func-
tion with real coe�cients. Returned is the assignment of constants into variables of lin-func that
maximizes it subject to constraints in CST.

5. MIN(var-name,CST) and MAX(var-name,CST) that return MIN and MAX of the �rst argument subject
to constraints in the second.

Note that the MIN and MAX operators correspond to the problem of linear programming. In addition,
IMPLY(DC LIN,C LIN) operator is allowed8.

Finally, since all disjunctive CST objects can be considered as collections of disjuncts and conjunctive
objects as collection of conjuncts, we make these CST families collection monoids C3 by implementing the
required iterators and member functions.

The six CST families are carefully constructed with the complexity consideration in mind as follows.
First, all operations allowed on the families have polynomial data complexity. This is the reason, for example,
that C LIN is not closed under general projection: transforming the result into C LIN will require quanti�er
elimination and thus the size of the result (and, of course, time complexity) may be exponential in the
number of variables eliminated. Whereas, EC LIN is closed under general projection since general projection
in EC LIN is lazy: EC LIN allows quanti�ers in the internal representation and hence no physical quanti�er
elimination is performed. Similar, not is allowed on conjunctive CST families, C RANGE and C LIN, but not
on, say, DC LIN. The reason is that transforming an expression of the form : _ ^C or, of the form ^ _ :C,
into DC LIN may result in expression of exponential size, which we would like to avoid. We discuss what
operators involve computationally in more detail in the next subsection.

The CST families use canonical forms, i.e. useful standard forms, of constraints, that we adopt in C3 from
[LHM89, BJM93] and review here from [BJM93]. For CST objects in disjunctive families, some disjuncts
might be redundant in the sense that omitting them results in an equivalent constraint. Clearly, a canonical
form that eliminates such disjuncts would be desirable. However, the problem of detecting such tuples
is co-NP-complete [Sri92], and so we will perform only one simpli�cations of disjunctions: the deletion of
inconsistent disjuncts.

For CST objects in conjunctive families, there are a number of simpli�cation that can be requested by
the user. One choice is to write all equations in the form fxi = ti j i = 1; : : : ; ng where the xi's are distinct
and appear nowhere else in the constraint. A second choice is whether all equations which are implicit in the

8and, of course, for all subtypes of C LIN and DC LIN
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inequality constraints should be represented explicitly. (As a simple example of this, consider the constraints
x+ y � 2; x+ y � 2.) A third is the extent to which redundancy within the inequalities should be removed.
[?] presents a classi�cation of redundancy that suggests simple forms of redundancy removal. A fourth
choice is whether to keep the inequalities in a di�erent form, such as simplex tableau form. In the current
C3 implementation, the only simpli�cation is the removal of inconsistent disjuncts in disjunctive families;
however, a range of simpli�cations on conjunctions is presently being implemented.

4.3 Implementation of CST families

On conjunctive families, && operator simply combines two conjunctions and is constant time; (one)| C,
which is a projection on a single variable, involves applying linear program (using simplex algorithm of
CPLEX) twice for �nding minimum and maximum of the variable subject to C; ()|C, which is eliminating
all variables in C works as a satis�ability test, using the �rst phase of simplex, as does the SAT predicate.

On disjunctive families, || operator is constant-time, while D1 && D2, where D1 = _i=1:::nC1i and
D2 = _j=1:::mC2j is more involved:

D1 ^D2 =
_

i=1;:::;n

C1i ^
_

i=1:::m

C2j =
_

i=1:::n;j=1:::m

(C1i ^ C2j)

that is, the result consists of all combinations of C1i and C2j that are mutually consistent (i.e. their
conjunction is satis�able). Since the CST families have properties of monoids (i.e. they are monoids) D1 &&

D2 are represented as the following C3 query:

SELECT *c1 && *c2

INTO {DEC_LIN} conj_D1_and_D2

FROM D1 AS {EC_LIN*} c1,

D2 AS {EC_LIN*} c2

WHERE SAT(*c1,*c2)

We show how such queries are optimized using approximation-based �ltering, indexing and re-groupings
in the next section. Similar, SAT(D), where D is of type DEC LIN (as well as other disjunctive families) is
represented as

SELECT SAT(*c)

INTO {Some} satisf_flag

FROM D AS {EC_LIN*} c

Note, that c is of type EC LIN and so SAT in the WHERE clause works on conjunctions. Further recall that
Some is a primitive monoid whose merge operator is a logical or; thus, the satisf-flag will be true if and
only if at least one component is true. Finally, IMPLY(D,C), where D is DC LIN and C is C LIN, is represented
as

SELECT IMPLY(*c,C)

INTO {Some} imply_flag

FROM D AS {C_LIN*} c

Beyond algorithms for constraint operations discusses, there are two subtle design problems that we address
in C3: compile-time maintenance of the type lattice and lazy evaluation. Support for lazy evaluation of
constraint (i.e. involving CST) expression is necessary for e�ciency. For example, if we are interested in
SAT test of an expression involving logical connectors, it is typically wasteful to perform simpli�cations of
subexpressions.

To exemplify the problem arising from the type lattice maintenance, consider the && operator. In fact,
while && has one conceptual meaning, it works di�erently in every CST family. Moreover, since && is de�ned
on DEC LIN, the arguments may be any subtypes of DEC LIN. Thus, every ordered pair of (sub) types for
arguments of && works uniquely: we need to �nd the least upper bound type, to perform corresponding
type conversions, and then to apply a physical algorithm of the resulting CST family. One possibility is
implementing a separate function for each pair of subtypes, but this would result in a quadratic number
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of functions for each logical operator: 30 for six families, and unrealistically many for future extensions of
C3 with new CST families. On the other hand, implementing a subtype relationship with C++ derived
classes does not work, since each family has a di�erent implementation, data-structures etc, and should
not be inherited as what would have happened with C++ classes. Of course, there is also a possibility of
maintaining just one global CST type, and to distinguish individual subfamilies only at run time. This,
however, would eliminate the capability of compile-time type checking, an important feature of C3.

To solve the type lattice problem we designed a two-layer architecture for CST families: the lower layer,
called basic CST, supports physical representation and manipulation of CST families; and the upper layer,
called lazy typed CST, which is responsible for type lattice management and lazy evaluation, while actual
evaluation is passed to the lower, basic CST layer.

The basic CST layer is composed of the six classes basic C LIN, basic DC LIN etc., each maintaining
its own datastructures to represent the underlying constraints; and one super (base) class, basic CST. All
the discussed operations are implemented at this layer as C++ friend functions, that do no automatic sub-
typing is supported. However, each basic family has member functions for explicit type conversion into
basic types of CST families that are higher in the type hierarchy. For example, transforming basic C LIN

into basic DC LIN creates a basic DC LIN object (disjunction) that have a single disjunct in it.
The lazy typed CST layer, on the other hand, does support automatic sub-typing and the ability to

determine least upper bounds of operators' arguments at compile-time. This is achieved, by six fami-
lies lazy typed C LIN, lazy typed DC LIN etc., implemented as six classes with class hierarchy that ex-
actly matches the type hierarchy of CST families, and one super (base) class lazy typed CST. However,
all lazy typed classes have exactly the same type of internal representation, which is inherited from
lazy typed CST. It is basically an expression tree (hence \lazy"), with internal nodes storing operators
(such as && or ||) and encoding the strongest type to which the subtree can be converted; the leaves are ob-
jects of the lower layer, basic CST. It is important to emphasize that CST type checking we do in C3 heavily
uses capabilities of C++ and would be impossible (at compile-time without precompiling) in languages such
as C.

Finally, C3 also supports two generic parameterized CST families: Gen Conj<T> for generic conjunction
and Gen Disj<T> for generic disjunctions, where T is an arbitrary, possibly complex, CST type. Both are
collection monoids and support TRUTH VALUE function; further, SAT is supported on Gen Disj<T> provided
it is supported for T, and IMPLY(Gen Disj<T>,T provided it is de�ned on T. These operations are repre-
sented again with monoid comprehension queries. For example, SAT(D), where D is of type Gen Disj<T>, is
represented as

SELECT SAT(c)

INTO {Some} satisf_flag

FROM D AS {T} c

5 Optimization by Approximation-based Filtering and Indexing

General optimization of object-oriented queries (e.g. ENCORE [Zdo], O2 [ea90], POSTGRESS [SRH90])
and monoid comprehensions in particular, (e.g. [FM]), as well as optimization in presence of expensive
predicates [CS, HS] is outside the scope of this paper; We concentrate here on approximation-based �ltering,
regrouping and indexing [BW95], that C3 is designed to support. More speci�cally, we describe, mostly by
examples, the C3 primitives for approximation and inverse groupings [BW95] and indices and special purpose
algorithms.

To understand the idea, we use a modi�cation of an example from [BW95] of the query: \�nd all
trajectories passing over Fairfax county". It will be assumed here that a set of 4D aircraft trajectories as
well as a map is stored in the database. A trajectory is assumed to have a piece-wise linear representation,
i.e. it is represented as DC LIN CST object

n_

i=1

(ti�1 � t < ti ^ x = ai;1t+ bi;1 ^ y = ai;2t+ bi;2 ^ z = ai;3t+ bi;3)

Where x; y; z are variables for a location, t is a time variable, and ti�1, ai;1; bi;1; ai;2; bi;2; ai;3; bi;3, 1 � i � n,
are constants. Note that for each i, (ti�1 � t < ti ^ x = ai;1t + bi;1 ^ y = ai;2t + bi;2 ^ z = ai;3t + bi;3)g
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Figure 7: Inverse and Approximation Grouping

describe movement equations for the time interval [ti�1; ti), for constant 3-D velocity vector (ai;1; ai;2; ai;3),
starting from the point (bi;1; bi;2; bi;3). All trajectories is a variable of type SET<DC LIN*>, i.e. a set of
pointers to trajectories. The Fairfax county is assumed to be represented as a polygon,9 i.e. as a C LIN CST
object Fairfax-area in variables x and y. The query can be directly expressed in C3 as

SELECT traj

INTO {Set<DC_LIN*>} result

FROM All_Trajectories AS {DC_LIN*} traj

WHERE MUT_SAT(*traj, Fairfax_area ) // Note: MUT_SAT on DC_LIN

or, if MUT SAT is expressed, in turn, as monoid comprehension:

SELECT traj

INTO {Set<DEC_LIN*>} result

FROM All_Trajectories AS {DC_LIN*} traj

WHERE SELECT MUT_SAT(*segment,Fairfax_area) // Note: MUT_SAT on C_LIN

INTO {Some} // SELECT returns True of False

FROM *traj AS {C_LIN*} segment

which is an expensive query if evaluated directly. To optimize, we can �rst use the inverse grouping, de-
scribed graphically in Figure 5. Intuitively, each trajectory can be viewed as composed of 4D-segments,
and each segment has a projection, say xy-segment on the horizontal plane x,y. Thus, each trajectory has
a corresponding sets of xy-segments (see dash lines in Figure 5). The inverse grouping, denoted IG, is a
structure that remembers, for each xy-segment the set of all trajectories having xy-segment as one of their
segment's projections. More accurately, All-Traj-IG here is a structure of the type Set<IG Pair*>, where
the class IG Pair represents a pair of arguments: the second argument, of the type C LIN*, stands for an
xy-segment; and the �rst, of the type Set<DC LIN*>*, stands for the set of all (pointers to) corresponding
trajectories. If All-Traj-IG is (dynamically) maintained, the query can be re-written:

SELECT traj

INTO {Set<DC_LIN*>} result

FROM All_Traj_IG AS {IG_Pair*} IG_pair

9in fact, it is not convex, but we'll assume that to simplify the example
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//

DEFINE xy_segment AS {C_LIN*} IG_pair->second

WHERE MUT_SAT( *xy_segment, Fairfax_area ) // Note: MUT_SAT on C_LIN

//

DEFINE trajectories_of_xy_segment

AS {Set<DC_LIN*>*} IG_pair->first

FROM *trajectories_of_xy_segment AS {DC_LIN*} traj

Next, since MUT-SAT for C LIN is typically expensive, we can approximate each xy-segment with a
minimum bounded box (MBOX), which is of type C RANGE. Then, before testing MUT SAT on C LIN it can
be tested �rst on MBOXes. To do that we use approximation grouping, which stores, for each created
MBOX, the set of xy-segments (in fact, its IG pairs) approximated with that MBOX. More accurately,
All-Traj-IG-AG here is a structure of the type Set<AG Pair*>, where the class AG-Pair represents a pair
of arguments: the second argument, of the type C RANGE*, stands for the minimum bound box; the �rst,
for the corresponding IG-pairs, has the type Set<IG Pair*>*. If approximation grouping is dynamically
maintained the query can be re-written as follows:

SELECT traj

INTO {Set<DC_LIN*>} result

//

FROM All_Traj_IG_AG AS {AG_Pair*} AG_pair

DEFINE min_box_of_xy_segment AS {C_RANGE*} AG_pair->second // Note: C_RANGE

WHERE MUT_SAT(*min_box_of_xy_segment, // On C_RANGE;

min_box_of_Fairfax) // precomputed outside of query

DEFINE Candidate_Traj_IG AS {Set<IG_Pair*>*} AG_pair->first

//

FROM *Candidate_Traj_IG AS {IG_PAIR*} IG_pair

DEFINE xy_segment AS {C_LIN*} IG_pair->second

WHERE Mut_Sat( *xy_segment, Fairfax_area ) // Note: MUT_SAT on C_LIN

//

DEFINE trajectories_of_xy_segment

AS {Set<DC_LIN*>*} IG_pair->first

FROM *trajectories_of_xy_segment AS traj

Finally, we can use index structures based, for instance, on R-trees with rectangles as values. This is done us-
ing indexed approximation grouping (IAG). Speci�cally, we create here All Traj IG IAG, which has the same
structure as All Traj AG, and, in addition, an R-tree index imposed on the second argument. To support
search queries, IAG has member functions for search. In our case we use MUT SAT(C RANGE), that returns,
for each MBOX (of type C RANGE) the set of all corresponding IG-PAIRS, i.e. of type Set<IG-PAIR*>*.
Note, that the returned set is not a physical set collection, but rather a structure allowing to iterate over
its elements (and thus no intermediate evaluation is necessary when used within monoid comprehension). If
IAG is dynamically maintained (instead of AG), the (�rst part of) the query can be re-written as follows:

SELECT traj

INTO {Set<DC_LIN*>} result

//

FROM All_Traj_IG_IAG.MUT_SAT(min_box_of_Fairfax)

AS {Set<IG_Pair*>*} Candidate_Traj_IG

//

FROM *Candidate_Traj_IG AS {IG_Pair*} IG_pair

DEFINE xy_segment AS {C_LIN*} IG_pair->second

WHERE Mut_Sat( *xy_segment, Fairfax ) // Note: MUT_SAT on C_LIN

//

DEFINE trajectories_of_xy_segment AS {Set<DC_LIN*>*} IG_pair->first

FROM *trajectories_of_xy_segment AS traj
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It is important to note, that, while we intuitively explained the use IG, AG and IAG by examples,
these primitives can be applied to any CollectionMonoid<A>. For IG grouping the user needs to provide a
transformation f producing, for each element of type A an instance of (another) commutative and idempotent
monoid (see [BW95] for details). For AG and IAG grouping, an approximation of elements of type A must
be provided by the user. The IG, AG and IAG groupings are used to facilitate the query transformation
rules supporting approximation-based �ltering (by using less expensive predicates �rst) and indexing (see
[BW95]).

6 Related Work

No technology for declarative and e�cient querying of databases involving constraint objects exists today.
Applications of the kind discussed are typically implemented by special purpose programs; while these
programs may use database and constraint programming tools, they typically require considerable program-
ming e�ort and are not 
exible to changes. In addition, they do not perform overall optimization that
interleaves database, mathematical programming and computational geometry manipulation techniques.
Existing DBMS do not manage constraints as persistent stored data 10. Constraint Logic Programming
[JL87, DHS+88, Col90], on the other hand, was not designed to deal with large amounts of persistent data.
Extensions of DBMS with spatio-temporal operators [OM88, Gut89, Wol89, HC91] typically (1) are lim-
ited to low (two- or, at most three-) dimensional space, (2) have query languages restricted to prede�ned
spatio-temporal operators, and (3) lack global economical �ltering and deep optimization.

There has been work on the use of constraints in databases, earlier of which include [Klu88, HHLvEB,
CI89, Ram91, BS89]. The pioneering work [KKR90] proposed a framework for integrating abstract con-
straints into database query languages by providing a number of design principles, and studied, mostly in
terms of expressiveness and complexity, a number of speci�c instances. The work [HHLvEB] considered
polynomial equality constraints, adopting local propagation steps for reasoning on constraints. A restricted
form of linear constraints, called linear repeating points, was used to model in�nite sequences of time points
[KSW90, BNW91, NS92]. More recent works on deductive databases [MFPR90, SR92, KS92, LS92] consid-
ered manipulation and repositioning of constraints for optimizing recursion. Algorithms for constraint algebra
operators such as constraint joins, and generic global optimization were studied in [BJM93], and constraint
approximation-based optimization in [BW95]. The work [KRVV93] proposed an e�cient data structure for
secondary storage suitable for indexing constraints, that achieves not only the optimal space and time com-
plexity as priority search trees [McC85], but also full clustering. The work [BLLM95] proposed an approach to
achieve the optimal quality of constraint and spatial �ltering. A number of works consider special constraint
domains: integer order constraints [Rev93]; set constraints [Rev95]; dense-order constraints [GS95]. Linear
constraints over reals drew special attention [ABK95, ACGK94, BJM93, BK95, BLLM95, SG95, VGG95].
The use of constraints in spatial database queries was addressed in [PdBG94]. The work [SRR94] used
constraints to describe incomplete information. Constraint aggregation was studied in [Kup93].

DISCO (Datalog with Integer and Set order COnstraints) is a constraint database system being developed
at the university of Nebraska [BR]. DISCO incorporates a highly expressive family of constraints. However,
its query language has time complexity exponential in the size of a database; hence DISCO's applicability
to real-size database problems is not clear. Further, DISCO does not supports standard database features
such as persistent storage, transaction management and data integrity.

7 Conclusions and Future Work

We have described the work on the development of the �rst constraint object-oriented database system. Our
work aims at the developing a practical and useful technology for a wide variety of important application
realms, for which no existing technology is applicable. For example, C3 can be directly used to implement
the real-life data fusion and sensor management system for air-space command and control [ABK95], and
has the ability to achieve performance comparable to special-purpose techniques. C3 is a deeply optimizable
and extensible system, striking the balance between expressiveness and computational complexity.

10Note, integrity constraints used in conventional databases are not data, but rather something the data must satisfy.
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Many research questions remain open (see [Bro] for an overview): in constraint modeling and canonical
forms, data models and query languages, indexing and approximation-based �ltering, and, most importantly,
special constraint algebra algorithms for speci�c domains and global optimization.
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