

Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5

Fairfax, VA 22030-4444 USA

http://cs.gmu.edu/ 703-993-1530

Opti-Soft+: A Recommender and Sensitivity Analysis for Optimal
Software Feature Selection and Release Planning

Fernando Boccanera
fboccane@gmu.edu

Alexander Brodsky
brodsky@gmu.edu

Technical Report GMU-CS-TR-2022-1

ABSTRACT

Many approaches have been developed to

increase the return on a software investment, but

each one has drawbacks. Proposed in this paper

is the Opti-Soft+ framework that addresses this

problem by producing a software release

schedule that maximizes the business value of

investments in information systems that

automate business processes. The optimal

release schedule is the result of solving a mixed

integer linear programming problem. Opti-Soft+

includes a formal optimization model, a

Decision Guidance System that implements the

model and a methodology. Opti-Soft+ is an

extension of the Opti-Soft framework proposed

earlier with (1) a refined cost model, (2) a

technique for sensitivity analysis of the

normalized cost per unit of production, and (3)

an atomic business process model that is driven

by output throughputs in addition to input

throughputs.

1 INTRODUCTION

Software development projects that are

successful and return to the business a value that

justify their investments are not common.

According to (The Standish Group, 2018) only

36% of projects are successful. To improve the

rate of success, organizations have been using

Agile methods. As reported in (Serrador &

Pinto, 2015,) Agile does have a statistically

significant impact on three dimensions of project

success, but adopting Agile is not a guarantee of

a return on the investment.

Because the Agile software development

lifecycle is based on short iterations, at each

iteration the team needs to decide what

functionality to include. This process, called

Release Planning, provides an opportunity to

improve the business value of the software

because different functionalities result in

different value profiles.

Several release planning approaches have

been developed to maximize the business value

of software delivery. The highly influential

Incremental Funding Methodology (IFM) by (M.

Denne & Cleland-Huang, 2004) uses heuristics

to select a release schedule that maximizes the

business value of software investments. F-

EVOLVE*’s approach (Maurice et al., 2006) is to

involve stakeholders iteratively to achieve

releases that result in the highest degree of

satisfaction. A third approach by (Van den

Akker et al., 2005) applies integer linear

programming to maximize the revenue.

The IFM, F-EVOLVE* and Van den Akker

approaches use cash flow as a proxy for business

value. They all require the estimation of cash

flows for each software feature and that’s very

challenging due to the difficulty of drawing a

direct correlation between a particular business

http://cs.gmu.edu/

benefit, like a reduction in cost, and a specific

piece of software. (Devaraj & Kohli, 2002) have

acknowledged this difficulty of isolating the

effect of IT on firm performance.

The main pitfall of the existing approaches is

that each and every dollar of cash flow needs to

be allocated to one and only one feature which is

not a realistic assumption, because often,

realizing a business benefit requires the

implementation of multiple software features.

Another pitfall is that each cash flow estimate

combines the business benefit with the software

development cost, which means that all the

estimations have to be done externally, which is

typically difficult and often inaccurate.

In (Boccanera & Brodsky, 2020) and

(Boccanera & Brodsky, 2021), we proposed a

new approach, called Opti-Soft, to address the

pitfalls of existing methods for a class of

software projects that automate a Business

Process Network (BPN). Opti-Soft is a decision

guidance framework for release planning that

maximizes the business value as measured by

the Net Present Value (NPV), based on a model

of the underlying business process and savings

achieved due to the combined effect of new

software features on improved business process

efficiency.

However, the Opti-Soft approach has

limitations, as we discovered looking at a

number of real software project examples. First,

the cost model was based on labor costs only,

whereas realistic cost models may be

considerably more involved. Second, for

stakeholders to have a high confidence on the

recommendations on software feature selection

and release planning, they often need to know

the sensitivity of the recommendations to

assumptions on demand on business process

throughput, e.g., the number of daily patent

applications to be processed by the Patent Office.

This question is important to release planners

because, potentially, a small change in expected

business process throughput may lead to

unexpected changes in recommended features

and release schedules. However, addressing

sensitivity was not part of Opti-Soft. Third, while

the business processes can be hierarchically

composed, Opti-Soft only supported a limited

atomic (leaf) process in the hierarchy in which

the cost is driven by input throughput (e.g.,

number of patent applications that need to be

processed per day). Whereas, atomic processes

driven by output throughput were not

supported.

Lifting these limitations is exactly the focus

of this paper. More specifically, the

contributions of this paper are as follows. First,

we extend the cost model, of both BPN and

software development, beyond labor cost to

include a range of variable and fixed costs (i.e.,

of resources required). The extended cost

structure includes: 1) non-labor costs incurred

by each input flow through the BPN, 2) fixed

costs associated with processes in the BPN, and

3) fixed costs associated with software

development. Extending Opti-Soft to support

these additional costs is not trivial because

sometimes a fixed cost can be incurred by more

than one software feature, that is, the

relationship is not one-to-one.

Second, we develop a technique for

sensitivity analysis of the normalized cost per

unit of production, for a recommended release

plan and associated improved BPN, as a

function of BPN throughput. The analysis

involves fixing some of the decision variables

while allowing others to be instantiated by the

optimizer. The idea is to determine the delta

change in the objective function for a one-unit

change of the required BPN throughput.

Third, we develop an atomic service model

that is driven by output throughputs in addition

to the model driven input throughputs. We add

an indivisible atomic service, whose throughput

is driven by the number of outputs that it needs

to produce. Each output is associated with a

number of input flows (e.g, applications) and the

cost is based on the outputs produced, for

example, a report.

Opti-Soft+ is the result of these extensions. It

takes advantage of the fact that the

3

implementation of software features leads to

more efficient business processes due to a

reduction of the time a worker spends, or the

elimination of a portion of the process, or the

utilization of workers with a lower labor rate.

The key idea is that, because the improved

business efficiency is a direct consequence of the

availability of software features, this

relationship can be formally modelled using

mixed integer linear programming (MILP)

constraint formulation, which allows the use of

MILP solvers to find optimal release plan.

The uniqueness of Opti-Soft framework is its

accurate estimate of business value

improvement by formally modeling BPN and

associated costs over the investment time

horizon, as a function of chosen software

features and release plan. Also, Opti-Soft+

removes the limitation of existing approaches

that force every investment dollar to be assigned

to one and only one software feature. The Opti-

Soft+ model allows one software feature to

impact multiple processes and allows a process

to be impacted by multiple features, on a many-

to-many relationship. In Opti-Soft+, the

estimation of the business value of software

features is not external to the approach, but

instead, is at the heart of the cost model. The

Opti-Soft+ framework is composed of a

methodology, a formal optimization model and

a Decision Guidance System (DGS) which

implements the formal model and produces an

optimal recommendation.

This paper is organized as follows: Section 2

provides an overview of the Opti-Soft+ model,

including the cost approach, the BSN modelling

and release planning. Section 3 briefly describes

the optimization model; Section 4 describes the

DGS and the methodology; Section 5 provides

an example of the extensions; Section 6 conducts

a sensitivity analysis and Section 7 provides

concluding remarks. Appendix 1 shows the

entirety of the formal model.

2 OPTI-SOFT+ MODEL OVERVIEW

In order to maximize business value associated

with new software features, we need to estimate

the cost of software development the benefit of

the implementation of the software. For

software that implements information systems

to automate a business process, the benefit of the

software is the cost savings in the business

process due to automation.

A business process, formally modelled in

Section 3, consumes input flows, e.g., patent

applications, and produces output flows, e.g.,

patent grants. The cost associated with the

business process is a function of the process

fixed and control parameters, including labor

rates and time spent. This means that the benefit

(savings) of a software feature that automates a

business process can be determined by

subtracting the cost of the automated process

from the cost of the process before automation.

The above insight, that the implementation

of software features allows the adoption of more

efficient business process networks (BPN) is key

to Opti-Soft+, because each new BPN

configuration can be modelled, and its cost

measured. In the Opti-Soft+ approach, there is no

need to estimate the cost of each individual

feature, a feature is just a device that triggers a

change in the BPN configuration, while cost is

precisely calculated at the level of the BPN.

In Figure 1, we have an initial BPN

configuration, called BPN0 that can benefit from

automation and has a Net Present Cost

NPC(BPN0). A cash investment, NPC(SW1) is

made to implement software features SW1 in the

first release (r=1). After release 1, the availability

of the software features SW1 allows process

improvements so BPN0 transitions to BPN1,

resulting in a Net Present Cost NPC(BPN1),

which is lower than NPC(BPN0). The procedure

continues iteratively, with each investment

NPC(SWr) in release r, causing the BPNr-1 to

transition to BPNr, resulting in a lower

NPC(BPNr).

Fig. 1 – BPN Cost Reduction due to the Investment in

Software Features

In order to calculate and optimize the cost

savings, we need to model the BNP transitions

as well as the enabling software development

features.

BSN Modelling

To intuitively understand BPN modelling,

consider the example depicted in Figure 2. It

shows a parent process P composed of

subprocesses A, B and C, all of which must be

executed. Note that the output from A serves as

input to B and the output from B serves as input

to A. Subprocess A has three alternatives, AA,

AB and AC, whereas only one of them must be

executed. Similarly, B has alternatives BA and

BB, and C has alternatives CA and CB. By

choosing among the alternatives for each

subprocess, a new configuration of P is

established.

Note that a valid configuration for P requires

one and only one of each of its three

subprocesses A, B and C, which establishes an

AND relationship between process P and its

subprocesses A, B and C. The relationship

between A and its alternatives (subprocesses)

AA, AB and AC is an OR because either AA or

AB or AC can be present in P. B and C also have

OR relationships with their subprocesses.

We model the BPN as a Service Network (SN)

(Brodsky et al., 2017) which is a “network of

service-oriented components that are linked

together to produce products”. The linkage

among service components is through inputs

and outputs. In Figure 2, P is a composite

(parent) service because it is composed of

subservices A, B and C. A, B and C are also

composites while all the other subservices are

atomic, that is, indivisible.

BSN Transition and Release Planning

The transition from a subprocess alternative to

another requires the implementation of specific

software functionality called features. For

example, subprocess alternative AB requires

feature F1.

We assume that features are implemented in

iterations called releases. At the beginning of

each release, the team decides which features to

include in the scope. This is called release

planning. Note that the implementation of

features results in automation of certain aspects

of the original business process, allowing it to

transition to a more efficient process alternative

that results in labor and other savings.

In the example of Figure 2, we assume that

AA, BA and CA are manual processes, and the

initial BPN configuration (BPN0) is AA, BA, CA

with NPC(BPN0). The top table on the right

shows the required features for each process

while the table on the bottom shows the BPN

configuration after each release. Note that A’s

alternative subprocess AB is more cost effective

than AA and it requires feature F1. Because F1 is

implemented in release 1, after release 1 is

completed, BPN0 transitions to BPN1 which is

configured with AB, BA, CA, with the cost of

NPC(BPN1). Note that F1 ‘activates’ AB and this

activation property, which is unique to Opti-

Soft+, is used extensively in the formalization of

the Mixed Integer Linear Programming

problem, described in section 3. At the end of

each release, the availability of implemented

software features allows the activation of

alternative processes that are more cost effective,

reducing the overall NPC of the SN. Subprocess

AA transitions to AB then to AC, BA transitions

to BB and CA transitions to CB. The final,

optimal SN configuration is then AC, BB, CB.

Note that Fig 2 shows not only the BSN

transitions, but also the release plan, that is, the

software features implemented in each release.

5

Fig. 2 - Example of BPN Transition as a result of

feature delivery.

Cost Model

The NPC over the investment time horizon is the

combined NPC of all the BPNs plus the NPC of

software development in all releases. Costs are

accrued daily and are paid on a set schedule. The

NPC is composed of five types of cost:

1. Variable labor costs of the SN

2. Variable non-labor costs of the SN

3. Fixed non-labor costs of the SN

4. Variable labor costs of software features

5. Fixed non-labor costs of software

features

Note that in the Opti-Soft+ model, we use the Net

Present Value (NPV), which is simply NPC with

the negative sign.

Variable Labor Costs of the SN

Each process of the SN is performed by workers

with well-defined roles. Each role has a labor

rate and each input processed or output

produced by the role has a set duration. The cost

of a process, or LaborCostPerDay, is the labor rate

times the duration to handle all inputs and

outputs in a day.

Variable Non-labor Costs of the

SN

Variable, non-labor costs are associated with

the amount of work produced by an atomic

service, that is, is driven by the inputs or by

outputs and are similar to the calculation of

labor costs.

Parameters CostPerInput and CostPerOutput

capture the non-labor costs for each input and

output. These parameters are used to compute

FlowCostPerDay.

Fixed Non-labor Costs of the SN

Fixed non-labor costs are not driven by inputs or

outputs, instead they are driven by the services.

An example of a fixed cost associated with a

particular service is rent. Parameter

ServiceCostPerDay captures the daily cost for

each atomic service and is used to calculate the

ServiceCostPerDay.

Variable Labor Costs of Software

Development

Opti-Soft+ follows an Agile practice called

feature-driven, where release planning is done

at the feature level, that is, features are removed

from the product backlog and assigned to

releases. The size of features is estimated in

points, which is a unit based on the perceived

effort to develop the feature. The release size,

that is, the sum of the points for all features in

the release, cannot exceed the capacity of the

team, which is the average productivity of a

developer times the size of the team.

Development labor cost, in turn, is computed by

multiplying the team’s capacity by the

developer cost per effort point. The formal

model captures the software cost in

SWCostPerDay and then uses a pay schedule to

calculate the LaborCashFlow.

Fixed Non-labor Costs of Software

Development

Fixed costs associated with features are

experienced during software development,

where features are produced. They are incurred

by resources such as a hardware server, a

software tool, etc…

Every feature requires a set of resources. The

full set of resources required by a feature f needs

to be available prior to the start of the release

that implements f. A resource might be paid in

the release that implements f or in a prior release.

We assume that resource costs are paid on the

first day of each release, consequently on the

first day of a release, all resources needed by all

features in the release must be paid.

To be flexible, we allow multiple features to

require the same resource, establishing

dependencies among features. Resource

dependencies are handled by a Dependency

Graph.

The cost of resources is captured in

ResCashFlow, whose computation uses the

following parameters:

• 𝑹𝒆𝒔𝑺𝒆𝒕 is the set of all non-labor

resources

• 𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝑹𝒆𝒔 maps features to resources

• 𝑹𝒆𝒔𝑪𝒐𝒔𝒕 maps a resource to its cost

Computation of the SN Cash Flow

The CostPerDay of each atomic process is the

sum of LaborCostPerDay, FlowCostPerDay and

ServiceCostPerDay. CostPerDay is used to

calculate the schedule of payments, or

CashFlow(d) for each d in the time horizon. The

CashFlow(d) for each subprocess of a parent

process is aggregated and then rolled up to

determine the CashFlow(d) of the entire SN.

Computation of the Software Cash Flow

The CashFlow(d) of the development of software

is the sum of LaborCashFlow and ResCashFlow.

Computation of NPV

The CashFlow(d) for the SN and for the Software

Development are combined and discounted to

produce the TimeWindowNPV.

3 OPTI-SOFT+ OPTIMIZATION

MODEL

Opti-Soft+ produces an optimal release schedule

and SN configuration by solving a maximization

problem given a set of parameters like the

services in the SN, feature sizes, number of

releases, time horizon, labor rates, size of the

development team, etc... It maximizes the NPV

of the total cost of the service network plus the

software development cost over the investment

horizon, subject to constraints such as the space

of process alternatives. Opti-Soft+’s formal

model with its parameters, computations,

constraints and maximization formulation is

presented in its entirety in Appendix 1 and here

we explain some aspects of it.

The Decision Variables in the formal model

are:

1. On(s,r) – a Boolean indicating whether service

s is activated in the SN configuration during

the development of release r.

2. IBF(r,f) - a boolean indicating whether

business feature f is implemented in release r.

3. ITF(r,f) - a boolean indicating whether

technical feature f is implemented in release r.

4. InputThru(s,i,r) – a real, indication the number

of inputs of type i that go through atomic

service s during the development of release r.

 The formal model is broken down in seven

hierarchical components, each with its own set

of Parameters, Decision Variables (DVs),

Computation, Constraints and Interface Metrics

(results exposed to the other components). The

components are:

1. ReleaseScheduling is at the top of the

hierarchy. It aggregates results from the other

components in order to compute the

TimeWindowNPV(d) for each day d in the time

horizon. Its parameters describe the features,

their dependencies, sizes, time horizon,

number of releases and release duration. The

DVs are IBF(r,f) and ITF(r,f).

2. BusinessServiceNetwork computes the BSN’s

CashFlow(d), which is a term in the

7

computation of TimeWindowNPV(d). Its main

parameters are the labor rates, payment

schedule and the set of services.

3. Service is a container for the various types of

services. Every service has parameters id,

type, set of inputs and set of outputs. The DV

is On(s,r), a boolean indicating whether the

service is activated.

4. ANDservice describes composite services of

type AND. It aggregates the CostPerDay(id,r)

of all subservices, which is then used as a term

in the computation of BSN.CashFlow(d). The

parameters are the set of subservices.

5. ORservice is similar to ANDservice; the only

difference is that the relationship with its

subservices is of type OR.

6. InputDrivenAtomicService models an

atomic, (indivisible) service which’s

throughput is driven by the number of inputs

that it needs to consume. Its parameters are

the ratio of inputs to outputs, the time spent to

produce one output and the set of features

required for the service to be activated. The

DV is the required throughput, InputThru(s,i,r)

and the service computes the CostPerDay(id,r),

which is aggregated in the composite services.

7. OutputDrivenAtomicService models an

indivisible service which’s throughput is

driven by the number of outputs that it needs

to consume. Its parameters are the ratio of

outputs to inputs, the time spent to produce

one output and the set of features required for

the service to be activated. The DV is the

required throughput, InputThru(s,i,r) and the

service computes the CostPerDay(id,r), which

is aggregated in the composite services.

8. SoftwareDevelopment computes

SWD.CashFlow(d), which is a term in the

calculation of TimeWindowNPV(d). Its

parameters are the size of the team,

productivity, the cost per unit, etc… It uses

feature point as a unit of cost.

The formulation of the optimization is of a

Mixed-Integer Linear Programming (MILP)

problem, because 1) three of the DVs (On(s,r),

IBF(r,f), ITF(r,f)) are Boolean, 2) one DV

(InputThru(s,i,r)) is real, and 3) the objective

function is linear because it is the result of the

addition of various cost parameters which

themselves are linear. Section A9 of Appendix 1

describes the MIPL formulation, which is

summarized below:

𝑮𝒊𝒗𝒆𝒏 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔
𝑴𝒂𝒙 𝑹𝒆𝒍𝒆𝒂𝒔𝒆𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈. 𝑻𝒊𝒎𝒆𝑾𝒊𝒏𝒅𝒐𝒘𝑵𝑷𝑽

𝒔. 𝒕. 𝑹𝒆𝒍𝒆𝒂𝒔𝒆𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈. 𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔

The constraints are the space of SN

alternative configurations, the required software

features, the interdependencies among features,

the capacity of the development team, etc…

Each of the six formal components shown in

Appendix 1 implements constraints that are then

aggregated under ReleaseScheduling.Constraints.

Note that the CashFlow and TimeWindowNPV

produced by the formal model are negative

numbers consequently maximizing the NPV

results in minimizing the cost.

Opti-Soft+ includes a Decision Guidance

System (DGS) which implements the formal

model in Appendix 1 and includes a MILP

Solver. The DGS produces:

1. Optimal NPV of the business benefit

2. A release schedule, which is the result of the

Solver instantiating DVs IBF(r,f) and ITF(r,f).

3. The optimal service network configuration

at the end of each release, which is the result

of the Solver instantiating DV On(s,r).

4 OPTI-SOFT+ METHODOLOGY

AND DECISION GUIDANCE

SYSTEM

 The optimization model described in the

previous section is implemented within a

Decision Guidance System (DGS), which uses

the Parameters in the input file to maximize the

NPV, subject to the Constraints. During the

maximization, the DGS performs the

Computation and chooses the optimal

DecisionVariables. The Opti-Soft+ DGS is

implemented using Unity (Nachawati, M. O.,

Brodsky, A., & Luo, J., 2016), (Nachawati, M. O.,

Brodsky, A., & Luo, J., 2017), a platform for

building DGSs from reusable Analytical Models

(AMs). Unity exposes an algebra of operators

and provides an unified, high-level language

called Decision Guidance Analytics Language

(DGAL) (Brodsky, Alexander, & Luo, J., 2015).

The Opti-Soft+ framework is composed of the

optimization model, the DGS and a

methodology. We covered the first two so now

we cover the latter. The Opti-Soft+ methodology,

which extends the methodology in (Boccanera &

Brodsky, 2021), contains the following steps:

1. Generate candidate software features to be

implemented

2. Capture the As-Is BPN configuration, and

alternative BPN configurations that can be

enabled by candidate software features

3. Gather and instantiate input parameters for

the optimization model as described in

Appendix 1, including the set of features,

their dependencies, time horizon, number of

releases, BPN services

4. Compute the baseline NPV for the As-Is

BPN

5. Perform Opti-Soft+ DGS optimization to

come up with a recommended Release Plan

(including chosen software features in each

release) and the associated optimal BPN

configuration (To-Be)

6. Calculate the savings, which is the NPV of

the To-Be minus the NPV of the As-Is

7. Per recommendation in the previous step,

during Release 1:

a. Operate the BPN according to the

optimal BPN configuration.

b. Implement recommended software

features

8. For each release r = 2,…,n

a. Update existing software features to

include those implemented in the

previous release

b. For updated software features and

refined demand/throughput

requirements, run operational

optimization to find the best BPN

configuration. Operate the BPN

according to it.

c. Repeat Opti-Soft+ DGS optimization for

updated existing features and demand

to update recommended Release Plan

for the remaining releases (starting from

Release r + 1)

d. Implement recommended software

features

5 OPTI-SOFT+ PRODUCES

EXAMPLE OF EXTENSIONS

Sections 5 of (Boccanera & Brodsky, 2021)

describe an example of a service network

composed of 3 parent processes (A, B and C).

The optimal release plan and SN configuration,

is reproduced in Table 1. The example has 4

releases, each lasting 60 days and a time horizon

of 520 days, and a BSN that requires processing

100 user applications per day, that is, for

demand=100. In the example, the optimized

objective function, or NPV, produced by the

DGS is -$6,411,432.73.

Table 1-Optimal release schedule and SN

configuration.

Software

Release #

Features

implemented

Optimal SN

Configuratio

n

1 TF1, BF1 AA, BA, CA

2 BF3 AB, BA, CA

3 BF2 AB, BA, CB

4 BF4 AB, BB, CB

After 4 AC, BB, CB

We now take the example from (Boccanera &

Brodsky, 2021) and add the extensions described

in section 1. Table 2 shows the extended

parameters.

9

Table 2-Extended Parameters

Forma-

lizatio

n

Parameter Value

RSch

ResSet “softwareLicense1”

ResCost "softwareLicense1":20,00

0

FeatureRes TF1:””

BF1:””

BF2:””

BF3:””

BF4: “softwareLicense1”

Input

Driven

Atomic

Service

ServiceCost

PerDay

AA:200

AB:200

AC:200

BA:200

BB:200

CA:200

CB:200

CostPerInput AA.UserApplication:2

AB.UserApplication:0

AC.UserApplication:0

BA.CompliantApplic:0

BB.CompliantApplic:0

CA.AdjudicatedApplic:0

CB.AdjudicatedApplic:0

CostPerOutput AA.CompliantApplic:3

AA.NonComplianceNtc:

1

AB.CompliantApplic:0

AB.NonComplianceNtc:

0

AC.CompliantApplic:0

AC.NonComplianceNtc:

0

BA.AdjudicatedApplic:0

BB.AdjudicatedApplic:0

CA.AdjudApplicLetter:0

CB.AdjudApplicLetter:0

There is a software license that costs $20,000

when feature BF4 is implemented. There are

fixed costs per day of $200 for each of the atomic

processes (AA, AB, AC, BA, BB, CA, CB). Atomic

process AA incurs $2 in cost per “User

Application” input, $3 per

‘CompliantApplication” output and $1 per

“NonCompliantNotice” output.

 Using the parameters in Table 2, plus the

parameters in Section 5 of (Boccanera &

Brodsky, 2021), the DGS maximizes the objective

function and produces an optimal NPV of -

$6,748,777.45. The increase from -$6,411,432.73 is

expected and is a direct result of the extended

costs listed in Table 2.

In order to determine the savings of DGS’

recommendation, we need to compare the NPV

of the extended example (-$6,748,777.45), called

the To-Be, with the NPV of the As-Is, which is

the BPN prior to the development of the

software.

To calculate the As-Is recommendation, we

change the example parameters as follows: 1) set

to zero the parameters used in the Software

Development Formal Model and 2) Set the BPN

configuration to AA, BA, CA for the entire

duration of the time horizon of the investment.

Running the DGS with these modified

parameters, the resulting NPV for the As-Is is -

$9,611,947.49.

The savings is the difference between the To-

Be (-$6,748,777.45) and the As-Is (-$9,611,947.49),

or $2,863,170.04. Note that this is the maximum

savings, i.e., there is no other release plan and

BSN configuration that produces a higher

savings.

6 OPTISOFT+ SENSITIVITY

ANALYSIS

One aspect that a decision-maker would be

interested in, is how sensitive the total NPC is to

certain changes in parameters. To answer this,

we developed a technique for sensitivity

analysis as follows.

The objective function is the NPV of the cash

outflow of the service network (SN) plus the

cash outflow of developing the software features

that allow the SN to transition to more efficient

processes. Opti-Soft+ has several parameters that

influence the NPV, but the one with the most

impact is the demand, which is the required

throughput of the SN. In our example, the

required demand is 100 applications per day.

The required demand, used as a parameter in

the DGS, is an estimation and if there is a high

degree of uncertainty in the estimation, a

decision maker might not have a lot of

confidence in the recommendation. That’s why

a sensitivity analysis based on the demand

parameter is so valuable because it helps to

understand risk.

In our sensitivity analysis technique, we use

the NPC instead of the NPV because it is more

intuitive. The goal is to determine the NPC delta,

that is, the additional cost for an increase of one

unit of demand. Given d0, the original demand

through the SN, we vary d, the new demand by

1. The delta of the demand is δ=d-d0. We then

calculate UC, the cost per unit of demand d as

follows:

𝑈𝐶(𝛿) =
𝑁𝑃𝐶(𝑑0 + 𝛿)

𝑑0 + 𝛿

We can utilize the above technique to conduct

two analyses for a range of δ: 1) fix the release

plan and the BSN configuration, and 2) fix the

release plan, allowing the BSN configuration to

be optimized. The first analysis will show how

the unit cost varies with for each δ, while the

second will show the unit cost variation and the

stability of the BSN configuration.

Sensitivity Analysis 1

The steps to conduct analysis number 1 are as

follows: 1) determine a range of δ, above and

below d0, to conduct the analysis, 2) run the DGS

optimization with demand=d0 to get a

recommendation and the value of NPV0, 3)

instantiate the ITF(r,f), IBF(r,f) and On(s,r)

decision variables with the release planning

schedule and SN configuration recommended

by the DGS in the previous step, leaving

InputThru(s,i,r) as a DV, 4) set the demand

parameter to d0+δ1, where δ1, is the first value in

the δ range, and run the DGS to get the value for

NPC1, 5) repeat steps 2-4 (i.e., now performing

operational optimization when software

features available are fixed) for all δi in the range,

i >1, 6) calculate the values of UC(δ i), and 7) plot

a chart with the values of δi and UC(δ i).

We now apply our sensitivity analysis

technique to the example in Section 4. In step 1,

we determine that the estimated demand d0=100

has an error or 10%, so we set the range of δ to -

10 to +10. In step 2 we run the DGS with

demand=100 and produce the recommendation

and NPC0=$6,748,777.45, described in Section 4.

In step 3 we instantiate the release planning

schedule and SN configuration DVs with the

recommendation in Section 4. In step 4, we take

the first value in the δ range (-10) and set

demand=100-10=90 and run the DGS, getting

NPC1=$6,236,485.38. In step 5, we repeat steps 2-

4 for all the other values in the δ range and

produce the NPC results in Table 3. In step 6, we

calculate UC(δ i), also shown in Table 3. In step

6 we plot the chart shown in Fig 3.

Table 3 – Results of the Sensitivity Analysis

d δ NPC(d0+ δ) UC(δ)

90 -10 $6,236,485.38 $69,294.28

91 -9 $6,287,714.60 $69,095.76

92 -8 $6,338,943.82 $68,901.56

93 -7 $6,390,173.05 $68,711.54

94 -6 $6,441,402.27 $68,525.56

95 -5 $6,492,631.49 $68,343.49

96 -4 $6,543,860.71 $68,165.22

97 -3 $6,595,089.93 $67,990.62

98 -2 $6,646,319.15 $67,819.58

99 -1 $6,697,548.37 $67,652.00

100 0 $6,748,777.45 $67,487.77

101 1 $6,800,006.67 $67,326.80

102 2 $6,851,235.89 $67,168.98

103 3 $6,902,465.11 $67,014.22

104 4 $6,953,694.33 $66,862.45

105 5 $7,004,923.56 $66,713.56

106 6 $7,056,152.78 $66,567.48

107 7 $7,107,382.00 $66,424.13

108 8 $7,158,611.22 $66,283.44

109 9 $7,209,840.43 $66,145.33

110 10 $7,261,069.65 $66,009.72

11

Fig. 3 – Plot of δ and UC(δ)

The table and the chart show that as the

demand d increases, the UC, which is NPC per

unit of d, decreases. For a decision maker, this is

a desirable behavior because the initial demand

d0 is just an estimation. If d0 was underestimated,

then the optimal NPC is even better than the

value provided by the original recommendation.

If d0 was underestimated, it is easy to determine

the reduction in NPC. This would help a

decision maker to manage the estimation risk of

the demand and consequently yield a higher

degree of confidence in the DGS

recommendation.

Sensitivity Analysis 2

To perform analysis number 2, we use the

same steps as analysis number 1 with one

change. In step 3, we do not instantiate On(s,r),

that is, we do not fix the BSN configuration,

allowing it to be optimized.

We run all the steps, and for every δ in the

range -10 to +10, the results are the same as in

analysis number 1. In addition, the

recommended BSN configuration is also the

same. This means that for a delta in the range of

-10 to +10, the recommendation is stable.

7 CONCLUSION AND FUTURE

WORK

In this paper we introduced Opti-Soft+, an

extended framework to produce a software

release schedule that maximizes the business

value of investments in the development of

software applications that automate business

processes. Opti-Soft+employs a realistic cost

approach, and models the MILP optimization

problem formally, which is implemented by a

Decision Guidance System. We also conducted a

sensitivity analysis that helps a decision maker

to understands the range of parameters that the

solution would hold.

The contributions of this paper are: 1)

extending the cost model, of both BPN and

software development, beyond labor cost to

include a range of variable and fixed costs (i.e.,

of resources required), 2) developing a

technique for sensitivity analysis of the

normalized cost per unit of production, for a

recommended release plan and associated

improved BPN, as a function of BPN

throughput, and 3) developing an atomic

service model that is driven by output

throughputs in addition to the model driven

input throughputs..

The benefits of the above contributions are:

1) making the cost model more realistic and

allowing a cost to be incurred my multiple

features, 2) providing a decision maker with

analytical results showing how sensitive the

recommendation is to certain changes in

parameters, and 3) allowing a natural way to

model process that are output driven or that are

driven by both input and output, which

increases the practicality of the framework.

Potential future work involve comparing

Opti-Soft+ with other frameworks such as the

popular Incremental Funding Methodology

(Cleland-Huang & Denne,2005) and conducting

a case study.

APPENDIX 1: FORMAL MODEL

WITH EXTENSIONS

A1. Release Scheduling

Formalization

ReleaseScheduling (RSch) formalization is a

tuple ⟨Parameters, DecisionVariables, Computation,

Constraints, InterfaceMetrics⟩

where:

Parameters, also denoted Parm, is a tuple

⟨Features, TH, DiscountRate, ReleaseInfo, RestSet,

ResCost, FeatureRes, BSN.Parameters,

SWD.Parameters⟩

Where Features is a tuple ⟨BF, TF, DG, FS ⟩

where:

• BF is a set of business features

• TF is a set of technical features, such that
𝐵𝐹 ∩ 𝑇𝐹 = ∅

• DG, (Dependency Graph), is a partial order

over F = BF ∪ TF, (f1, f2) ∈ DG also denoted

f1 ≺ f2, means that f2 is dependent on f1, that is,

feature f1 is a pre-requisite for feature f2.

• 𝑭𝑺: 𝐹 → ℝ+ is a function described as follows:

(∀ 𝑓 ∈ 𝐹), 𝐹𝑆(𝑓) gives the size, in effort point,

of each feature 𝑓.

• TH is the time horizon for analysis in days

• DiscountRate is the daily rate to discount cash

flows.

• ReleaseInfo is a tuple ⟨NR, RD ⟩, where:

• NR is the number or releases

• 𝑹𝑫 ∶ [1. . 𝑁𝑅] → ℝ+ is a function described

as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅]), 𝑅𝐷(𝑟) gives the

maximum duration in days for release 𝑟.

• 𝑹𝒆𝒔𝑺𝒆𝒕 is a set of non-labor resources that

have a fixed-cost

• 𝑹𝒆𝒔𝑪𝒐𝒔𝒕: 𝑅𝑒𝑠𝑆𝑒𝑡 → ℝ+ is a function

described as follows: (∀ 𝑒 ∈ 𝑅𝑒𝑠𝑆𝑒𝑡),

𝑅𝑒𝑠𝐶𝑜𝑠𝑡(𝑒) gives the non-labor fixed cost for

resource 𝑒.

• 𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝑹𝒆𝒔: 𝐹 → 2𝑅𝑒𝑠𝑆𝑒𝑡is a function

described as follows: (∀𝑓 ∈ 𝐵𝐹 ∪ 𝑇𝐹, ∀𝑒 ∈

𝑅𝑒𝑠𝑆𝑒𝑡), 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑅𝑒𝑠(𝑓) gives a set of

resources 𝑒 required by feature 𝑓.

• BSN.Parameters is defined in section 4.2

• SWD.Parameters is defined in section 4.7

DecisionVariables, also denoted DV, is a tuple
⟨𝐼𝐵𝐹, 𝐼𝑇𝐹, 𝐵𝑆𝑁. 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠,
𝑆𝑊𝐷.𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠⟩

where:

• 𝑰𝑩𝑭 ∶ [1. . 𝑁𝑅] → 2𝐵𝐹 is a function described as

follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅]), 𝐼𝐵𝐹(𝑟) gives a set of

business features planned to be implemented

in release 𝑟.

• 𝑰𝑻𝑭 ∶ [1. . 𝑁𝑅] → 2𝐵𝐹 is a function described as

follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅]), 𝐼𝑇𝐹(𝑟) gives a set of

technical features planned to be implemented

in release 𝑟.

• 𝑩𝑺𝑵.𝑫𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 is defined in section

A.2.

• 𝑺𝑾𝑫.𝑫𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 is defined in

section A.8.

Computation

1. Let 𝑆𝑜𝐹𝑎𝑟𝐼𝐵𝐹: [1. . 𝑁𝑅 + 1] → 2𝐵𝐹 be a function

described as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑆𝑜𝐹𝑎𝑟𝐼𝐵𝐹(𝑟) gives the set of all business

features implemented up to release 𝑟 or the

period after the last release, computed as

follows:

𝑆𝑜𝐹𝑎𝑟𝐼𝐵𝐹(𝑟) = ⋃𝐼𝐵𝐹(𝑖)

𝑟−1

𝑖=1

2. Let 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤: [1. . 𝑇𝐻] → ℝ be a

function described as follows: (∀ 𝑑 ∈

[1. . 𝑇𝐻]), 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑) gives the

combined income/expenditure of both the

Business Service Network and the Software

Development, (∀ 𝑑 ∈ [1. . 𝑇𝐻]), computed as

follows:
𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)

= 𝐵𝑆𝑁. 𝐼𝑀. 𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤(𝑑)
+ 𝑆𝑊𝐷. 𝐼𝑀. 𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)

where:

• BSN.IM.CashFlow is defined in section

BSN.InterfaceMetrics of section A.2

• SWD.IM.CashFlow is defined in section

Software.InterfaceMetrics of section A.8.

Note that a negative cash flow means that it is a

cash outflow.

13

3. Let 𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝑁𝑃𝑉: [1. . 𝑇𝐻] → ℝ be a

function described as follows: (∀ 𝑑 ∈ [1. . 𝑇𝐻]),

𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝑁𝑃𝑉(𝑑) gives the Net Present

Value (NPV) of the CombinedCashFlow for the

time investment window[1. . 𝑑], computed as

follows:

𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝑁𝑃𝑉(𝑑)

=∑
𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑖)

(1 + 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑅𝑎𝑡𝑒)𝑖

𝑑

𝑖=1

4. Let F = BF ∪ TF

5. Let 𝐼𝐹(𝑟) = 𝐼𝐵𝐹(𝑟) ∪ 𝐼𝑇𝐹(𝑟), (∀𝑟 ∈ [1. . 𝑁𝑅])

6. FeatureSetsForReleasesArePairwiseDisjoint

constraint is:
(∀ 𝑖, 𝑗, ∈ [1. . 𝑁𝑅], 𝑖 ≠ 𝑗), 𝐼𝐹(𝑖) ∩ 𝐼𝐹(𝑗) = ∅

7. DependencyGraphIsSatisfied constraint is:

(∀𝑟 ∈ [1. . 𝑁𝑅])(∀ 𝑓1, 𝑓2 ∈ 𝐹),

 (𝑓1 ≺ 𝑓2 ∧ 𝑓2 ∈ 𝐼𝐹(𝑟)) → (𝑓1 ∈ ⋃𝐼𝐹(𝑖)

𝑟

𝑖=1

)

Constraints

1. FeatureSetsForReleasesArePairwiseDisjoint

is defined in computation #6 above.

2. DependencyGraphIsSatisfied is defined in

computation #7 above.

3. BSN.Constraints is defined in section A.2.

4. SWD.Constraints is defined in section A.8.

InterfaceMetrics, also denoted IM, is a tuple
⟨𝑆𝑜𝐹𝑎𝑟𝐼𝐵𝐹, 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤,
𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝑁𝑃𝑉, 𝐵𝑆𝑁. 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐𝑠,

𝑆𝑊𝐷. 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐𝑠 ⟩,

where:

• 𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅𝑪𝒂𝒔𝒉𝑭𝒍𝒐𝒘 is defined in

computation #2 above.

• 𝑻𝒊𝒎𝒆𝑾𝒊𝒏𝒅𝒐𝒘𝑵𝑷𝑽 is defined in computation

#3 above.

• BSN.InterfaceMetrics is defined in section A.2

• SWD.InterfaceMetrics is defined in section

A.8

A2. Business Service Network

Formalization

BusinessServiceNetwork formalization, also

denoted BSN, is a tuple ⟨Parameters,

DecisionVariables, Computation, Constraints,

InterfaceMetrics⟩, where:

Parameters, also denoted Parm, is a tuple

⟨LaborRates, LaborPaySched, BSNDemand,

ServicesSet, rootID⟩,

where:

• LaborRates is a tuple ⟨LR, Rate⟩ where:

• LR is a set of labor roles

• 𝑹𝒂𝒕𝒆: 𝐿𝑅 → ℝ+ is a function described as

follows: (∀ 𝑙 ∈ 𝐿𝑅), 𝑅𝑎𝑡𝑒(𝑙) gives the daily

rate for labor role 𝑙.

• LaborPaySched, the labor cost payment

schedule, is a tuple ⟨𝑁𝐿𝑃, 𝐿𝑎𝑏𝑜𝑟𝑃𝑎𝑦𝐷𝑎𝑦𝑠⟩,

where:

• 𝑵𝑳𝑷 ∈ ℝ+is the number of labor payments

over the entire time horizon

• 𝑳𝒂𝒃𝒐𝒓𝑷𝒂𝒚𝑫𝒂𝒚: [1. . 𝑁𝐿𝑃] → [1. . 𝑇𝐻] is a

function described as follows: (∀ 𝑝 ∈

 [1. . 𝑁𝐿𝑃), 𝐿𝑎𝑏𝑜𝑟𝑃𝑎𝑦𝐷𝑎𝑦(𝑝) gives the day,

relative to the first day of the time horizon,

on which a payment 𝑝 is made.

• BSNDemand, is a tuple

⟨𝐵𝑆𝑁𝐼, 𝐵𝑆𝑁𝑂, 𝐷𝑒𝑚𝑎𝑛𝑑⟩,

where:

• BSNI is a set of input flow ids that have to

be processed by the Service Network.

• BSNO is a set of output flow ids that have

to be produced by the Service Network.

• 𝑫𝒆𝒎𝒂𝒏𝒅: 𝐵𝑆𝑁𝐼 ⋃𝐵𝑆𝑁𝑂 → ℝ+ is a function

described as follows: (∀ 𝑗 ∈ 𝐵𝑆𝑁𝐼 ⋃𝐵𝑆𝑁𝑂),

𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) gives for every flow 𝑗, the

required processing throughput per hour.

• ServicesSet is the set of all services in the

Service Network, defined in section A.3.

• 𝒓𝒐𝒐𝒕𝑰𝑫 is the id of the Service, in the

ServicesSet, which is designated to be the

“root”. The definition of a Service is given in

section A.3.

DecisionVariables is the set

{𝑠. 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 | 𝑠 ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑆𝑒𝑡}. See

section A.3.

Computation

1. Let root be a Service in ServicesSet with

id=rootid

2. 𝐵𝑆𝑁𝐷𝑒𝑚𝑎𝑛𝑑𝐼𝑠𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 constraint:

(∀ 𝑖 ∈ 𝐵𝑆𝑁𝐼) (∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]),
𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑟𝑜𝑜𝑡𝐼𝐷, 𝑖, 𝑟)

≥ 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑖)

• 𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑟𝑜𝑜𝑡𝐼𝐷, 𝑟) is defined

in section A.3.

3. 𝐵𝑆𝑁𝑆𝑢𝑝𝑝𝑙𝑦𝐼𝑠𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 constraint:

(∀ 𝑜 ∈ 𝐵𝑆𝑁𝑂) (∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]),
𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑟𝑜𝑜𝑡𝐼𝐷, 𝑜, 𝑟)

≥ 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑜)

• 𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑟𝑜𝑜𝑡𝐼𝐷, 𝑜, 𝑟) is

defined in section A.3.

4. Let 𝐵𝑆𝑁𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦 ∶ [1. . 𝑇𝐻] → ℝ+be a

function described as follows: (∀ 𝑑 ∈ [1. . 𝑇𝐻]),

𝐵𝑆𝑁𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑) gives the service network

labor cost accrued for day 𝑑 computed as:

𝐵𝑆𝑁𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑)
= 𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟𝑜𝑜𝑡𝐼𝐷, 𝑟)

Where:

• r is the release period (or period after the last

release) where day d appears, i.e.,
𝑆𝑊𝐷. 𝐼𝑀. 𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟) ≤ 𝑑 ≤ 𝑆𝑊𝐷. 𝐼𝑀. 𝑙𝑎𝑠𝑡𝐷𝑎𝑦(𝑟)

• 𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟𝑜𝑜𝑡𝐼𝐷, 𝑟) is

defined in section A.3.

• 𝑆𝑊𝐷. 𝐼𝑀. 𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦 and 𝑆𝑊𝐷. 𝐼𝑀. 𝑙𝑎𝑠𝑡𝐷𝑎𝑦

are defined in section A.8.

5. Let 𝐵𝑆𝑁𝑃𝑎𝑦𝑚𝑒𝑛𝑡: [1. . 𝑁𝐿𝑃] → ℝ be a function

described as follows: (∀ 𝑝 ∈ [1. . 𝑁𝐿𝑃]),

𝐵𝑆𝑁𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑝) gives the service network

labor payment in dollars, for each scheduled

payment 𝑝, computed as:

𝐵𝑆𝑁𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑝)

=

{

∑ 𝐵𝑆𝑁𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑)

𝐿𝑎𝑏𝑜𝑟𝑃𝑎𝑦𝐷𝑎𝑦(𝑝)

𝑑=1

 ∀𝑝 = 1

∑
𝐵𝑆𝑁𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑)

∀𝑝 = [2. . 𝑁𝐿𝑃]

𝐿𝑎𝑏𝑜𝑟𝑃𝑎𝑦𝐷𝑎𝑦(𝑝)

𝑑=𝐿𝑎𝑏𝑜𝑟𝑃𝑎𝑦𝐷𝑎𝑦(𝑝−1)+1

6. Let 𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤 ∶ [1. . 𝑇𝐻] → ℝ+ be a function

described as follows: (∀ 𝑑 ∈

[1. . 𝑇𝐻]), 𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑) gives the cash flow for

the entire Business Service Network for day 𝑑,

computed as follows:

𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)

= {
−𝐵𝑆𝑁𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑝) 𝑖𝑓 ∃𝑝|𝑑 = 𝐿𝑎𝑏𝑜𝑟𝑃𝑎𝑦𝐷𝑎𝑦(𝑝)
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Constraints

1. 𝑩𝑺𝑵𝑫𝒆𝒎𝒂𝒏𝒅𝑰𝒔𝑺𝒂𝒕𝒊𝒔𝒇𝒊𝒆𝒅(see Computation

#2)

2. 𝑩𝑺𝑵𝑺𝒖𝒑𝒑𝒍𝒚𝑰𝒔𝑺𝒂𝒕𝒊𝒔𝒇𝒊𝒆𝒅 (see Computation

#3)

3. 𝑺𝒆𝒓𝒗𝒊𝒄𝒆. 𝑰𝑴(𝒓𝒐𝒐𝒕𝑰𝑫, 𝒓). 𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔
(See section A.3)

InterfaceMetrics, also denoted IM, is a tuple

⟨𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤⟩, where:

• 𝑪𝒂𝒔𝒉𝑭𝒍𝒐𝒘 is defined in computation #6

above.

A3. Service Formalization

ServicesSet formalization is a set of Service,

where:

Service is a tuple ⟨Parameters, DecisionVariables,

Computation, Constraints, InterfaceMetrics⟩,

defined separately for each 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑦𝑝𝑒 ∈
{𝐴𝑁𝐷𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑂𝑅𝑠𝑒𝑟𝑣𝑖𝑐𝑒,
𝐼𝑛𝑝𝑢𝑡𝐷𝑟𝑖𝑣𝑒𝑛𝐴𝑡𝑜𝑚𝑖𝑐𝑆𝑒𝑟𝑣𝑖𝑐𝑒}

Every service has an id and a ServiceType.

We denote by 𝑠𝑒𝑟𝑣𝑖𝑐𝑒(𝑖𝑑) the service with

identifier id. Service is a container for the service

types below and inherent their tuples.

• ANDservice type is defined in section A.4.

• ORservice type is defined in section A.5.

• InputDrivenAtomicService type is defined in

section A.6.

• OutputDrivenAtomicService type is defined

in section A.7.

A4. ANDservice Formalization

Intuitively, an ANDservice is a composite

service, that is, an aggregation of sub-services

such that all sub-services are activated.

ANDservice formalization is a tuple ⟨Parameters,

DecisionVariables, Computation, Constraints,

InterfaceMetrics⟩

where:

Parameters, also denoted Parm, is a tuple ⟨id,

ServiceType(id),I(id),O(id), Subservices(id)⟩

where:

• id is the Service id, which must be unique

across all services in the ServicesSet.

• I(id) is a set of inputs

• O(id) is a set of outputs

• Subservices(id) is a set of the ids of the sub-

services.

• ServiceType(id) is ANDservice.

15

DecisionVariables, also denoted DV, is a tuple
⟨𝑂𝑛(𝑖𝑑)⟩

where:

• 𝑶𝒏(𝒊𝒅): [1. . 𝑁𝑅 + 1] → {0,1} is a function that

determines whether the Service id is activated

or not, for a particular release, i.e., (∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝑂𝑛(𝑖𝑑)(𝑟), also denoted by

On(id,r) is as follows:

𝑂𝑛(𝑖𝑑, 𝑟)

= {
1 𝑖𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑑 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑖𝑛 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Computation

1. AllSubservicesAreActivated constraint:

Let n be the cardinality of Subservices(id). Then

the constraint is:

∑ 𝑂𝑛(𝑖, 𝑟) = 𝑛 ∗ 𝑂𝑛(𝑖𝑑, 𝑟),

𝑖 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]

2. Let 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑) be a set of inputs and outputs,

computed as follows:

𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑)

= 𝐼(𝑖𝑑)⋃𝑂(𝑖𝑑)⋃(⋃ 𝐼(𝑖)

𝑖 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

)

⋃(⋃ 𝑂(𝑖)

𝑖 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

)

3. Let 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑): 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂 × [1. . 𝑁𝑅 +

1] → ℝ be a function described as

follows:(∀𝑗 ∈ 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 +

1]) 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑)(𝑗, 𝑟), also denoted

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟), gives the internal

supply of flow 𝑗 during release 𝑟 (and the

period after the last release), computed as

follows:

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟)

= {
∑ 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑠, 𝑗, 𝑟) 𝑖𝑓 𝑗 ∈ 𝑂(𝑠)

𝑠 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

4. Let 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑): 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂 × [1. . 𝑁𝑅 +

1] → ℝ be a function described as

follows:(∀𝑗 ∈ 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 +

1])𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑)(𝑗, 𝑟), also denoted

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟), gives the internal

demand of flow 𝑗 during release 𝑟 (and the

period after the last release), computed as

follows:

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟)

= {
∑ 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑠, 𝑗, 𝑟) 𝑖𝑓 𝑗 ∈ 𝐼(𝑠)

𝑠 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

5. Let 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑): 𝐼(𝑖𝑑) × [1. . 𝑁𝑅 + 1] → ℝ+

be a function described as follows: (∀ 𝑖 ∈

𝐼 (𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]), 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)(𝑖, 𝑟),

also denoted 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟), gives the

throughput of 𝑖 (or quantity per day) during

release 𝑟 or the period after the last release,

computed as
 ∀𝑖 ∈ 𝐼(𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1],

 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟)
= 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑖, 𝑟)
− 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑖, 𝑟)

6. Let 𝑂𝑢𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑): 𝑂(𝑖𝑑) × [1. . 𝑁𝑅 + 1] → ℝ+

be a function described as follows: (∀ 𝑜 ∈

𝑂 (𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)(𝑜, 𝑟), also denoted

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟), gives the throughput of

𝑜 (or quantity per day) during release 𝑟 or the

period after the last release, computed as
 ∀ 𝑜 ∈ 𝑂(𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1],

 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟)
= 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑜, 𝑟)
− 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑜, 𝑟)

7. Let 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑): 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂 × [1. . 𝑁𝑅 +

1] → ℝ be a function described as follows:

(∀𝑗 ∈ 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 +

1]) 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑)(𝑗, 𝑟), also denoted

𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟), gives the total demand

of flow 𝑗 during release 𝑟 (and the period after

the last release), computed as follows:

𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟)

= {
𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟) + 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟) 𝑖𝑓 𝑗 ∈ 𝑂(𝑖𝑑)

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

8. Let 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑): 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂 × [1. . 𝑁𝑅 +

1] → ℝ be a function described as follows:

(∀𝑗 ∈ 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 +

1]) 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑)(𝑗, 𝑟), also denoted

𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟), gives the total supply of

flow 𝑗 during release 𝑟 (and the period after

the last release), computed as follows:

𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟)

= {
𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟) + 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟) 𝑖𝑓 𝑗 ∈ 𝐼(𝑖𝑑)

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

9. TotalSupplyMatchesTotalDemand constraint is:
∀ 𝑗 ∈ 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1],

𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟) = 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟)

10. Let 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ be a

function described as follows: (∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also

denoted 𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟), gives the total

dollar cost per day during period r and the

period after the last period, computed as:

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)

= ∑ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖, 𝑟)

𝑖 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

Constraints are as follows:

1. AllSubservicesAreActivated (see computation

#1)

2. TotalSupplyMatchesTotalDemand (see

computation # 9)

InterfaceMetrics, also denoted IM, is a tuple

⟨CostPerDay(id), InputThru(id), OutputThru(id)⟩

where:

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑫𝒂𝒚(𝑖𝑑) is defined in computation

#10 above.

• 𝑰𝒏𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in computation #5

above.

• 𝑶𝒖𝒕𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in computation #6

above.

A5. ORservice Formalization

Intuitively, an ORservice is a composite service,

that is, an aggregation of sub-services such that

only one sub-services is activated.

ORservice formalization is a tuple ⟨Parameters,

DecisionVariables, Computation, Constraints,

InterfaceMetrics⟩

where:

Parameters, also denoted Parm, is a tuple
⟨𝑖𝑑, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑦𝑝𝑒(𝑖𝑑), 𝐼(𝑖𝑑), 𝑂(𝑖𝑑), 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)⟩

where:

• id is the Service id, which must be unique

across all services in the ServicesSet.

• I(id) is a set of inputs

• O(id) is a set of outputs

• Subservices(id) is a set of the ids of the sub-

services.

• ServiceType(id) is ORservice.

DecisionVariables, also denoted DV, is a tuple
⟨𝑂𝑛(𝑖𝑑), 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑), 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)⟩

where:

• 𝑶𝒏(𝑖𝑑): [1. . 𝑁𝑅 + 1] → {0,1} is a function that

determines whether the Service id is activated

or not, for a particular release, i.e., (∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝑂𝑛(𝑖𝑑)(𝑟), also denoted by

On(id,r) is as follows:

𝑂𝑛(𝑖𝑑, 𝑟)

= {
1 𝑖𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑑 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑖𝑛 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Computation

1. OnlyOneServiceIsActivated constraint:

∑ 𝑂𝑛(𝑖, 𝑟) = 𝑂𝑛(𝑖𝑑, 𝑟),

𝑖 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]

2. Same as ANDservice computation #2

3. Same as ANDservice computation #3

4. Same as ANDservice computation #4

5. Same as ANDservice computation #5

6. Same as ANDservice computation #6

7. Same as ANDservice computation #7

8. Same as ANDservice computation #8

9. Same as ANDservice computation #9

10. Same as ANDservice computation #10

Constraints are as follows:

1. OnlyOneServiceIsActivated (see computation

#1)

3. TotalSupplyMatchesTotalDemand (see

computation # 9)

InterfaceMetrics, also denoted IM, is a tuple

⟨CostPerDay(id), InputThru(id), OutputThru(id)⟩

where:

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑫𝒂𝒚(𝑖𝑑) is defined in computation

#10 above.

• 𝑰𝒏𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in computation #5

above.

17

• 𝑶𝒖𝒕𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in computation #6

above.

A6. InputDrivenAtomicService

Formalization

Intuitively, an InputDrivenAtomicService is an

indivisible, atomic, service which’s throughput

is driven by the number of inputs that it needs to

consume, for example, a process that receives

applications and adjudicates them.

InputDrivenAtomicService formalization is a

tuple ⟨Parameters, DecisionVariables, Computation,

Constraints, InterfaceMetrics⟩

Parameters, also denoted Parm, is a tuple
⟨𝑖𝑑, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑦𝑝𝑒(𝑖𝑑), 𝐼(𝑖𝑑), 𝑂(𝑖𝑑), 𝑅𝐵𝐹(𝑖𝑑),
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑), 𝐼𝑂𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑),
𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐼𝑂(𝑖𝑑), 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦,
𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡, 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡⟩

where:

• id is the Service id.

• I(id) is a set of inputs

• O(id) is a set of outputs

• 𝑹𝑩𝑭(𝑖𝑑) ⊆ 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔. 𝑃𝑎𝑟𝑚. 𝐵𝐹 is a

set of business features required by Service id

• 𝑺𝒆𝒓𝒗𝒊𝒄𝒆𝑹𝒐𝒍𝒆𝒔(𝑖𝑑) ⊆ 𝐵𝑆𝑁. 𝑃𝑎𝑟𝑚. 𝐿𝑅 is a set of

roles involved in the business service.

• 𝑰𝑶𝒕𝒉𝒓𝒖𝑹𝒂𝒕𝒊𝒐(𝑖𝑑): 𝐼(𝑖𝑑) × 𝑂(𝑖𝑑) → ℝ+ is a

function described as follows: (∀ 𝑖 ∈ 𝐼(𝑖𝑑)),

(∀ 𝑜 ∈ 𝑂(𝑖𝑑)), 𝐼𝑂𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑)(𝑖, 𝑜) also

denoted as 𝐼𝑂𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑, 𝑖, 𝑜), gives for

input 𝑖 and output 𝑜, the ratio of output

throughput based on the input throughput.

• 𝑹𝒐𝒍𝒆𝑻𝒊𝒎𝒆𝑷𝒆𝒓𝑰𝑶(𝑖𝑑): 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑) ×

(𝐼(𝑖𝑑)⋃𝑂(𝑖𝑑)) → ℝ+ is a function described

as follows: (∀ 𝑙 ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑), ∀ 𝑗 ∈

𝐼(𝑖𝑑)⋃𝑂(𝑖𝑑)), 𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐼𝑂(𝑖𝑑)(𝑙, 𝑗), also

denoted as 𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐼𝑂(𝑖𝑑, 𝑙, 𝑗), gives the

amount of time, in hours, that role 𝑙 spends

per flow 𝑗.

• 𝑺𝒆𝒓𝒗𝒊𝒄𝒆𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑫𝒂𝒚: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑆𝑒𝑡 → ℝ+ is a

function described as follows: (∀ 𝑠 ∈

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑆𝑒𝑡), 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑠) gives

the non-labor fixed cost of service s for each

day.

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑰𝒏𝒑𝒖𝒕(𝑖𝑑): 𝐼(𝑖𝑑) → ℝ+ is a function

described as follows: (∀ 𝑖 ∈ 𝐼(𝑖𝑑)),

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡(𝑖𝑑)(𝑖), also denoted as

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡(𝑖𝑑, 𝑖), gives the non-labor fixed

cost for each input i processed by the service

id.

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑶𝒖𝒕𝒑𝒖𝒕(𝑖𝑑): 𝑂(𝑖𝑑) → ℝ+ is a

function described as follows: (∀ 𝑜 ∈ 𝑂(𝑖𝑑)),

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡(𝑖𝑑)(𝑜), also denoted as

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡(𝑖𝑑, 𝑜), gives the non-labor fixed

cost for each output o processed by the service

id.

• ServiceType(id) is InputDrivenAtomicService

DecisionVariables, also denoted DV, is a tuple
⟨𝑂𝑛(𝑖𝑑), 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)⟩

where:

• 𝑶𝒏(𝑖𝑑): [1. . 𝑁𝑅 + 1] → {0,1} is a function that

determines whether the Service id is activated

or not, for a particular release, i.e., (∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝑂𝑛(𝑖𝑑)(𝑟), also denoted by

On(id,r) is as follows:

𝑂𝑛(𝑖𝑑, 𝑟)

= {
1 𝑖𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑑 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑖𝑛 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑰𝒏𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑): 𝐼(𝑖𝑑) × [1. . 𝑁𝑅 + 1] → ℝ+ is a

function described as follows: (∀ 𝑖 ∈

𝐼 (𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]), 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)(𝑖, 𝑟),

also denoted 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟), gives the

throughput of 𝑖 (or quantity per day) during

release 𝑟 or the period after the last release.

Computation

1. FeatureDependencyIsSatisfied constraint:

 𝑂𝑛(𝑖𝑑, 𝑟) = 1 → 𝑅𝐵𝐹(𝑖𝑑) ⊆ 𝑅𝑆𝑐ℎ. 𝐼𝑀. 𝑆𝑜𝐹𝑎𝑟𝐼𝐵𝐹(𝑟)

∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]

2. DeactivatedServicesIsSatisfied constraint:

∀ 𝑖 ∈ 𝐼(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 + 1],
𝑂𝑛(𝑖𝑑, 𝑟) = 0 → 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟) = 0

3. Let 𝑂𝑢𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑): 𝑂(𝑖𝑑) × [1. . 𝑁𝑅 + 1] →

ℝ+ be a function described as follows: (∀ 𝑜 ∈

𝑂 (𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)(𝑜, 𝑟), also denoted

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟), gives the throughput of

𝑜 (or quantity per day) during release 𝑟 or the

period after the last release, computed as

∀ 𝑜 ∈ 𝑂(𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1],

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟)

= ∑ (𝐼𝑂𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑, 𝑖, 𝑜)

𝑖∈𝐼(𝑖𝑑)

× 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟))

4. Let 𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] ×

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑) → ℝ+ be a function

described as follows: (∀ 𝑙 ∈

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑), 𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑙, 𝑟), also denoted

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑙, 𝑟), gives the total duration

per day for role 𝑙 and release 𝑟 (and the

period after the last release), computed as:

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑙, 𝑟)

= ∑ (𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐼𝑂(𝑖𝑑, 𝑙, 𝑗)

𝑗∈𝐼(𝑖𝑑)

× 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟))

+ ∑ (𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐼𝑂(𝑖𝑑, 𝑙, 𝑗)

𝑗∈𝑂(𝑖𝑑)

× 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟))

5. Let 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ

be a function described as follows:(∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also

denoted 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟), gives the

total labor cost per day during release r,

computed as follows:

𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)

= ∑ (𝐵𝑆𝑁. 𝑃𝑎𝑟𝑚. 𝑅𝑎𝑡𝑒(𝑙)

𝑙∈𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠

× 𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑙, 𝑟))

6. Let 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ

be a function described as follows:(∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also

denoted 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟), gives the

total non-labor cost per day for all input and

output flows processed during release r,

computed as follows:

𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)

= ∑ (𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡(𝑖𝑑, 𝑗)

𝑗∈𝐼(𝑖𝑑)

× 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟))

+ ∑ (𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡(𝑖𝑑, 𝑗)

𝑗∈𝑂(𝑖𝑑)

× 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟))

7. Let 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ be a

function described as follows:(∀ 𝑟 ∈ [1. . 𝑁𝑅 +

1]), 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also denoted

𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟), gives the total cost per

day during release r, computed as follows:

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)
= 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)
+ 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)
+ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)
∗ 𝑂𝑛(𝑖𝑑)

Constraints are as follows:

1. FeatureDependencyIsSatisfied (see

computation #1)

2. DeactivatedServicesIsSatisfied (see

computation #2)

InterfaceMetrics, also denoted IM, is a tuple

⟨CostPerDay(id), InputThru(id), OutputThru(id)⟩

where:

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑫𝒂𝒚(𝑖𝑑) is defined in computation

#7.

• 𝑰𝒏𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in

DecisionVariables.

• 𝑶𝒖𝒕𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in computation

#3.

A.7 OutputDrivenAtomicService

Formalization

Intuitively, an OutputDrivenAtomicService is

an indivisible, atomic service which’s

throughput is driven by the number of outputs

that it needs to produce, for example, a service

that produces a report.

OutputDrivenAtomicService formalization is a

tuple ⟨Parameters, DecisionVariables, Computation,

Constraints, InterfaceMetrics⟩

Parameters, also denoted Parm, is a tuple
⟨𝑖𝑑, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑦𝑝𝑒(𝑖𝑑), 𝐼(𝑖𝑑), 𝑂(𝑖𝑑), 𝑅𝐵𝐹(𝑖𝑑),
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑), 𝑂𝐼𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑),
𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝐼(𝑖𝑑)⟩

where:

• id is the Service id.

• I(id) is a set of inputs

• O(id) is a set of outputs

• 𝑹𝑩𝑭(𝑖𝑑) ⊆ 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔. 𝑃𝑎𝑟𝑚. 𝐵𝐹 is a

set of business features required by Service id

• 𝑺𝒆𝒓𝒗𝒊𝒄𝒆𝑹𝒐𝒍𝒆𝒔(𝑖𝑑) ⊆ 𝐵𝑆𝑁. 𝑃𝑎𝑟𝑚. 𝐿𝑅 is a set of

roles involved in the business service.

19

• 𝑶𝑰𝒕𝒉𝒓𝒖𝑹𝒂𝒕𝒊𝒐(𝑖𝑑): 𝑂(𝑖𝑑) × 𝐼(𝑖𝑑) → ℝ+ is a

function described as follows: (∀ 𝑜 ∈ 𝑂(𝑖𝑑)),

(∀ 𝑖 ∈ 𝐼(𝑖𝑑)), 𝑂𝐼𝑂𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑)(𝑖, 𝑜) also

denoted as 𝑂𝐼𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑, 𝑖, 𝑜), gives for

output 𝑜 and input 𝑖, the ratio of input

throughput based the output throughput.

• 𝑹𝒐𝒍𝒆𝑻𝒊𝒎𝒆𝑷𝒆𝒓𝑶𝑰(𝑖𝑑): 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑) ×

(𝑂(𝑖𝑑)⋃ 𝐼(𝑖𝑑)) → ℝ+ is a function described

as follows: (∀ 𝑙 ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑), ∀ 𝑗 ∈

𝑂(𝑖𝑑)⋃ 𝐼(𝑖𝑑)), 𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝐼(𝑖𝑑)(𝑙, 𝑗), also

denoted as 𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝐼(𝑖𝑑, 𝑙, 𝑗), gives the

amount of time, in hours, that role 𝑙 spends

per flow 𝑗.

• 𝑺𝒆𝒓𝒗𝒊𝒄𝒆𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑫𝒂𝒚: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑆𝑒𝑡 → ℝ+ is a

function described as follows: (∀ 𝑠 ∈

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑆𝑒𝑡), 𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑠) gives the

non-labor fixed cost of service s for each day.

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑰𝒏𝒑𝒖𝒕(𝑖𝑑): 𝐼(𝑖𝑑) → ℝ+ is a function

described as follows: (∀ 𝑖 ∈ 𝐼(𝑖𝑑)),

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡(𝑖𝑑) gives the non-labor fixed

cost for each input i processed by the service

id.

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑶𝒖𝒕𝒑𝒖𝒕(𝑖𝑑): 𝑂(𝑖𝑑) → ℝ+ is a

function described as follows: (∀ 𝑜 ∈ 𝑂(𝑖𝑑)),

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡(𝑖𝑑) gives the non-labor fixed

cost for each output o processed by the service

id.

• ServiceType(id) is InputDrivenAtomicService

DecisionVariables, also denoted DV, is a tuple
⟨𝑂𝑛(𝑖𝑑), 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)⟩

where:

• 𝑶𝒏(𝑖𝑑): [1. . 𝑁𝑅 + 1] → {0,1} is a function that

determines whether the Service id is activated

or not, for a particular release, i.e., (∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝑂𝑛(𝑖𝑑)(𝑟), also denoted by

On(id,r) is as follows:

𝑂𝑛(𝑖𝑑, 𝑟)

= {
1 𝑖𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑑 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑖𝑛 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• 𝑶𝒖𝒕𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑): 𝑂(𝑖𝑑) × [1. . 𝑁𝑅 + 1] → ℝ+

is a function described as follows: (∀𝑜 ∈

𝑂(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)(𝑜, 𝑟), also denoted

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟), gives the throughput of

𝑜 (or quantity per day) during release 𝑟 or the

period after the last release.

Computation

1. FeatureDependencyIsSatisfied constraint:

 𝑂𝑛(𝑖𝑑, 𝑟) = 1 → 𝑅𝐵𝐹(𝑖𝑑) ⊆ 𝑅𝑆𝑐ℎ. 𝐼𝑀. 𝑆𝑜𝐹𝑎𝑟𝐼𝐵𝐹(𝑟)

∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]

2. DeactivatedServicesIsSatisfied constraint:

∀ 𝑜 ∈ 𝑂(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 + 1],
𝑂𝑛(𝑖𝑑, 𝑟) = 0 → 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟) = 0

3. Let 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑): 𝐼(𝑖𝑑) × [1. . 𝑁𝑅 + 1] → ℝ+

be a function described as follows: (∀ 𝑖 ∈

𝐼(𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]), In𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)(𝑖, 𝑟),

also denoted 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟), gives the

throughput of 𝑖 (or quantity per day) during

release 𝑟 or the period after the last release,

computed as

∀ 𝑖 ∈ 𝐼(𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1],
𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟)

= ∑ (𝑂𝐼𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑, 𝑜, 𝑖)

𝑜∈𝑂(𝑖𝑑)

× 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟))

4. Let 𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] ×

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑) → ℝ+ be a function

described as follows: (∀ 𝑙 ∈

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑), 𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑙, 𝑟), also denoted

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑙, 𝑟), gives the total duration

per day for role 𝑙 and release 𝑟 (and the period

after the last release), computed as:

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑙, 𝑟)

= ∑ (𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝐼(𝑖𝑑, 𝑙, 𝑗)

𝑗∈𝐼(𝑖𝑑)

× 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟))

+ ∑ (𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝐼(𝑖𝑑, 𝑙, 𝑗)

𝑗∈𝑂(𝑖𝑑)

× 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟))

5. Let 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ

be a function described as follows:(∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also

denoted 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟), gives the

total labor cost per day during release r,

computed as follows:

𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)

= ∑ (𝐵𝑆𝑁. 𝑃𝑎𝑟𝑚. 𝑅𝑎𝑡𝑒(𝑙)

𝑙∈𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠

× 𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑙, 𝑟))

6. Let 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ be

a function described as follows:(∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also

denoted 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟), gives the

total non-labor cost per day for all input and

output flows processed during release r,

computed as follows:

𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)

= ∑ (𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡(𝑖𝑑)

𝑗∈𝐼(𝑖𝑑)

× 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟))

+ ∑ (𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡(𝑖𝑑)

𝑗∈𝑂(𝑖𝑑)

× 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟))

7. Let 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ be a

function described as follows:(∀ 𝑟 ∈ [1. . 𝑁𝑅 +

1]), 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also denoted

𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟), gives the total cost per day

during release r, computed as follows:

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)
= 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)
+ 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)
+ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)
∗ 𝑂𝑛(𝑖𝑑)

Constraints are as follows:

1. FeatureDependencyIsSatisfied (see

computation #1)

2. DeactivatedServicesIsSatisfied (see

computation #2)

InterfaceMetrics, also denoted IM, is a tuple

⟨CostPerDay(id), InputThru(id), OutputThru(id)⟩

where:

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑫𝒂𝒚(𝑖𝑑) is defined in computation

#7.

• 𝑰𝒏𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in

DecisionVariables.

• 𝑶𝒖𝒕𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in computation

#3.

A8. Software Development

Formalization

SoftwareDevelopment formalization, also

denoted SWD, is a tuple ⟨Parameters,

DecisionVariables, Computation, Constraints,

InterfaceMetrics⟩

where:

Parameters, also denoted Parm, is a tuple ⟨TS,

DP, DC, OC, SS, SWPaySched⟩,

where:

• 𝑻𝑺 ∶ [1. . 𝑁𝑅] → ℝ+ is a function that gives the

team size, in full time equivalents, for each

release.

• 𝑫𝑷 ∶ [1. . 𝑁𝑅] → ℝ+ is a function that gives the

developer productivity for each release in

effort points per day.

• DC ∈ ℝ+ is the developer cost in dollars per

effort point.

• OC ∈ ℝ+ is the operations cost in dollars per

effort point per day.

• SS ∈ ℝ+ is the size, in effort points, of the As-

Is system (prior to development).

• SWPaySched, the software cost payment

schedule, is a tuple ⟨𝑁𝑆𝑃, 𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦𝑠⟩,

where:

• 𝑁𝑆𝑃 ∈ ℝ+is the number of payments

to the software team over the entire

time horizon.

• 𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦: [1. . 𝑁𝑆𝑃] → [1. . 𝑇𝐻] is a

function, i.e. (∀ 𝑝 ∈ [1. . 𝑁𝑆𝑃]),

𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦(𝑝) gives the day (relative

to the first day of the software

development project) where payment

𝑝 is made.

DecisionVariables, also denoted DV, is an

empty tuple.

Computation:

1. Let 𝑅𝐶 ∶ [1. . 𝑁𝑅] → ℝ+be a function described

as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅]), 𝑅𝐶(𝑟) gives the

maximum capacity, in effort points, for release

𝑟 computed as:

𝑅𝐶(𝑟) = 𝑇𝑆(𝑟) × 𝐷𝑃(𝑟) × 𝑅𝑆𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝑅𝐷(𝑟)

2. Let 𝑅𝑆 ∶ [1. . 𝑁𝑅] → ℝ+ be a function described

as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅]), 𝑅𝑆(𝑟) gives the

actual size, in effort points, of release 𝑟, once

features are assigned to it. The computation is

as follows:

21

𝑅𝑆(𝑟)

= (∑ 𝑅𝑆𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝐹𝑆(𝑗)

𝑗∈ 𝑅𝑆𝑐ℎ.𝐷𝑉.𝐼𝐵𝐹(𝑟)

+ ∑ 𝑅𝑆𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝐹𝑆(𝑗)

𝑗∈ 𝑅𝑆𝑐ℎ.𝐷𝑉.𝐼𝑇𝐹(𝑟)

)

3. 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑆𝑖𝑧𝑒𝐶𝑎𝑛𝑛𝑜𝑡𝐸𝑥𝑐𝑒𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

constraint:

0 ≤ 𝑅𝑆(𝑟) ≤ 𝑅𝐶(𝑟) ∀ 𝑟 ∈ [1. . 𝑁𝑅]

4. Let 𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦 ∶ [1. . 𝑁𝑅 + 1] → ℝ+be a function

described as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟) gives the day when release

𝑟 actually starts, computed as:

𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟)

= {
1 𝑟 = 1

𝑅𝑠𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝑅𝐷(𝑟) + 𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟 − 1)∀ 𝑟 = [2. . 𝑁𝑅 + 1]

5. Let 𝑙𝑎𝑠𝑡𝐷𝑎𝑦 ∶ [1. . 𝑁𝑅 + 1] → ℝ+ be a function

described as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑙𝑎𝑠𝑡𝐷𝑎𝑦(𝑟) gives the day when release 𝑟 ends,

computed as:

𝑙𝑎𝑠𝑡𝐷𝑎𝑦(𝑟)

= {
𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟 + 1) − 1 𝑟 = [1. . 𝑁𝑅]

𝑅𝑆𝑐ℎ. 𝑇𝐻 (𝑟 = 𝑁𝑅 + 1)

6. Let 𝑑𝑒𝑣𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦 ∶ [1. . 𝑁𝑅 + 1] → ℝ+ be a

function described as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅 +

1]), 𝑑𝑒𝑣𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟) gives the dollar cost of

development per day for release 𝑟, computed

as:

∀ 𝑟 = [1. . 𝑁𝑅 + 1],

𝑑𝑒𝑣𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟)

= {
(

𝑅𝐶(𝑟)

𝑅𝑆𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝑅𝐷(𝑟)
× 𝐷𝐶) (∀𝑟 = [1. . 𝑁𝑅])

0 (𝑟 = 𝑁𝑅 + 1)

7. Let 𝑜𝑝𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦 ∶ [1. . 𝑁𝑅 + 1] → ℝ+be a

function described as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅 +

1]), 𝑜𝑝𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟) gives the dollar cost of

operations per day for release 𝑟, and the

period after the last release, computed as:

𝑜𝑝𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟)

= {

(𝑆𝑆 × 𝑂𝐶) 𝑟 = 1

((∑𝑅𝐶(𝑖)) + 𝑆𝑆) × 𝑂𝐶 ∀ 𝑟 = [2. . 𝑁𝑅 + 1]

𝑟−1

𝑖=1

8. Let 𝑆𝑊𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦 ∶ [1. . 𝑇𝐻] → ℝ+be a

function described as follows: (∀ 𝑑 ∈ [1. . 𝑇𝐻]),

𝑆𝑊𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑) gives the software cost

accrued for each day 𝑑 in the time horizon,

computed as:
𝑆𝑊𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑)

= 𝑑𝑒𝑣𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟)
+ 𝑜𝑝𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟)

where r is the release period (or period after

the last release), where day d appears, i.e.,

𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟) ≤ 𝑑 ≤ 𝑙𝑎𝑠𝑡𝐷𝑎𝑦(𝑟)

9. Let 𝑆𝑊𝑃𝑎𝑦𝑚𝑒𝑛𝑡: [1. . 𝑁𝑆𝑃] → ℝ be a function

described as follows: (∀ 𝑝 ∈ [1. . 𝑁𝑆𝑃]),

𝑆𝑊𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑑) gives the software payment in

dollars, for each scheduled payment 𝑝,

computed as follows:

𝑆𝑊𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑝)

=

{

∑ 𝑆𝑊𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑)

𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦(𝑝)

𝑑=1

 𝑝 = 1

∑ 𝑆𝑊𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑) 𝑝 = [2. 𝑁𝑆𝑃]

𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦(𝑝)

𝑑=𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦(𝑝−1)+1

10. Let 𝐿𝑎𝑏𝑜𝑟𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤 ∶ [1. . 𝑇𝐻] → ℝ+, be a

function described as follows: (∀ 𝑑 ∈

[1. . 𝑇𝐻]), 𝐿𝑎𝑏𝑜𝑟𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑) gives the cash

flow of software labor cost for day 𝑑, is

computed as:

𝐿𝑎𝑏𝑜𝑟𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)

= {
−𝑆𝑊𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑝) 𝑖𝑓 ∃𝑝|𝑑 = 𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦(𝑝)
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

11. Let 𝑅𝑒𝑙𝑅𝑒𝑠: [1. . 𝑁𝑅] → 2𝑅𝑒𝑠𝑆𝑒𝑡 be a function

described as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅]),

𝑅𝑒𝑙𝑅𝑒𝑠(𝑟) gives the set of all resources

required by release 𝑟, computed as:

𝑅𝑒𝑙𝑅𝑒𝑠(𝑟)

= ⋃ 𝑅𝑆𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑅𝑒𝑠(𝑓)

𝑓∈𝐼𝐵𝐹(𝑟)⋃𝐼𝑇𝐹(𝑟)

∀ 𝑟 ∈ [1. . 𝑁𝑅]

12. Let 𝐶𝑢𝑚𝑅𝑒𝑙𝑅𝑒𝑠: [1. . 𝑁𝑅] → 2𝑅𝑆𝑐ℎ.𝑃𝑎𝑟𝑚.𝑅𝑒𝑠𝑆𝑒𝑡

be a function described as follows: (∀ 𝑟 ∈

[1. . 𝑁𝑅]), 𝐶𝑢𝑚𝑅𝑒𝑙𝑅𝑒𝑠(𝑟) gives the

cumulative set of resources required by all

releases up to 𝑟, computed as:

𝐶𝑢𝑚𝑅𝑒𝑙𝑅𝑒𝑠(𝑟) = {

∅ 𝑖𝑓 𝑟 = 0

⋃𝑅𝑒𝑙𝑅𝑒𝑠(𝑖) 𝑖𝑓 𝑟 > 0

𝑟

𝑖=1

13. Let 𝑁𝑒𝑤𝑅𝑒𝑙𝑅𝑒𝑠: [1. . 𝑁𝑅] → 2𝑅𝑒𝑠𝑆𝑒𝑡 be a

function described as follows: (∀ 𝑟 ∈

[1. . 𝑁𝑅]), 𝑁𝑒𝑤𝑅𝑒𝑙𝑅𝑒𝑠(𝑟) gives the set of new

resources required by release 𝑟 that were not

paid in a previous release, computed as:

𝑁𝑒𝑤𝑅𝑒𝑙𝑅𝑒𝑠(𝑟) = 𝑅𝑒𝑙𝑅𝑒𝑠(𝑟)
− 𝐶𝑢𝑚𝑅𝑒𝑙𝑅𝑒𝑠(𝑟 − 1)

∀ 𝑟 ∈ [1. . 𝑁𝑅]

14. Let 𝑅𝑒𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑅𝑒𝑙 ∶ [1. . 𝑁𝑅] → ℝ+be a

function described as follows: (∀ 𝑟 ∈

[1. . 𝑁𝑅]), 𝑅𝑒𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑅𝑒𝑙(𝑟) gives the cost of

all resources that need to be paid in release r

and were not paid in a previous release,

computed as:

𝑅𝑒𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑅𝑒𝑙 (𝑟)

= ∑ 𝑅𝑆𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝑅𝑒𝑠𝐶𝑜𝑠𝑡(𝑒)

𝑒∈𝑁𝑒𝑤𝑅𝑒𝑙𝑅𝑒𝑠(𝑟)

∀ 𝑟 ∈ [1. . 𝑁𝑅]

15. Let 𝑅𝑒𝑠𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤 ∶ [1. . 𝑇𝐻] → ℝ+be a

function described as follows: (∀ 𝑑 ∈

[1. . 𝑇𝐻]), 𝑅𝑒𝑠𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑) gives the

resource cash flow for each day 𝑑 in the time

horizon, computed as follows:

Let r(d) be a release during which day d occurs,

i.e., firstDay(r(d))≤ d ≤ lastDay(r(d))

𝑅𝑒𝑠𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)

= {
−𝑅𝑒𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑅𝑒𝑙(𝑟) 𝑤ℎ𝑒𝑟𝑒 𝑑 = 𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟(𝑑))

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

∀ 𝑑 ∈ [1. . 𝑇𝐻]

16. Let 𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤 ∶ [1. . 𝑇𝐻] → ℝ+, be a function

described as follows: (∀ 𝑑 ∈ [1. . 𝑇𝐻]),

𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑) gives the total cash flow of

software cost for day 𝑑, is computed as:

𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)
= 𝐿𝑎𝑏𝑜𝑟𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)
+ 𝑅𝑒𝑠𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑) ∀ 𝑑 ∈ [1. . 𝑇𝐻]

Constraints
1. 𝑹𝒆𝒍𝒆𝒂𝒔𝒆𝑺𝒊𝒛𝒆𝑪𝒂𝒏𝒏𝒐𝒕𝑬𝒙𝒄𝒆𝒆𝒅𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚

(defined in computation #3)

InterfaceMetrics, also denoted IM, is a tuple

⟨𝐿𝑎𝑏𝑜𝑟𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤, 𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦, 𝑙𝑎𝑠𝑡𝐷𝑎𝑦⟩, where:

• 𝑪𝒂𝒔𝒉𝑭𝒍𝒐𝒘(𝑑) is defined in computation #10.

• 𝒇𝒊𝒓𝒔𝒕𝑫𝒂𝒚(𝑟) is defined in computation #4.

• 𝒍𝒂𝒔𝒕𝑫𝒂𝒚(𝑟) is defined in computation #5.

A9. Optimization Formalization

The formalizations in the previous sections are

building blocks; we now use them to formulate

the optimization of the NPV of the final BPN

configuration. Given the top-level formal

optimization model

𝑅𝑆𝑐ℎ ⟨
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠,
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛, 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, 𝐼𝑀

⟩,

the optimal NPV BPN, for a time horizon of 𝑡ℎ

days, is:

𝑁𝑃𝑉𝐵𝑃𝑁
= 𝑀𝑎𝑥 𝑅𝑆𝑐ℎ. 𝐼𝑀. 𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝑁𝑃𝑉(𝑡ℎ)

𝑠. 𝑡. 𝑅𝑆𝑐ℎ. 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

Each of the six formal components

implements constraints that are then aggregated

under RSch.Constraints.

 The solution produces:

4. Optimal NPV of the business benefit

5. A release schedule, which is the result of the

Solver instantiating IBF(r,f) and ITF(r,f).

6. The service network configuration at the end

of each release, which is captured by the

instantiated variables On(s,r).

23

REFERENCES

 Boccanera, F., Brodsky, A. (2020). Decision Guidance

on Software Feature Selection to Maximize the

Benefit to Organizational Processes. 22nd

International Conference on Enterprise Information

Systems (ICEIS), pp. 381-395.

 Boccanera, F., Brodsky, A. (2021). Opti-Soft: Decision

Guidance on Software Release Scheduling to

Minimize the Cost of Business Processes.

Enterprise Information Systems: 22nd International

Conference, ICEIS 2020, Virtual Event, May 5–7,

2020, Revised Selected Papers (2021). Springer.

Brodsky, A., Krishnamoorthy, M., Nachawati, M. O.,

Bernstein, W. Z., & Menascé, D. A. (2017).

Manufacturing and contract service networks:

Composition, optimization and tradeoff analysis

based on a reusable repository of performance

models. 2017 IEEE International Conference on Big

Data (Big Data), 1716–1725.

Brodsky, Alexander, & Luo, J. (2015). Decision

Guidance Analytics Language (DGAL)-Toward

Reusable Knowledge Base Centric Modeling. 17th

International Conference on Enterprise Information

Systems (ICEIS), 67–78.

Cleland-Huang, J., & Denne, M. (2005). Financially

informed requirements prioritization. Proceedings.

27th International Conference on Software

Engineering, 2005. ICSE 2005., 710–

Denne, M., & Cleland-Huang, J. (2004). The

incremental funding method: Data-driven

software development. IEEE Software, 21(3), 39–47.

Denne, Mark, & Cleland-Huang, J. (2003). Software by

Numbers: Low-Risk, High-Return Development.

Prentice Hall.

Devaraj, S., & Kohli, R. (2002). The IT Payoff:

Measuring the Business Value of Information

Technology Investments. FT Press.

Elsaid, A. H., Salem, R. K., & Abdelkader, H. M.

(2019). Proposed framework for planning software

releases using fuzzy rule-based system. IET

Software, 13(6), 543–554.

Hannay, J. E., Benestad, H. C., & Strand, K. (2017).

Benefit Points: The Best Part of the Story. IEEE

Software, 34(3), 73–85.

Maurice, S., Ruhe, G., Saliu, O., & Ngo-The, A. (2006).

Decision Support for Value-Based Software

Release Planning. In Value-Based Software

Engineering (pp. 247–261). Springer, Berlin,

Heidelberg.

Nachawati, M. O., Brodsky, A., & Luo, J. (2016). Unity:

A NoSQL-based Platform for Building Decision

Guidance Systems from Reusable Analytics

Models. Technical Report GMU-CS-TR-2016-4.

George Mason University.

Nachawati, M. O., Brodsky, A., & Luo, J. (2017). Unity

Decision Guidance Management System:

Analytics Engine and Reusable Model Repository.

19th International Conference on Enterprise

Information Systems (ICEIS), pp 312–323.

Pucciarelli, J., & Wiklund, D. (2009). Improving IT

Project Outcomes by Systematically Managing

and Hedging Risk. IDC Report.

Riegel, N., & Doerr, J. (2014). An Analysis of Priority-

Based Decision Heuristics for Optimizing

Elicitation Efficiency. In Requirements Engineering:

Foundation for Software Quality (pp. 268–284).

Springer International Publishing.

Serrador, P., & Pinto, J. (2015). Does Agile work? - A

quantitative analysis of agile project success—

ScienceDirect. International Journal of Project

Management, 33(5), 1040–1051.

The Standish Group. (2018). CHAOS Report 2018.

Van den Akker, M., Brinkkemper, S., Diepen, G., &

Versendaal, J. (2005). Determination of the Next

Release of a Software Product: An Approach using

Integer Linear Programming. CAiSE Short Paper

Proceedings.

