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ABSTRACT 

Many approaches have been developed to 

increase the return on a software investment, but 

each one has drawbacks. Proposed in this paper 

is the Opti-Soft+ framework that addresses this 

problem by producing a software release 

schedule that maximizes the business value of 

investments in information systems that 

automate business processes.  The optimal 

release schedule is the result of solving a mixed 

integer linear programming problem. Opti-Soft+ 

includes a formal optimization model, a 

Decision Guidance System that implements the 

model and a methodology. Opti-Soft+ is an 

extension of the Opti-Soft framework proposed 

earlier with (1) a refined cost model, (2) a 

technique for sensitivity analysis of the 

normalized cost per unit of production, and (3) 

an atomic business process model that is driven 

by output throughputs in addition to input 

throughputs. 

1 INTRODUCTION 

Software development projects that are 

successful and return to the business a value that 

justify their investments are not common. 

According to (The Standish Group, 2018) only 

36% of projects are successful. To improve the 

rate of success, organizations have been using 

Agile methods. As reported in (Serrador & 

Pinto, 2015,) Agile does have a statistically 

significant impact on three dimensions of project 

success, but adopting Agile is not a guarantee of 

a return on the investment. 

Because the Agile software development 

lifecycle is based on short iterations, at each 

iteration the team needs to decide what 

functionality to include. This process, called 

Release Planning, provides an opportunity to 

improve the business value of the software 

because different functionalities result in 

different value profiles.  

Several release planning approaches have 

been developed to maximize the business value 

of software delivery. The highly influential 

Incremental Funding Methodology (IFM) by (M. 

Denne & Cleland-Huang, 2004) uses heuristics 

to select a release schedule that maximizes the 

business value of software investments. F-

EVOLVE*’s approach (Maurice et al., 2006) is to 

involve stakeholders iteratively to achieve 

releases that result in the highest degree of 

satisfaction.  A third approach by (Van den 

Akker et al., 2005) applies integer linear 

programming to maximize the revenue.  

The IFM, F-EVOLVE* and Van den Akker 

approaches use cash flow as a proxy for business 

value. They all require the estimation of cash 

flows for each software feature and that’s very 

challenging due to the difficulty of drawing a 

direct correlation between a particular business 
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benefit, like a reduction in cost, and a specific 

piece of software. (Devaraj & Kohli, 2002) have 

acknowledged this difficulty of isolating the 

effect of IT on firm performance.  

The main pitfall of the existing approaches is 

that each and every dollar of cash flow needs to 

be allocated to one and only one feature which is 

not a realistic assumption, because often, 

realizing a business benefit requires the 

implementation of multiple software features. 

Another pitfall is that each cash flow estimate 

combines the business benefit with the software 

development cost, which means that all the 

estimations have to be done externally, which is 

typically difficult and often inaccurate. 

In (Boccanera & Brodsky, 2020) and 

(Boccanera & Brodsky, 2021), we proposed a 

new approach, called Opti-Soft, to address the 

pitfalls of existing methods for a class of 

software projects that automate a Business 

Process Network (BPN). Opti-Soft is a decision 

guidance framework for release planning that 

maximizes the business value as measured by 

the Net Present Value (NPV), based on a model 

of the underlying business process and savings 

achieved due to the combined effect of new 

software features on improved business process 

efficiency.  

However, the Opti-Soft approach has 

limitations, as we discovered looking at a 

number of real software project examples. First, 

the cost model was based on labor costs only, 

whereas realistic cost models may be 

considerably more involved. Second, for 

stakeholders to have a high confidence on the 

recommendations on software feature selection 

and release planning, they often need to know 

the sensitivity of the recommendations to 

assumptions on demand on business process 

throughput, e.g., the number of daily patent 

applications to be processed by the Patent Office.  

This question is important to release planners 

because, potentially, a small change in expected 

business process throughput may lead to 

unexpected changes in recommended features 

and release schedules. However, addressing 

sensitivity was not part of Opti-Soft. Third, while 

the business processes can be hierarchically 

composed, Opti-Soft only supported a limited 

atomic (leaf) process in the hierarchy in which 

the cost is driven by input throughput (e.g., 

number of patent applications that need to be 

processed per day). Whereas, atomic processes 

driven by output throughput were not 

supported.  

Lifting these limitations is exactly the focus 

of this paper. More specifically, the 

contributions of this paper are as follows. First, 

we extend the cost model, of both BPN and 

software development, beyond labor cost to 

include a range of variable and fixed costs (i.e., 

of resources required). The extended cost 

structure includes: 1) non-labor costs incurred 

by each input flow through the BPN, 2) fixed 

costs associated with processes in the BPN, and 

3) fixed costs associated with software 

development. Extending Opti-Soft to support 

these additional costs is not trivial because 

sometimes a fixed cost can be incurred by more 

than one software feature, that is, the 

relationship is not one-to-one. 

Second, we develop a technique for 

sensitivity analysis of the normalized cost per 

unit of production, for a recommended release 

plan and associated improved BPN, as a 

function of BPN throughput. The analysis 

involves fixing some of the decision variables 

while allowing others to be instantiated by the 

optimizer. The idea is to determine the delta 

change in the objective function for a one-unit 

change of the required BPN throughput.  

Third, we develop an atomic service model 

that is driven by output throughputs in addition 

to the model driven input throughputs. We add 

an indivisible atomic service, whose throughput 

is driven by the number of outputs that it needs 

to produce. Each output is associated with a 

number of input flows (e.g, applications) and the 

cost is based on the outputs produced, for 

example, a report. 

Opti-Soft+ is the result of these extensions. It 

takes advantage of the fact that the 
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implementation of software features leads to 

more efficient business processes due to a 

reduction of the time a worker spends, or the 

elimination of a portion of the process, or the 

utilization of workers with a lower labor rate. 

The key idea is that, because the improved 

business efficiency is a direct consequence of the 

availability of software features, this 

relationship can be formally modelled using 

mixed integer linear programming (MILP) 

constraint formulation, which allows the use of 

MILP solvers to find optimal release plan.  

The uniqueness of Opti-Soft framework is its 

accurate estimate of business value 

improvement by formally modeling BPN and 

associated costs over the investment time 

horizon, as a function of chosen software 

features and release plan. Also, Opti-Soft+ 

removes the limitation of existing approaches 

that force every investment dollar to be assigned 

to one and only one software feature.  The Opti-

Soft+ model allows one software feature to 

impact multiple processes and allows a process 

to be impacted by multiple features, on a many-

to-many relationship. In Opti-Soft+, the 

estimation of the business value of software 

features is not external to the approach, but 

instead, is at the heart of the cost model. The 

Opti-Soft+ framework is composed of a 

methodology, a formal optimization model and 

a Decision Guidance System (DGS) which 

implements the formal model and produces an 

optimal recommendation. 

This paper is organized as follows: Section 2 

provides an overview of the Opti-Soft+ model, 

including the cost approach, the BSN modelling 

and release planning. Section 3 briefly describes 

the optimization model; Section 4 describes the 

DGS and the methodology; Section 5 provides 

an example of the extensions; Section 6 conducts 

a sensitivity analysis and Section 7 provides 

concluding remarks. Appendix 1 shows the 

entirety of the formal model.  

2 OPTI-SOFT+ MODEL OVERVIEW 

In order to maximize business value associated 

with new software features, we need to estimate 

the cost of software development the benefit of 

the implementation of the software. For 

software that implements information systems 

to automate a business process, the benefit of the 

software is the cost savings in the business 

process due to automation.   

A business process, formally modelled in 

Section 3, consumes input flows, e.g., patent 

applications, and produces output flows, e.g., 

patent grants. The cost associated with the 

business process is a function of the process 

fixed and control parameters, including labor 

rates and time spent. This means that the benefit 

(savings) of a software feature that automates a 

business process can be determined by 

subtracting the cost of the automated process 

from the cost of the process before automation. 

The above insight, that the implementation 

of software features allows the adoption of more 

efficient business process networks (BPN) is key 

to Opti-Soft+, because each new BPN 

configuration can be modelled, and its cost 

measured. In the Opti-Soft+ approach, there is no 

need to estimate the cost of each individual 

feature, a feature is just a device that triggers a 

change in the BPN configuration, while cost is 

precisely calculated at the level of the BPN.   

In Figure 1, we have an initial BPN 

configuration, called BPN0 that can benefit from 

automation and has a Net Present Cost 

NPC(BPN0). A cash investment, NPC(SW1) is 

made to implement software features SW1 in the 

first release (r=1). After release 1, the availability 

of the software features SW1 allows process 

improvements so BPN0 transitions to BPN1, 

resulting in a Net Present Cost NPC(BPN1), 

which is lower than NPC(BPN0). The procedure 

continues iteratively, with each investment 

NPC(SWr) in release r, causing the BPNr-1 to 

transition to BPNr, resulting in a lower 

NPC(BPNr).  



 
Fig. 1 – BPN Cost Reduction due to the Investment in 

Software Features  

In order to calculate and optimize the cost 

savings, we need to model the BNP transitions 

as well as the enabling software development 

features. 

BSN Modelling 

To intuitively understand BPN modelling, 

consider the example depicted in Figure 2. It 

shows a parent process P composed of 

subprocesses A, B and C, all of which must be 

executed. Note that the output from A serves as 

input to B and the output from B serves as input 

to A. Subprocess A has three alternatives, AA, 

AB and AC, whereas only one of them must be 

executed. Similarly, B has alternatives BA and 

BB, and C has alternatives CA and CB. By 

choosing among the alternatives for each 

subprocess, a new configuration of P is 

established.  

Note that a valid configuration for P requires 

one and only one of each of its three 

subprocesses A, B and C, which establishes an 

AND relationship between process P and its 

subprocesses A, B and C. The relationship 

between A and its alternatives (subprocesses) 

AA, AB and AC is an OR because either AA or 

AB or AC can be present in P. B and C also have 

OR relationships with their subprocesses.  

We model the BPN as a Service Network (SN) 

(Brodsky et al., 2017) which is a “network of 

service-oriented components that are linked 

together to produce products”. The linkage 

among service components is through inputs 

and outputs. In Figure 2, P is a composite 

(parent) service because it is composed of 

subservices A, B and C. A, B and C are also 

composites while all the other subservices are 

atomic, that is, indivisible.  

BSN Transition and Release Planning 

The transition from a subprocess alternative to 

another requires the implementation of specific 

software functionality called features. For 

example, subprocess alternative AB requires 

feature F1.  

We assume that features are implemented in 

iterations called releases. At the beginning of 

each release, the team decides which features to 

include in the scope. This is called release 

planning. Note that the implementation of 

features results in automation of certain aspects 

of the original business process, allowing it to 

transition to a more efficient process alternative 

that results in labor and other savings.  

In the example of Figure 2, we assume that 

AA, BA and CA are manual processes, and the 

initial BPN configuration (BPN0) is AA, BA, CA 

with NPC(BPN0). The top table on the right 

shows the required features for each process 

while the table on the bottom shows the BPN 

configuration after each release. Note that A’s 

alternative subprocess AB is more cost effective 

than AA and it requires feature F1. Because F1 is 

implemented in release 1, after release 1 is 

completed, BPN0 transitions to BPN1 which is 

configured with AB, BA, CA, with the cost of 

NPC(BPN1). Note that F1 ‘activates’ AB and this 

activation property, which is unique to Opti-

Soft+, is used extensively in the formalization of 

the Mixed Integer Linear Programming 

problem, described in section 3. At the end of 

each release, the availability of implemented 

software features allows the activation of 

alternative processes that are more cost effective, 

reducing the overall NPC of the SN. Subprocess 

AA transitions to AB then to AC, BA transitions 

to BB and CA transitions to CB. The final, 

optimal SN configuration is then AC, BB, CB. 

Note that Fig 2 shows not only the BSN 

transitions, but also the release plan, that is, the 

software features implemented in each release.  
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Fig. 2 - Example of BPN Transition as a result of 

feature delivery. 

Cost Model 

The NPC over the investment time horizon is the 

combined NPC of all the BPNs plus the NPC of 

software development in all releases. Costs are 

accrued daily and are paid on a set schedule. The 

NPC is composed of five types of cost:  

1. Variable labor costs of the SN  

2. Variable non-labor costs of the SN 

3. Fixed non-labor costs of the SN 

4. Variable labor costs of software features 

5. Fixed non-labor costs of software 

features 

Note that in the Opti-Soft+ model, we use the Net 

Present Value (NPV), which is simply NPC with 

the negative sign.  

Variable Labor Costs of the SN 

Each process of the SN is performed by workers 

with well-defined roles. Each role has a labor 

rate and each input processed or output 

produced by the role has a set duration. The cost 

of a process, or LaborCostPerDay, is the labor rate 

times the duration to handle all inputs and 

outputs in a day. 

Variable Non-labor Costs of the 

SN 

Variable, non-labor costs are associated with 

the amount of work produced by an atomic 

service, that is, is driven by the inputs or by 

outputs and are similar to the calculation of 

labor costs.  

Parameters CostPerInput and CostPerOutput 

capture the non-labor costs for each input and 

output. These parameters are used to compute 

FlowCostPerDay. 

Fixed Non-labor Costs of the SN  

Fixed non-labor costs are not driven by inputs or 

outputs, instead they are driven by the services. 

An example of a fixed cost associated with a 

particular service is rent. Parameter 

ServiceCostPerDay captures the daily cost for 

each atomic service and is used to calculate the 

ServiceCostPerDay.  

Variable Labor Costs of Software 

Development 

Opti-Soft+ follows an Agile practice called 

feature-driven, where release planning is done 

at the feature level, that is, features are removed 

from the product backlog and assigned to 

releases. The size of features is estimated in 

points, which is a unit based on the perceived 

effort to develop the feature. The release size, 

that is, the sum of the points for all features in 

the release, cannot exceed the capacity of the 

team, which is the average productivity of a 

developer times the size of the team. 

Development labor cost, in turn, is computed by 

multiplying the team’s capacity by the 

developer cost per effort point.  The formal 

model captures the software cost in 

SWCostPerDay and then uses a pay schedule to 

calculate the LaborCashFlow. 

Fixed Non-labor Costs of Software 

Development 

Fixed costs associated with features are 

experienced during software development, 

where features are produced. They are incurred 

by resources such as a hardware server, a 

software tool, etc… 



Every feature requires a set of resources. The 

full set of resources required by a feature f needs 

to be available prior to the start of the release 

that implements f. A resource might be paid in 

the release that implements f or in a prior release. 

We assume that resource costs are paid on the 

first day of each release, consequently on the 

first day of a release, all resources needed by all 

features in the release must be paid.   

To be flexible, we allow multiple features to 

require the same resource, establishing 

dependencies among features. Resource 

dependencies are handled by a Dependency 

Graph.   

The cost of resources is captured in 

ResCashFlow, whose computation uses the 

following parameters:  

• 𝑹𝒆𝒔𝑺𝒆𝒕 is the set of all non-labor 

resources  

• 𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝑹𝒆𝒔 maps features to resources  

• 𝑹𝒆𝒔𝑪𝒐𝒔𝒕 maps a resource to its cost 

Computation of the SN Cash Flow 

The CostPerDay of each atomic process is the 

sum of LaborCostPerDay, FlowCostPerDay and 

ServiceCostPerDay. CostPerDay is used to 

calculate the schedule of payments, or 

CashFlow(d) for each d in the time horizon. The 

CashFlow(d) for each subprocess of a parent 

process is aggregated and then rolled up to 

determine the CashFlow(d) of the entire SN.  

Computation of the Software Cash Flow 

The CashFlow(d) of the development of software 

is the sum of LaborCashFlow and ResCashFlow. 

Computation of NPV  

The CashFlow(d) for the SN and for the Software 

Development are combined and discounted to 

produce the TimeWindowNPV.  

3 OPTI-SOFT+ OPTIMIZATION 

MODEL 

Opti-Soft+ produces an optimal release schedule 

and SN configuration by solving a maximization 

problem given a set of parameters like the 

services in the SN, feature sizes, number of 

releases, time horizon, labor rates, size of the 

development team, etc... It maximizes the NPV 

of the total cost of the service network plus the 

software development cost over the investment 

horizon, subject to constraints such as the space 

of process alternatives. Opti-Soft+’s formal 

model with its parameters, computations, 

constraints and maximization formulation is 

presented in its entirety in Appendix 1 and here 

we explain some aspects of it.  

The Decision Variables in the formal model 

are: 

1. On(s,r) – a Boolean indicating whether service 

s is activated in the SN configuration during 

the development of release r. 

2. IBF(r,f) - a boolean indicating whether 

business feature f is implemented in release r. 

3. ITF(r,f) - a boolean indicating whether 

technical feature f is implemented in release r. 

4. InputThru(s,i,r) – a real, indication the number 

of inputs of type i that go through atomic 

service s during the development of release r. 

 The formal model is broken down in seven 

hierarchical components, each with its own set 

of Parameters, Decision Variables (DVs), 

Computation, Constraints and Interface Metrics 

(results exposed to the other components). The 

components are:  

1. ReleaseScheduling is at the top of the 

hierarchy. It aggregates results from the other 

components in order to compute the 

TimeWindowNPV(d) for each day d in the time 

horizon. Its parameters describe the features, 

their dependencies, sizes, time horizon, 

number of releases and release duration. The 

DVs are IBF(r,f) and ITF(r,f). 

2. BusinessServiceNetwork computes the BSN’s 

CashFlow(d), which is a term in the 
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computation of TimeWindowNPV(d). Its main 

parameters are the labor rates, payment 

schedule and the set of services.  

3. Service is a container for the various types of 

services. Every service has parameters id, 

type, set of inputs and set of outputs. The DV 

is On(s,r), a boolean indicating whether the 

service is activated.  

4. ANDservice describes composite services of 

type AND. It aggregates the CostPerDay(id,r) 

of all subservices, which is then used as a term 

in the computation of BSN.CashFlow(d). The 

parameters are the set of subservices.  

5. ORservice is similar to ANDservice; the only 

difference is that the relationship with its 

subservices is of type OR.  

6. InputDrivenAtomicService models an 

atomic, (indivisible) service which’s 

throughput is driven by the number of inputs 

that it needs to consume. Its parameters are 

the ratio of inputs to outputs, the time spent to 

produce one output and the set of features 

required for the service to be activated. The 

DV is the required throughput, InputThru(s,i,r)  

and the service computes the CostPerDay(id,r), 

which is aggregated in the composite services.   

7. OutputDrivenAtomicService models an 

indivisible service which’s throughput is 

driven by the number of outputs that it needs 

to consume. Its parameters are the ratio of 

outputs to inputs, the time spent to produce 

one output and the set of features required for 

the service to be activated. The DV is the 

required throughput, InputThru(s,i,r)  and the 

service computes the CostPerDay(id,r), which 

is aggregated in the composite services.   

8. SoftwareDevelopment computes 

SWD.CashFlow(d), which is a term in the 

calculation of TimeWindowNPV(d). Its 

parameters are the size of the team, 

productivity, the cost per unit, etc… It uses 

feature point as a unit of cost.  

The formulation of the optimization is of a 

Mixed-Integer Linear Programming (MILP) 

problem, because 1) three of the DVs (On(s,r), 

IBF(r,f), ITF(r,f)) are Boolean, 2) one DV 

(InputThru(s,i,r)) is real, and 3) the objective 

function is linear because it is the result of the 

addition of various cost parameters which 

themselves are linear. Section A9 of Appendix 1 

describes the MIPL formulation, which is 

summarized below:  

𝑮𝒊𝒗𝒆𝒏 𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 
𝑴𝒂𝒙   𝑹𝒆𝒍𝒆𝒂𝒔𝒆𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈. 𝑻𝒊𝒎𝒆𝑾𝒊𝒏𝒅𝒐𝒘𝑵𝑷𝑽  

𝒔. 𝒕.   𝑹𝒆𝒍𝒆𝒂𝒔𝒆𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒊𝒏𝒈. 𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔 

The constraints are the space of SN 

alternative configurations, the required software 

features, the interdependencies among features, 

the capacity of the development team, etc… 

Each of the six formal components shown in 

Appendix 1 implements constraints that are then 

aggregated under ReleaseScheduling.Constraints. 

Note that the CashFlow and TimeWindowNPV 

produced by the formal model are negative 

numbers consequently maximizing the NPV 

results in minimizing the cost.  

Opti-Soft+ includes a Decision Guidance 

System (DGS) which implements the formal 

model in Appendix 1 and includes a MILP 

Solver. The DGS produces:  

1. Optimal NPV of the business benefit 

2. A release schedule, which is the result of the 

Solver instantiating DVs IBF(r,f) and ITF(r,f). 

3. The optimal service network configuration 

at the end of each release, which is the result 

of the Solver instantiating DV On(s,r).  

4 OPTI-SOFT+ METHODOLOGY 

AND DECISION GUIDANCE 

SYSTEM 

 The optimization model described in the 

previous section is implemented within a 

Decision Guidance System (DGS), which uses 

the Parameters in the input file to maximize the 

NPV, subject to the Constraints. During the 

maximization, the DGS performs the 

Computation and chooses the optimal 

DecisionVariables. The Opti-Soft+ DGS is 

implemented using  Unity (Nachawati, M. O., 



Brodsky, A., & Luo, J., 2016), (Nachawati, M. O., 

Brodsky, A., & Luo, J., 2017), a platform for 

building DGSs from reusable Analytical Models 

(AMs). Unity exposes an algebra of operators 

and provides an unified, high-level language 

called Decision Guidance Analytics Language 

(DGAL) (Brodsky, Alexander, & Luo, J., 2015). 

The Opti-Soft+ framework is composed of the 

optimization model, the DGS and a 

methodology. We covered the first two so now 

we cover the latter. The Opti-Soft+ methodology, 

which extends the methodology in (Boccanera & 

Brodsky, 2021), contains the following steps:  

1. Generate candidate software features to be 

implemented 

2. Capture the As-Is BPN configuration, and 

alternative BPN configurations that can be 

enabled by candidate software features 

3. Gather and instantiate input parameters for 

the optimization model as described in 

Appendix 1, including the set of features, 

their dependencies, time horizon, number of 

releases, BPN services 

4. Compute the baseline NPV for the As-Is 

BPN  

5. Perform Opti-Soft+ DGS optimization to 

come up with a recommended Release Plan 

(including chosen software features in each 

release) and the associated optimal BPN 

configuration (To-Be) 

6. Calculate the savings, which is the NPV of 

the To-Be minus the NPV of the As-Is 

7. Per recommendation in the previous step, 

during Release 1: 

a. Operate the BPN according to the 

optimal BPN configuration.  

b. Implement recommended software 

features 

8. For each release r = 2,…,n 

a. Update existing software features to 

include those implemented in the 

previous release 

b. For updated software features and 

refined demand/throughput 

requirements, run operational 

optimization to find the best BPN 

configuration. Operate the BPN 

according to it.  

c. Repeat Opti-Soft+ DGS optimization for 

updated existing features and demand 

to update recommended Release Plan 

for the remaining releases (starting from 

Release r + 1) 

d. Implement recommended software 

features  

5 OPTI-SOFT+ PRODUCES 

EXAMPLE OF EXTENSIONS 

Sections 5 of (Boccanera & Brodsky, 2021) 

describe an example of a service network 

composed of 3 parent processes (A, B and C). 

The optimal release plan and SN configuration, 

is reproduced in Table 1. The example has 4 

releases, each lasting 60 days and a time horizon 

of 520 days, and a BSN that requires processing 

100 user applications per day, that is, for 

demand=100. In the example, the optimized 

objective function, or NPV, produced by the 

DGS is                         -$6,411,432.73. 

Table 1-Optimal release schedule and SN 

configuration. 

Software  

Release # 

Features 

implemented 

Optimal SN 

Configuratio

n 

1 TF1, BF1 AA, BA, CA 

2 BF3 AB, BA, CA 

3 BF2 AB, BA, CB 

4 BF4 AB, BB, CB 

After 4  AC, BB, CB 

 

We now take the example from (Boccanera & 

Brodsky, 2021) and add the extensions described 

in section 1. Table 2 shows the extended 

parameters. 
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Table 2-Extended Parameters 

Forma-

lizatio

n 

Parameter Value 

 

RSch 

ResSet “softwareLicense1” 

ResCost "softwareLicense1":20,00

0 

FeatureRes TF1:”” 

BF1:”” 

BF2:”” 

BF3:”” 

BF4: “softwareLicense1” 

 

 

 

 

 

 

Input 

Driven 

Atomic 

Service 

ServiceCost 

PerDay 

AA:200 

AB:200 

AC:200 

BA:200 

BB:200 

CA:200 

CB:200 

CostPerInput AA.UserApplication:2 

AB.UserApplication:0 

AC.UserApplication:0 

BA.CompliantApplic:0 

BB.CompliantApplic:0 

CA.AdjudicatedApplic:0 

CB.AdjudicatedApplic:0 

CostPerOutput AA.CompliantApplic:3 

AA.NonComplianceNtc:

1 

AB.CompliantApplic:0 

AB.NonComplianceNtc:

0 

AC.CompliantApplic:0 

AC.NonComplianceNtc:

0 

BA.AdjudicatedApplic:0 

BB.AdjudicatedApplic:0 

CA.AdjudApplicLetter:0 

CB.AdjudApplicLetter:0 

There is a software license that costs $20,000 

when feature BF4 is implemented. There are 

fixed costs per day of $200 for each of the atomic 

processes (AA, AB, AC, BA, BB, CA, CB). Atomic 

process AA incurs $2 in cost per “User 

Application” input, $3 per 

‘CompliantApplication” output and $1 per 

“NonCompliantNotice” output.  

     Using the parameters in Table 2, plus the 

parameters in Section 5 of (Boccanera & 

Brodsky, 2021), the DGS maximizes the objective 

function and produces an optimal NPV of -

$6,748,777.45. The increase from -$6,411,432.73 is 

expected and is a direct result of the extended 

costs listed in Table 2.  

In order to determine the savings of DGS’ 

recommendation, we need to compare the NPV 

of the extended example (-$6,748,777.45), called 

the To-Be, with the NPV of the As-Is, which is 

the BPN prior to the development of the 

software.  

To calculate the As-Is recommendation, we 

change the example parameters as follows: 1) set 

to zero the parameters used in the Software 

Development Formal Model and 2) Set the BPN 

configuration to AA, BA, CA for the entire 

duration of the time horizon of the investment. 

Running the DGS with these modified 

parameters, the resulting NPV for the As-Is is -

$9,611,947.49.  

The savings is the difference between the To-

Be (-$6,748,777.45) and the As-Is (-$9,611,947.49), 

or $2,863,170.04. Note that this is the maximum 

savings, i.e., there is no other release plan and 

BSN configuration that produces a higher 

savings.  

6 OPTISOFT+ SENSITIVITY 

ANALYSIS 

One aspect that a decision-maker would be 

interested in, is how sensitive the total NPC is to 

certain changes in parameters. To answer this, 

we developed a technique for sensitivity 

analysis as follows.  

The objective function is the NPV of the cash 

outflow of the service network (SN) plus the 

cash outflow of developing the software features 

that allow the SN to transition to more efficient 

processes. Opti-Soft+ has several parameters that 

influence the NPV, but the one with the most 

impact is the demand, which is the required 

throughput of the SN. In our example, the 

required demand is 100 applications per day.  



The required demand, used as a parameter in 

the DGS, is an estimation and if there is a high 

degree of uncertainty in the estimation, a 

decision maker might not have a lot of 

confidence in the recommendation. That’s why 

a sensitivity analysis based on the demand 

parameter is so valuable because it helps to 

understand risk.  

In our sensitivity analysis technique, we use 

the NPC instead of the NPV because it is more 

intuitive. The goal is to determine the NPC delta, 

that is, the additional cost for an increase of one 

unit of demand. Given d0, the original demand 

through the SN, we vary d, the new demand by 

1. The delta of the demand is δ=d-d0. We then 

calculate UC, the cost per unit of demand d as 

follows: 

𝑈𝐶(𝛿) =
𝑁𝑃𝐶(𝑑0  +  𝛿)

𝑑0  +  𝛿
 

We can utilize the above technique to conduct 

two analyses for a range of δ: 1) fix the release 

plan and the BSN configuration, and 2) fix the 

release plan, allowing the BSN configuration to 

be optimized. The first analysis will show how 

the unit cost varies with for each δ, while the 

second will show the unit cost variation and the 

stability of the BSN  configuration. 

Sensitivity Analysis 1 

The steps to conduct analysis number 1 are as 

follows: 1) determine a range of δ, above and 

below d0, to conduct the analysis, 2) run the DGS 

optimization with demand=d0 to get a 

recommendation and the value of NPV0, 3) 

instantiate the ITF(r,f), IBF(r,f) and On(s,r) 

decision variables with the release planning 

schedule and SN configuration recommended 

by the DGS in the previous step, leaving 

InputThru(s,i,r) as a DV, 4) set the demand 

parameter to d0+δ1, where δ1, is the first value in 

the δ range, and run the DGS to get the value for 

NPC1, 5) repeat steps 2-4 (i.e., now performing 

operational optimization when software 

features available are fixed) for all δi in the range,         

i >1, 6) calculate the values of UC(δ i), and 7) plot 

a chart with the values of δi and UC(δ i). 

We now apply our sensitivity analysis 

technique to the example in Section 4. In step 1, 

we determine that the estimated demand d0=100 

has an error or 10%, so we set the range of δ to -

10 to +10. In step 2 we run the DGS with 

demand=100 and produce the recommendation 

and NPC0=$6,748,777.45, described in Section 4. 

In step 3 we instantiate the release planning 

schedule and SN configuration DVs with the 

recommendation in Section 4. In step 4, we take 

the first value in the δ range (-10) and set 

demand=100-10=90 and run the DGS, getting 

NPC1=$6,236,485.38. In step 5, we repeat steps 2-

4 for all the other values in the δ range and 

produce the NPC results in Table 3. In step 6, we 

calculate      UC(δ i), also shown in Table 3. In step 

6 we plot the chart shown in Fig 3. 

Table 3 – Results of the Sensitivity Analysis 

d δ NPC(d0+ δ) UC(δ) 

90 -10 $6,236,485.38 $69,294.28 

91 -9 $6,287,714.60 $69,095.76 

92 -8 $6,338,943.82 $68,901.56 

93 -7 $6,390,173.05 $68,711.54 

94 -6 $6,441,402.27 $68,525.56 

95 -5 $6,492,631.49 $68,343.49 

96 -4 $6,543,860.71 $68,165.22 

97 -3 $6,595,089.93 $67,990.62 

98 -2 $6,646,319.15 $67,819.58 

99 -1 $6,697,548.37 $67,652.00 

100 0 $6,748,777.45 $67,487.77 

101 1 $6,800,006.67 $67,326.80 

102 2 $6,851,235.89 $67,168.98 

103 3 $6,902,465.11 $67,014.22 

104 4 $6,953,694.33 $66,862.45 

105 5 $7,004,923.56 $66,713.56 

106 6 $7,056,152.78 $66,567.48 

107 7 $7,107,382.00 $66,424.13 

108 8 $7,158,611.22 $66,283.44 

109 9 $7,209,840.43 $66,145.33 

110 10 $7,261,069.65 $66,009.72 
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Fig. 3 – Plot of δ and UC(δ) 

The table and the chart show that as the 

demand d increases, the UC, which is NPC per 

unit of d, decreases. For a decision maker, this is 

a desirable behavior because the initial demand 

d0 is just an estimation. If d0 was underestimated, 

then the optimal NPC is even better than the 

value provided by the original recommendation. 

If d0 was underestimated, it is easy to determine 

the reduction in NPC. This would help a 

decision maker to manage the estimation risk of 

the demand and consequently yield a higher 

degree of confidence in the DGS 

recommendation.  

Sensitivity Analysis 2 

To perform analysis number 2, we use the 

same steps as analysis number 1 with one 

change. In step 3, we do not instantiate On(s,r), 

that is, we do not fix the BSN configuration, 

allowing it to be optimized.  

We run all the steps, and for every δ in the 

range     -10 to +10, the results are the same as in 

analysis number 1. In addition, the 

recommended BSN configuration is also the 

same. This means that for a delta in the range of 

-10 to +10, the recommendation is stable.  

7 CONCLUSION AND FUTURE 

WORK 

In this paper we introduced Opti-Soft+, an 

extended framework to produce a software 

release schedule that maximizes the business 

value of investments in the development of 

software applications that automate business 

processes. Opti-Soft+employs a realistic cost 

approach, and models the MILP optimization 

problem formally, which is implemented by a 

Decision Guidance System. We also conducted a 

sensitivity analysis that helps a decision maker 

to understands the range of parameters that the 

solution would hold.  

The contributions of this paper are:  1) 

extending the cost model, of both BPN and 

software development, beyond labor cost to 

include a range of variable and fixed costs (i.e., 

of resources required), 2) developing a 

technique for sensitivity analysis of the 

normalized cost per unit of production, for a 

recommended release plan and associated 

improved BPN, as a function of BPN 

throughput, and 3) developing an atomic 

service model that is driven by output 

throughputs in addition to the model driven 

input throughputs.. 

The benefits of the above contributions are: 

1) making the cost model more realistic and 

allowing a cost to be incurred my multiple 

features, 2) providing a decision maker with 

analytical results showing how sensitive the 

recommendation is to certain changes in 

parameters, and 3) allowing a natural way to 

model process that are output driven or that are 

driven by both input and output, which 

increases the practicality of the framework.    

Potential future work involve comparing 

Opti-Soft+ with other frameworks such as the 

popular Incremental Funding Methodology 

(Cleland-Huang & Denne,2005) and conducting 

a case study.  



APPENDIX 1: FORMAL MODEL 

WITH EXTENSIONS 

A1. Release Scheduling 

Formalization 

ReleaseScheduling (RSch) formalization is a 

tuple ⟨Parameters, DecisionVariables, Computation, 

Constraints, InterfaceMetrics⟩ 

where:  

Parameters, also denoted Parm, is a tuple 

⟨Features, TH, DiscountRate, ReleaseInfo, RestSet, 

ResCost, FeatureRes, BSN.Parameters, 

SWD.Parameters⟩ 

Where Features is a tuple  ⟨BF, TF, DG, FS ⟩ 

where:  

• BF is a set of business features 

• TF is a set of technical features, such that  
𝐵𝐹 ∩ 𝑇𝐹 =  ∅ 

• DG, (Dependency Graph), is a partial order 

over     F = BF  ∪ TF, (f1, f2) ∈ DG also denoted 

f1 ≺ f2,  means that f2 is dependent on f1, that is, 

feature f1 is a pre-requisite for feature f2.   

• 𝑭𝑺: 𝐹 →  ℝ+ is a function described as follows: 

(∀ 𝑓 ∈ 𝐹), 𝐹𝑆(𝑓) gives the size, in effort point, 

of each feature 𝑓.  

• TH is the time horizon for analysis in days 

• DiscountRate is the daily rate to discount cash 

flows.   

• ReleaseInfo is a tuple  ⟨NR, RD ⟩, where:  

• NR is the number or releases 

• 𝑹𝑫 ∶ [1. . 𝑁𝑅] →  ℝ+ is a function described 

as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅]), 𝑅𝐷(𝑟)  gives the 

maximum duration in days for release 𝑟. 

• 𝑹𝒆𝒔𝑺𝒆𝒕 is a set of non-labor resources that 

have a fixed-cost 

• 𝑹𝒆𝒔𝑪𝒐𝒔𝒕: 𝑅𝑒𝑠𝑆𝑒𝑡 →  ℝ+ is a function 

described as follows: (∀ 𝑒 ∈ 𝑅𝑒𝑠𝑆𝑒𝑡),

𝑅𝑒𝑠𝐶𝑜𝑠𝑡(𝑒) gives the non-labor fixed cost for 

resource 𝑒.  

• 𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝑹𝒆𝒔: 𝐹 → 2𝑅𝑒𝑠𝑆𝑒𝑡is a function 

described as follows: (∀𝑓 ∈ 𝐵𝐹 ∪ 𝑇𝐹, ∀𝑒 ∈

𝑅𝑒𝑠𝑆𝑒𝑡), 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑅𝑒𝑠(𝑓) gives a set of 

resources 𝑒 required by feature 𝑓.  

• BSN.Parameters is defined in section 4.2 

• SWD.Parameters is defined in section 4.7 

DecisionVariables, also denoted DV, is a tuple  
⟨𝐼𝐵𝐹, 𝐼𝑇𝐹, 𝐵𝑆𝑁. 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠,
𝑆𝑊𝐷.𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠⟩ 

where:  

• 𝑰𝑩𝑭 ∶ [1. . 𝑁𝑅] → 2𝐵𝐹 is a function described as 

follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅]), 𝐼𝐵𝐹(𝑟) gives a set of 

business features planned to be implemented 

in release 𝑟. 

• 𝑰𝑻𝑭 ∶ [1. . 𝑁𝑅] → 2𝐵𝐹  is a function described as 

follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅]), 𝐼𝑇𝐹(𝑟) gives a set of 

technical features planned to be implemented 

in release 𝑟. 

• 𝑩𝑺𝑵.𝑫𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 is defined in section 

A.2. 

• 𝑺𝑾𝑫.𝑫𝒆𝒄𝒊𝒔𝒊𝒐𝒏𝑽𝒂𝒓𝒊𝒂𝒃𝒍𝒆𝒔 is defined in 

section A.8. 

Computation 

1. Let 𝑆𝑜𝐹𝑎𝑟𝐼𝐵𝐹: [1. . 𝑁𝑅 + 1] → 2𝐵𝐹  be a function 

described as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑆𝑜𝐹𝑎𝑟𝐼𝐵𝐹(𝑟) gives the set of all business 

features implemented up to release 𝑟 or the 

period after the last release, computed as 

follows:  

𝑆𝑜𝐹𝑎𝑟𝐼𝐵𝐹(𝑟) =  ⋃𝐼𝐵𝐹(𝑖)

𝑟−1

𝑖=1

  

2. Let 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤: [1. . 𝑇𝐻] → ℝ be a 

function described as follows: (∀ 𝑑 ∈

[1. . 𝑇𝐻]), 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑) gives the 

combined income/expenditure of both the 

Business Service Network and the Software 

Development, (∀ 𝑑 ∈ [1. . 𝑇𝐻]), computed as 

follows:    
𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)

= 𝐵𝑆𝑁. 𝐼𝑀. 𝐶𝑎𝑠ℎ𝑓𝑙𝑜𝑤(𝑑)
+  𝑆𝑊𝐷. 𝐼𝑀. 𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)  

where:  

• BSN.IM.CashFlow is defined in section 

BSN.InterfaceMetrics of section A.2 

• SWD.IM.CashFlow is defined in section 

Software.InterfaceMetrics of section A.8. 

Note that a negative cash flow means that it is a 

cash outflow.  
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3. Let 𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝑁𝑃𝑉: [1. . 𝑇𝐻] → ℝ be a 

function described as follows: (∀ 𝑑 ∈ [1. . 𝑇𝐻]),

𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝑁𝑃𝑉(𝑑) gives the Net Present 

Value (NPV) of the CombinedCashFlow for the 

time investment window[1. . 𝑑], computed as 

follows: 

𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝑁𝑃𝑉(𝑑)

=∑
𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑖)

(1 + 𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑅𝑎𝑡𝑒)𝑖

𝑑

𝑖=1

 

4. Let F = BF  ∪ TF 

5. Let 𝐼𝐹(𝑟) =  𝐼𝐵𝐹(𝑟) ∪ 𝐼𝑇𝐹(𝑟), (∀𝑟 ∈ [1. . 𝑁𝑅]) 

6. FeatureSetsForReleasesArePairwiseDisjoint 

constraint is:  
(∀ 𝑖, 𝑗, ∈ [1. . 𝑁𝑅], 𝑖 ≠ 𝑗), 𝐼𝐹(𝑖) ∩ 𝐼𝐹(𝑗) = ∅ 

7. DependencyGraphIsSatisfied constraint is:  

(∀𝑟 ∈ [1. . 𝑁𝑅])(∀ 𝑓1, 𝑓2  ∈  𝐹), 

 (𝑓1 ≺ 𝑓2 ∧ 𝑓2 ∈ 𝐼𝐹(𝑟)) → (𝑓1 ∈  ⋃𝐼𝐹(𝑖)

𝑟

𝑖=1

)  

Constraints 

1. FeatureSetsForReleasesArePairwiseDisjoint  

is defined in computation #6 above.  

2. DependencyGraphIsSatisfied is defined in 

computation #7 above. 

3. BSN.Constraints is defined in section A.2. 

4. SWD.Constraints is defined in section A.8. 

InterfaceMetrics, also denoted IM, is a tuple 
⟨𝑆𝑜𝐹𝑎𝑟𝐼𝐵𝐹, 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤,
𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝑁𝑃𝑉, 𝐵𝑆𝑁. 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐𝑠,

𝑆𝑊𝐷. 𝐼𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑀𝑒𝑡𝑟𝑖𝑐𝑠 ⟩,  

where:  

• 𝑪𝒐𝒎𝒃𝒊𝒏𝒆𝒅𝑪𝒂𝒔𝒉𝑭𝒍𝒐𝒘 is defined in 

computation #2 above. 

• 𝑻𝒊𝒎𝒆𝑾𝒊𝒏𝒅𝒐𝒘𝑵𝑷𝑽 is defined in computation 

#3 above. 

• BSN.InterfaceMetrics is defined in section A.2 

• SWD.InterfaceMetrics is defined in section 

A.8 

A2. Business Service Network 

Formalization 

BusinessServiceNetwork formalization, also 

denoted BSN, is a tuple ⟨Parameters, 

DecisionVariables, Computation, Constraints, 

InterfaceMetrics⟩, where: 

Parameters, also denoted Parm, is a tuple  

⟨LaborRates, LaborPaySched, BSNDemand, 

ServicesSet, rootID⟩,  

where: 

• LaborRates is a tuple ⟨LR, Rate⟩ where:  

• LR is a set of labor roles 

• 𝑹𝒂𝒕𝒆: 𝐿𝑅 → ℝ+ is a function described as 

follows: (∀ 𝑙 ∈  𝐿𝑅), 𝑅𝑎𝑡𝑒(𝑙)  gives the daily 

rate for labor role 𝑙. 

• LaborPaySched, the labor cost payment 

schedule, is a tuple ⟨𝑁𝐿𝑃, 𝐿𝑎𝑏𝑜𝑟𝑃𝑎𝑦𝐷𝑎𝑦𝑠⟩,  

where:  

• 𝑵𝑳𝑷 ∈ ℝ+is the number of labor payments 

over the entire time horizon 

• 𝑳𝒂𝒃𝒐𝒓𝑷𝒂𝒚𝑫𝒂𝒚: [1. . 𝑁𝐿𝑃] →  [1. . 𝑇𝐻] is a 

function described as follows: (∀ 𝑝 ∈

  [1. . 𝑁𝐿𝑃), 𝐿𝑎𝑏𝑜𝑟𝑃𝑎𝑦𝐷𝑎𝑦(𝑝) gives the day, 

relative to the first day of the time horizon, 

on which a payment 𝑝 is made. 

• BSNDemand, is a tuple 

⟨𝐵𝑆𝑁𝐼, 𝐵𝑆𝑁𝑂, 𝐷𝑒𝑚𝑎𝑛𝑑⟩,  

where:  

• BSNI  is a set of input flow ids that have to 

be processed by the Service Network.  

• BSNO  is a set of output flow ids that have 

to be produced by the Service Network.  

• 𝑫𝒆𝒎𝒂𝒏𝒅: 𝐵𝑆𝑁𝐼 ⋃𝐵𝑆𝑁𝑂 → ℝ+ is a function 

described as follows: (∀ 𝑗 ∈ 𝐵𝑆𝑁𝐼 ⋃𝐵𝑆𝑁𝑂),

𝐷𝑒𝑚𝑎𝑛𝑑(𝑗)  gives for every flow 𝑗, the 

required processing throughput per hour. 

• ServicesSet is the set of all services in the 

Service Network, defined in section A.3.   

• 𝒓𝒐𝒐𝒕𝑰𝑫 is the id of the Service, in the 

ServicesSet, which is designated to be the 

“root”. The definition of a Service is given in 

section A.3.  

DecisionVariables is the set 

{𝑠. 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 | 𝑠 ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑆𝑒𝑡}. See 

section A.3. 

Computation 

1. Let root be a Service in ServicesSet with 

id=rootid 

2. 𝐵𝑆𝑁𝐷𝑒𝑚𝑎𝑛𝑑𝐼𝑠𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 constraint: 

(∀ 𝑖 ∈ 𝐵𝑆𝑁𝐼) (∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]), 
𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑟𝑜𝑜𝑡𝐼𝐷, 𝑖, 𝑟)

≥ 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑖) 



• 𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑟𝑜𝑜𝑡𝐼𝐷, 𝑟) is defined 

in section A.3. 

3. 𝐵𝑆𝑁𝑆𝑢𝑝𝑝𝑙𝑦𝐼𝑠𝑆𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 constraint: 

(∀ 𝑜 ∈ 𝐵𝑆𝑁𝑂) (∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]), 
𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑟𝑜𝑜𝑡𝐼𝐷, 𝑜, 𝑟)

≥ 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑜) 

• 𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑟𝑜𝑜𝑡𝐼𝐷, 𝑜, 𝑟) is 

defined in section A.3. 

4. Let 𝐵𝑆𝑁𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦 ∶ [1. . 𝑇𝐻] → ℝ+be a 

function described as follows: (∀ 𝑑 ∈ [1. . 𝑇𝐻]),

𝐵𝑆𝑁𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑) gives the service network 

labor cost accrued for day 𝑑 computed as:  

𝐵𝑆𝑁𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑)
= 𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟𝑜𝑜𝑡𝐼𝐷, 𝑟) 

Where:  

• r is the release period (or period after the last 

release) where day d appears, i.e.,   
𝑆𝑊𝐷. 𝐼𝑀. 𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟) ≤ 𝑑 ≤ 𝑆𝑊𝐷. 𝐼𝑀. 𝑙𝑎𝑠𝑡𝐷𝑎𝑦(𝑟) 

• 𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟𝑜𝑜𝑡𝐼𝐷, 𝑟) is 

defined in section A.3. 

• 𝑆𝑊𝐷. 𝐼𝑀. 𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦 and 𝑆𝑊𝐷. 𝐼𝑀. 𝑙𝑎𝑠𝑡𝐷𝑎𝑦 

are defined in section A.8. 

5. Let 𝐵𝑆𝑁𝑃𝑎𝑦𝑚𝑒𝑛𝑡: [1. . 𝑁𝐿𝑃] → ℝ be a function 

described as follows: (∀ 𝑝 ∈ [1. . 𝑁𝐿𝑃]),

𝐵𝑆𝑁𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑝) gives the service network 

labor payment in dollars, for each scheduled 

payment 𝑝, computed as:  

𝐵𝑆𝑁𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑝)

=

{
  
 

  
 

∑ 𝐵𝑆𝑁𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑)

𝐿𝑎𝑏𝑜𝑟𝑃𝑎𝑦𝐷𝑎𝑦(𝑝)

𝑑=1

   ∀𝑝 = 1               

∑
𝐵𝑆𝑁𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑) 

∀𝑝 = [2. . 𝑁𝐿𝑃]  

𝐿𝑎𝑏𝑜𝑟𝑃𝑎𝑦𝐷𝑎𝑦(𝑝)

𝑑=𝐿𝑎𝑏𝑜𝑟𝑃𝑎𝑦𝐷𝑎𝑦(𝑝−1)+1

 

6. Let 𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤 ∶ [1. . 𝑇𝐻] → ℝ+ be a function 

described as follows: (∀ 𝑑 ∈

[1. . 𝑇𝐻]), 𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑) gives the cash flow for 

the entire Business Service Network for day 𝑑, 

computed as follows: 

𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)

= {
−𝐵𝑆𝑁𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑝) 𝑖𝑓 ∃𝑝|𝑑 = 𝐿𝑎𝑏𝑜𝑟𝑃𝑎𝑦𝐷𝑎𝑦(𝑝) 
0                                                                𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Constraints  

1. 𝑩𝑺𝑵𝑫𝒆𝒎𝒂𝒏𝒅𝑰𝒔𝑺𝒂𝒕𝒊𝒔𝒇𝒊𝒆𝒅(see Computation 

#2)  

2. 𝑩𝑺𝑵𝑺𝒖𝒑𝒑𝒍𝒚𝑰𝒔𝑺𝒂𝒕𝒊𝒔𝒇𝒊𝒆𝒅 (see Computation 

#3)  

3. 𝑺𝒆𝒓𝒗𝒊𝒄𝒆. 𝑰𝑴(𝒓𝒐𝒐𝒕𝑰𝑫, 𝒓). 𝑪𝒐𝒏𝒔𝒕𝒓𝒂𝒊𝒏𝒕𝒔  
(See section A.3) 

InterfaceMetrics, also denoted IM, is a tuple 

⟨𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤⟩, where:  

• 𝑪𝒂𝒔𝒉𝑭𝒍𝒐𝒘 is defined in computation #6 

above.  

A3. Service Formalization 

ServicesSet  formalization is a set of Service, 

where:  

Service is a tuple ⟨Parameters, DecisionVariables, 

Computation, Constraints, InterfaceMetrics⟩, 

defined separately for each 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑦𝑝𝑒 ∈
{𝐴𝑁𝐷𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑂𝑅𝑠𝑒𝑟𝑣𝑖𝑐𝑒,
𝐼𝑛𝑝𝑢𝑡𝐷𝑟𝑖𝑣𝑒𝑛𝐴𝑡𝑜𝑚𝑖𝑐𝑆𝑒𝑟𝑣𝑖𝑐𝑒}  

Every service has an id and a ServiceType. 

We denote by 𝑠𝑒𝑟𝑣𝑖𝑐𝑒(𝑖𝑑) the service with 

identifier id. Service is a container for the service 

types below and inherent their tuples.  

• ANDservice type is defined in section A.4.  

• ORservice type is defined in section A.5.  

• InputDrivenAtomicService type is defined in 

section A.6.  

• OutputDrivenAtomicService type is defined 

in section A.7.  

A4. ANDservice Formalization 

Intuitively, an ANDservice is a composite 

service, that is, an aggregation of sub-services 

such that all sub-services are activated.  

ANDservice formalization is a tuple ⟨Parameters, 

DecisionVariables, Computation, Constraints, 

InterfaceMetrics⟩ 

where: 

Parameters, also denoted Parm, is a tuple ⟨id, 

ServiceType(id),I(id),O(id), Subservices(id)⟩ 

where: 

• id  is the Service id, which must be unique 

across all services in the ServicesSet.  

• I(id)  is a set of inputs 

• O(id)  is a set of outputs 

• Subservices(id) is a set of the ids of the sub-

services.  

• ServiceType(id) is ANDservice. 
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DecisionVariables, also denoted DV, is a tuple 
⟨𝑂𝑛(𝑖𝑑)⟩ 

where: 

• 𝑶𝒏(𝒊𝒅): [1. . 𝑁𝑅 + 1] → {0,1} is a function that 

determines whether the Service id is activated 

or not, for a particular release, i.e., (∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝑂𝑛(𝑖𝑑)(𝑟), also denoted by 

On(id,r) is as follows: 

𝑂𝑛(𝑖𝑑, 𝑟)

= {
1 𝑖𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑑 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑖𝑛 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                     

 

Computation 

1. AllSubservicesAreActivated constraint:  

Let n be the cardinality of Subservices(id). Then 

the constraint is:  

∑ 𝑂𝑛(𝑖, 𝑟)  = 𝑛 ∗ 𝑂𝑛(𝑖𝑑, 𝑟),

𝑖 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]   

 

2. Let 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑) be a set of inputs and outputs, 

computed as follows:  

𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑)

= 𝐼(𝑖𝑑)⋃𝑂(𝑖𝑑)⋃( ⋃ 𝐼(𝑖) 

𝑖 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

) 

⋃( ⋃ 𝑂(𝑖)

𝑖 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

) 

3. Let 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑): 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂 × [1. . 𝑁𝑅 +

1] → ℝ be a function described as 

follows:(∀𝑗 ∈ 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 +

1]) 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑)(𝑗, 𝑟), also denoted 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟), gives the internal 

supply of flow 𝑗 during release 𝑟 (and the 

period after the last release), computed as 

follows: 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟)

= {
∑ 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑠, 𝑗, 𝑟)   𝑖𝑓 𝑗 ∈ 𝑂(𝑠)

𝑠 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

0                                                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

4. Let 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑): 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂 × [1. . 𝑁𝑅 +

1] → ℝ be a function described as 

follows:(∀𝑗 ∈ 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 +

1])𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑)(𝑗, 𝑟), also denoted 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟), gives the internal 

demand of flow 𝑗 during release 𝑟 (and the 

period after the last release), computed as 

follows: 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟)

= {
∑ 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑠, 𝑗, 𝑟)   𝑖𝑓 𝑗 ∈ 𝐼(𝑠)

𝑠 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

0                                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

5. Let 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑): 𝐼(𝑖𝑑) × [1. . 𝑁𝑅 + 1] → ℝ+ 

be a function described as follows: (∀ 𝑖 ∈

𝐼 (𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]), 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)(𝑖, 𝑟), 

also denoted 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟), gives the 

throughput of 𝑖 (or quantity per day) during 

release 𝑟 or the period after the last release, 

computed as 
  ∀𝑖 ∈ 𝐼(𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1],  

   𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟)
= 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑖, 𝑟)
− 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑖, 𝑟)  

6. Let 𝑂𝑢𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑): 𝑂(𝑖𝑑) × [1. . 𝑁𝑅 + 1] → ℝ+ 

be a function described as follows: (∀ 𝑜 ∈

𝑂 (𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]), 

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)(𝑜, 𝑟), also denoted 

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟), gives the throughput of 

𝑜 (or quantity per day) during release 𝑟 or the 

period after the last release, computed as 
  ∀ 𝑜 ∈ 𝑂(𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1],  

   𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟)
= 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑜, 𝑟)
− 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑜, 𝑟)  

7. Let 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑): 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂 × [1. . 𝑁𝑅 +

1] → ℝ be a function described as follows: 

(∀𝑗 ∈ 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 +

1]) 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑)(𝑗, 𝑟), also denoted 

𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟), gives the total demand 

of flow 𝑗 during release 𝑟 (and the period after 

the last release), computed as follows: 

𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟)

= {
𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟) + 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟) 𝑖𝑓 𝑗 ∈ 𝑂(𝑖𝑑)

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟)                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

8. Let 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑): 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂 × [1. . 𝑁𝑅 +

1] → ℝ be a function described as follows: 

(∀𝑗 ∈ 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 +

1]) 𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑)(𝑗, 𝑟), also denoted 

𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟), gives the total supply of 



flow 𝑗 during release 𝑟 (and the period after 

the last release), computed as follows: 

𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟)

= {
𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟) + 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟) 𝑖𝑓 𝑗 ∈ 𝐼(𝑖𝑑)

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟)                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

9. TotalSupplyMatchesTotalDemand constraint is:  
∀ 𝑗 ∈ 𝑆𝑒𝑡𝐴𝑙𝑙𝐼𝑂(𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1], 

𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑝𝑝𝑙𝑦(𝑖𝑑, 𝑗, 𝑟) = 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑(𝑖𝑑, 𝑗, 𝑟) 

10. Let  𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ be a 

function described as follows: (∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also 

denoted 𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟),  gives the total 

dollar cost per day during period r and the 

period after the last period, computed as:  

 
𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)

=  ∑ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒. 𝐼𝑀. 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖, 𝑟)

𝑖 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

  

Constraints are as follows:  

1. AllSubservicesAreActivated (see computation 

#1) 

2. TotalSupplyMatchesTotalDemand (see 

computation # 9) 

InterfaceMetrics, also denoted IM, is a tuple 

⟨CostPerDay(id), InputThru(id), OutputThru(id)⟩  

where:  

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑫𝒂𝒚(𝑖𝑑) is defined in computation 

#10 above.  

• 𝑰𝒏𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in computation #5 

above. 

• 𝑶𝒖𝒕𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in computation #6 

above.  

A5. ORservice Formalization 

Intuitively, an ORservice is a composite service, 

that is, an aggregation of sub-services such that 

only one sub-services is activated.  

ORservice formalization is a tuple ⟨Parameters, 

DecisionVariables, Computation, Constraints, 

InterfaceMetrics⟩ 

where: 

Parameters, also denoted Parm, is a tuple  
⟨𝑖𝑑, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑦𝑝𝑒(𝑖𝑑), 𝐼(𝑖𝑑), 𝑂(𝑖𝑑), 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)⟩ 

where: 

• id  is the Service id, which must be unique 

across all services in the ServicesSet.  

• I(id)  is a set of inputs 

• O(id)  is a set of outputs 

• Subservices(id)  is a set of the ids of the sub-

services.  

• ServiceType(id) is ORservice. 

DecisionVariables, also denoted DV, is a tuple 
⟨𝑂𝑛(𝑖𝑑), 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑), 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)⟩ 

where: 

• 𝑶𝒏(𝑖𝑑): [1. . 𝑁𝑅 + 1] → {0,1} is a function that 

determines whether the Service id is activated 

or not, for a particular release, i.e., (∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝑂𝑛(𝑖𝑑)(𝑟), also denoted by 

On(id,r) is as follows: 

𝑂𝑛(𝑖𝑑, 𝑟)

= {
1 𝑖𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑑 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑖𝑛 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                     

  

Computation 

1. OnlyOneServiceIsActivated constraint:  

∑ 𝑂𝑛(𝑖, 𝑟)  = 𝑂𝑛(𝑖𝑑, 𝑟),

𝑖 ∈ 𝑆𝑢𝑏𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠(𝑖𝑑)

∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]   

2. Same as ANDservice computation #2 

3. Same as ANDservice computation #3 

4. Same as ANDservice computation #4 

5. Same as ANDservice computation #5 

6. Same as ANDservice computation #6 

7. Same as ANDservice computation #7 

8. Same as ANDservice computation #8 

9. Same as ANDservice computation #9 

10. Same as ANDservice computation #10 

Constraints are as follows:  

1. OnlyOneServiceIsActivated (see computation 

#1) 

3. TotalSupplyMatchesTotalDemand (see 

computation # 9) 

InterfaceMetrics, also denoted IM, is a tuple 

⟨CostPerDay(id), InputThru(id), OutputThru(id)⟩  

where:  

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑫𝒂𝒚(𝑖𝑑) is defined in computation 

#10 above.  

• 𝑰𝒏𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in computation #5 

above. 
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• 𝑶𝒖𝒕𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in computation #6 

above.  

A6. InputDrivenAtomicService 

Formalization 

Intuitively, an InputDrivenAtomicService is an 

indivisible, atomic, service which’s throughput 

is driven by the number of inputs that it needs to 

consume, for example, a process that receives 

applications and adjudicates them.  

InputDrivenAtomicService formalization is a 

tuple ⟨Parameters, DecisionVariables, Computation, 

Constraints, InterfaceMetrics⟩ 

Parameters, also denoted Parm, is a tuple  
⟨𝑖𝑑, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑦𝑝𝑒(𝑖𝑑), 𝐼(𝑖𝑑), 𝑂(𝑖𝑑), 𝑅𝐵𝐹(𝑖𝑑),
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑), 𝐼𝑂𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑),
𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐼𝑂(𝑖𝑑), 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦,
𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡, 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡⟩ 

where: 

• id  is the Service id.  

• I(id)  is a set of inputs 

• O(id)  is a set of outputs 

• 𝑹𝑩𝑭(𝑖𝑑) ⊆ 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔. 𝑃𝑎𝑟𝑚. 𝐵𝐹 is a 

set of business features required by Service id 

• 𝑺𝒆𝒓𝒗𝒊𝒄𝒆𝑹𝒐𝒍𝒆𝒔(𝑖𝑑) ⊆ 𝐵𝑆𝑁. 𝑃𝑎𝑟𝑚. 𝐿𝑅 is a set of 

roles involved in the business service. 

• 𝑰𝑶𝒕𝒉𝒓𝒖𝑹𝒂𝒕𝒊𝒐(𝑖𝑑): 𝐼(𝑖𝑑) × 𝑂(𝑖𝑑) → ℝ+ is a 

function described as follows:  (∀ 𝑖 ∈ 𝐼(𝑖𝑑)),

(∀ 𝑜 ∈ 𝑂(𝑖𝑑)), 𝐼𝑂𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑)(𝑖, 𝑜) also 

denoted as 𝐼𝑂𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑, 𝑖, 𝑜), gives for 

input 𝑖 and output 𝑜, the ratio of output 

throughput based on the input throughput. 

• 𝑹𝒐𝒍𝒆𝑻𝒊𝒎𝒆𝑷𝒆𝒓𝑰𝑶(𝑖𝑑): 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑) ×

(𝐼(𝑖𝑑)⋃𝑂(𝑖𝑑)) → ℝ+ is a function described 

as follows:   (∀ 𝑙 ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑), ∀ 𝑗 ∈

𝐼(𝑖𝑑)⋃𝑂(𝑖𝑑)), 𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐼𝑂(𝑖𝑑)(𝑙, 𝑗), also 

denoted as 𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐼𝑂(𝑖𝑑, 𝑙, 𝑗), gives the 

amount of time, in hours, that role 𝑙 spends 

per flow 𝑗. 

• 𝑺𝒆𝒓𝒗𝒊𝒄𝒆𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑫𝒂𝒚: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑆𝑒𝑡 →  ℝ+ is a 

function described as follows: (∀ 𝑠 ∈

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑆𝑒𝑡), 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑠) gives 

the non-labor fixed cost of service s for each 

day.  

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑰𝒏𝒑𝒖𝒕(𝑖𝑑): 𝐼(𝑖𝑑)  →  ℝ+ is a function 

described as follows: (∀ 𝑖 ∈ 𝐼(𝑖𝑑)),

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡(𝑖𝑑)(𝑖), also denoted as 

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡(𝑖𝑑, 𝑖), gives the non-labor fixed 

cost for each input i processed by the service 

id. 

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑶𝒖𝒕𝒑𝒖𝒕(𝑖𝑑): 𝑂(𝑖𝑑)  →  ℝ+ is a 

function described as follows: (∀ 𝑜 ∈ 𝑂(𝑖𝑑)),

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡(𝑖𝑑)(𝑜), also denoted as 

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡(𝑖𝑑, 𝑜), gives the non-labor fixed 

cost for each output o processed by the service 

id. 

• ServiceType(id) is InputDrivenAtomicService 

DecisionVariables, also denoted DV, is a tuple 
⟨𝑂𝑛(𝑖𝑑), 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)⟩ 

where: 

• 𝑶𝒏(𝑖𝑑): [1. . 𝑁𝑅 + 1] → {0,1} is a function that 

determines whether the Service id is activated 

or not, for a particular release, i.e., (∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝑂𝑛(𝑖𝑑)(𝑟), also denoted by 

On(id,r) is as follows: 

𝑂𝑛(𝑖𝑑, 𝑟)

= {
1 𝑖𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑑 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑖𝑛 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                     

 

• 𝑰𝒏𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑): 𝐼(𝑖𝑑) × [1. . 𝑁𝑅 + 1] → ℝ+ is a 

function described as follows: (∀ 𝑖 ∈

𝐼 (𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]), 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)(𝑖, 𝑟), 

also denoted 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟), gives the 

throughput of 𝑖 (or quantity per day) during 

release 𝑟 or the period after the last release. 

Computation  

1. FeatureDependencyIsSatisfied constraint:  

    𝑂𝑛(𝑖𝑑, 𝑟) = 1 → 𝑅𝐵𝐹(𝑖𝑑) ⊆ 𝑅𝑆𝑐ℎ. 𝐼𝑀. 𝑆𝑜𝐹𝑎𝑟𝐼𝐵𝐹(𝑟)    

∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1] 

2. DeactivatedServicesIsSatisfied constraint: 

∀ 𝑖 ∈ 𝐼(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 + 1], 
𝑂𝑛(𝑖𝑑, 𝑟) = 0 → 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟) = 0       

3. Let 𝑂𝑢𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑): 𝑂(𝑖𝑑) × [1. . 𝑁𝑅 + 1] →

ℝ+ be a function described as follows: (∀ 𝑜 ∈

𝑂 (𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]), 

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)(𝑜, 𝑟), also denoted 

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟), gives the throughput of 

𝑜 (or quantity per day) during release 𝑟 or the 

period after the last release, computed as 

∀ 𝑜 ∈ 𝑂(𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1],  



𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟)

= ∑ (𝐼𝑂𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑, 𝑖, 𝑜)

𝑖∈𝐼(𝑖𝑑)

× 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟)) 

4. Let  𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] ×

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑) → ℝ+ be a function 

described as follows: (∀  𝑙 ∈

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑), 𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑙, 𝑟), also denoted 

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑙, 𝑟),  gives the total duration 

per day for role 𝑙 and release 𝑟 (and the 

period after the last release), computed as:   

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑙, 𝑟)

= ∑ (𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐼𝑂(𝑖𝑑, 𝑙, 𝑗)

𝑗∈𝐼(𝑖𝑑)

× 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟))

+ ∑ (𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐼𝑂(𝑖𝑑, 𝑙, 𝑗)

𝑗∈𝑂(𝑖𝑑)

× 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟)) 

5. Let  𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ 

be a function described as follows:(∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also 

denoted 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟),  gives the 

total labor cost per day during release r, 

computed as follows:  

𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)

= ∑ (𝐵𝑆𝑁. 𝑃𝑎𝑟𝑚. 𝑅𝑎𝑡𝑒(𝑙)

𝑙∈𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠

× 𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑙, 𝑟)) 

6. Let  𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ 

be a function described as follows:(∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also 

denoted 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟),  gives the 

total non-labor cost per day for all input and 

output flows processed during release r, 

computed as follows:  

𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)

=  ∑ (𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡(𝑖𝑑, 𝑗)

𝑗∈𝐼(𝑖𝑑)

× 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟))

+ ∑ (𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡(𝑖𝑑, 𝑗)

𝑗∈𝑂(𝑖𝑑)

× 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟)) 

7. Let  𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ be a 

function described as follows:(∀ 𝑟 ∈ [1. . 𝑁𝑅 +

1]), 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also denoted 

𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟),  gives the total cost per 

day during release r, computed as follows:  

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)
= 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)
+ 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)
+ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)
∗ 𝑂𝑛(𝑖𝑑) 

Constraints are as follows:  

1. FeatureDependencyIsSatisfied (see 

computation #1) 

2. DeactivatedServicesIsSatisfied (see 

computation #2) 

InterfaceMetrics, also denoted IM, is a tuple 

⟨CostPerDay(id), InputThru(id), OutputThru(id)⟩  

where: 

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑫𝒂𝒚(𝑖𝑑) is defined in computation 

#7.  

• 𝑰𝒏𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in 

DecisionVariables.  

• 𝑶𝒖𝒕𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in computation 

#3.  

A.7 OutputDrivenAtomicService 

Formalization 

Intuitively, an OutputDrivenAtomicService is 

an indivisible, atomic service which’s 

throughput is driven by the number of outputs 

that it needs to produce, for example, a service 

that produces a report.  

OutputDrivenAtomicService formalization is a 

tuple ⟨Parameters, DecisionVariables, Computation, 

Constraints, InterfaceMetrics⟩ 

Parameters, also denoted Parm, is a tuple  
⟨𝑖𝑑, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑦𝑝𝑒(𝑖𝑑), 𝐼(𝑖𝑑), 𝑂(𝑖𝑑), 𝑅𝐵𝐹(𝑖𝑑),
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑), 𝑂𝐼𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑),
𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝐼(𝑖𝑑)⟩ 

where: 

• id  is the Service id.  

• I(id)  is a set of inputs 

• O(id)  is a set of outputs 

• 𝑹𝑩𝑭(𝑖𝑑) ⊆ 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔. 𝑃𝑎𝑟𝑚. 𝐵𝐹 is a 

set of business features required by Service id 

• 𝑺𝒆𝒓𝒗𝒊𝒄𝒆𝑹𝒐𝒍𝒆𝒔(𝑖𝑑) ⊆ 𝐵𝑆𝑁. 𝑃𝑎𝑟𝑚. 𝐿𝑅 is a set of 

roles involved in the business service. 
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• 𝑶𝑰𝒕𝒉𝒓𝒖𝑹𝒂𝒕𝒊𝒐(𝑖𝑑): 𝑂(𝑖𝑑) × 𝐼(𝑖𝑑) → ℝ+ is a 

function described as follows:  (∀ 𝑜 ∈ 𝑂(𝑖𝑑)),

(∀ 𝑖 ∈ 𝐼(𝑖𝑑)), 𝑂𝐼𝑂𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑)(𝑖, 𝑜) also 

denoted as 𝑂𝐼𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑, 𝑖, 𝑜), gives for 

output 𝑜 and input 𝑖, the ratio of input 

throughput based the output throughput. 

• 𝑹𝒐𝒍𝒆𝑻𝒊𝒎𝒆𝑷𝒆𝒓𝑶𝑰(𝑖𝑑): 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑) ×

(𝑂(𝑖𝑑)⋃ 𝐼(𝑖𝑑)) → ℝ+ is a function described 

as follows:   (∀ 𝑙 ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑), ∀ 𝑗 ∈

𝑂(𝑖𝑑)⋃ 𝐼(𝑖𝑑)), 𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝐼(𝑖𝑑)(𝑙, 𝑗), also 

denoted as 𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝐼(𝑖𝑑, 𝑙, 𝑗), gives the 

amount of time, in hours, that role 𝑙 spends 

per flow 𝑗. 

• 𝑺𝒆𝒓𝒗𝒊𝒄𝒆𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑫𝒂𝒚: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑆𝑒𝑡 →  ℝ+ is a 

function described as follows: (∀ 𝑠 ∈

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠𝑆𝑒𝑡), 𝐹𝑖𝑥𝑒𝑑𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑠) gives the 

non-labor fixed cost of service s for each day.  

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑰𝒏𝒑𝒖𝒕(𝑖𝑑): 𝐼(𝑖𝑑)  →  ℝ+ is a function 

described as follows: (∀ 𝑖 ∈ 𝐼(𝑖𝑑)),

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡(𝑖𝑑) gives the non-labor fixed 

cost for each input i processed by the service 

id. 

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑶𝒖𝒕𝒑𝒖𝒕(𝑖𝑑): 𝑂(𝑖𝑑)  →  ℝ+ is a 

function described as follows: (∀ 𝑜 ∈ 𝑂(𝑖𝑑)),

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡(𝑖𝑑) gives the non-labor fixed 

cost for each output o processed by the service 

id. 

• ServiceType(id) is InputDrivenAtomicService 

DecisionVariables, also denoted DV, is a tuple 
⟨𝑂𝑛(𝑖𝑑), 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)⟩ 

where: 

• 𝑶𝒏(𝑖𝑑): [1. . 𝑁𝑅 + 1] → {0,1} is a function that 

determines whether the Service id is activated 

or not, for a particular release, i.e., (∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝑂𝑛(𝑖𝑑)(𝑟), also denoted by 

On(id,r) is as follows: 

𝑂𝑛(𝑖𝑑, 𝑟)

= {
1 𝑖𝑓 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑑 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑖𝑛 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 𝑟
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                     

 

• 𝑶𝒖𝒕𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑): 𝑂(𝑖𝑑) × [1. . 𝑁𝑅 + 1] → ℝ+ 

is a function described as follows: (∀𝑜 ∈

𝑂(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 + 1]), 

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)(𝑜, 𝑟), also denoted 

𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟), gives the throughput of 

𝑜 (or quantity per day) during release 𝑟 or the 

period after the last release. 

Computation  

1. FeatureDependencyIsSatisfied constraint:  

    𝑂𝑛(𝑖𝑑, 𝑟) = 1 → 𝑅𝐵𝐹(𝑖𝑑) ⊆ 𝑅𝑆𝑐ℎ. 𝐼𝑀. 𝑆𝑜𝐹𝑎𝑟𝐼𝐵𝐹(𝑟)    

∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1] 

2. DeactivatedServicesIsSatisfied constraint: 

∀ 𝑜 ∈ 𝑂(𝑖𝑑), ∀𝑟 ∈ [1. . 𝑁𝑅 + 1], 
𝑂𝑛(𝑖𝑑, 𝑟) = 0 → 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟) = 0       

3. Let 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑): 𝐼(𝑖𝑑) × [1. . 𝑁𝑅 + 1] → ℝ+ 

be a function described as follows: (∀ 𝑖 ∈

𝐼(𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]), In𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑)(𝑖, 𝑟), 

also denoted 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟), gives the 

throughput of 𝑖 (or quantity per day) during 

release 𝑟 or the period after the last release, 

computed as 

∀ 𝑖 ∈ 𝐼(𝑖𝑑), ∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1],  
𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑖, 𝑟)

= ∑ (𝑂𝐼𝑡ℎ𝑟𝑢𝑅𝑎𝑡𝑖𝑜(𝑖𝑑, 𝑜, 𝑖)

𝑜∈𝑂(𝑖𝑑)

× 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑜, 𝑟)) 

4. Let  𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] ×

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑) → ℝ+ be a function 

described as follows: (∀  𝑙 ∈

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠(𝑖𝑑), 𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑙, 𝑟), also denoted 

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑙, 𝑟),  gives the total duration 

per day for role 𝑙 and release 𝑟 (and the period 

after the last release), computed as:   

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑙, 𝑟)

= ∑ (𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝐼(𝑖𝑑, 𝑙, 𝑗)

𝑗∈𝐼(𝑖𝑑)

× 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟))

+ ∑ (𝑅𝑜𝑙𝑒𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝐼(𝑖𝑑, 𝑙, 𝑗)

𝑗∈𝑂(𝑖𝑑)

× 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟)) 

5. Let  𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ 

be a function described as follows:(∀ 𝑟 ∈

[1. . 𝑁𝑅 + 1]), 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also 

denoted 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟),  gives the 

total labor cost per day during release r, 

computed as follows:  

𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)

= ∑ (𝐵𝑆𝑁. 𝑃𝑎𝑟𝑚. 𝑅𝑎𝑡𝑒(𝑙)

𝑙∈𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑅𝑜𝑙𝑒𝑠

× 𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑙, 𝑟)) 

6. Let  𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ be 

a function described as follows:(∀ 𝑟 ∈



[1. . 𝑁𝑅 + 1]), 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also 

denoted 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟),  gives the 

total non-labor cost per day for all input and 

output flows processed during release r, 

computed as follows:  

𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)

=  ∑ (𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐼𝑛𝑝𝑢𝑡(𝑖𝑑)

𝑗∈𝐼(𝑖𝑑)

× 𝐼𝑛𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟))

+ ∑ (𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡(𝑖𝑑)

𝑗∈𝑂(𝑖𝑑)

× 𝑂𝑢𝑡𝑝𝑢𝑡𝑇ℎ𝑟𝑢(𝑖𝑑, 𝑗, 𝑟)) 

7. Let  𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑): [1. . 𝑁𝑅 + 1] → ℝ be a 

function described as follows:(∀ 𝑟 ∈ [1. . 𝑁𝑅 +

1]), 𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)(𝑟), also denoted 

𝐶𝑜𝑠𝑡𝑝𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟),  gives the total cost per day 

during release r, computed as follows:  

𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)
= 𝐿𝑎𝑏𝑜𝑟𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)
+ 𝐹𝑙𝑜𝑤𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑, 𝑟)
+ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑖𝑑)
∗ 𝑂𝑛(𝑖𝑑) 

Constraints are as follows:  

1. FeatureDependencyIsSatisfied (see 

computation #1) 

2. DeactivatedServicesIsSatisfied (see 

computation #2) 

InterfaceMetrics, also denoted IM, is a tuple 

⟨CostPerDay(id), InputThru(id), OutputThru(id)⟩  

where: 

• 𝑪𝒐𝒔𝒕𝑷𝒆𝒓𝑫𝒂𝒚(𝑖𝑑) is defined in computation 

#7.  

• 𝑰𝒏𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in 

DecisionVariables.  

• 𝑶𝒖𝒕𝒑𝒖𝒕𝑻𝒉𝒓𝒖(𝑖𝑑) is defined in computation 

#3.  

A8. Software Development 

Formalization 

SoftwareDevelopment formalization, also 

denoted SWD, is a tuple ⟨Parameters, 

DecisionVariables, Computation, Constraints, 

InterfaceMetrics⟩ 

where: 

Parameters, also denoted Parm, is a tuple   ⟨TS, 

DP, DC, OC, SS, SWPaySched⟩,  

where:  

• 𝑻𝑺 ∶ [1. . 𝑁𝑅] →  ℝ+ is a function that gives the 

team size, in full time equivalents, for each 

release. 

• 𝑫𝑷 ∶ [1. . 𝑁𝑅] →  ℝ+ is a function that gives the 

developer productivity for each release in 

effort points per day.  

• DC  ∈ ℝ+ is the developer cost in dollars per 

effort point. 

• OC  ∈ ℝ+ is the operations cost in dollars per 

effort point per day. 

• SS ∈ ℝ+ is the size, in effort points, of the As-

Is system (prior to development). 

• SWPaySched, the software cost payment 

schedule, is a tuple ⟨𝑁𝑆𝑃, 𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦𝑠⟩,  

where:  

• 𝑁𝑆𝑃 ∈ ℝ+is the number of payments 

to the software team over the entire 

time horizon. 

• 𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦: [1. . 𝑁𝑆𝑃] →  [1. . 𝑇𝐻] is a 

function, i.e. (∀ 𝑝 ∈ [1. . 𝑁𝑆𝑃]),

𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦(𝑝) gives the day (relative 

to the first day of the software 

development project) where payment 

𝑝 is made. 

DecisionVariables, also denoted DV, is an 

empty tuple. 

Computation: 

1. Let 𝑅𝐶 ∶ [1. . 𝑁𝑅] → ℝ+be a function described 

as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅]), 𝑅𝐶(𝑟) gives the 

maximum capacity, in effort points, for release 

𝑟 computed as:  

𝑅𝐶(𝑟) = 𝑇𝑆(𝑟) × 𝐷𝑃(𝑟) × 𝑅𝑆𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝑅𝐷(𝑟)   

2. Let 𝑅𝑆 ∶ [1. . 𝑁𝑅] → ℝ+ be a function described 

as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅]), 𝑅𝑆(𝑟) gives the 

actual size, in effort points, of release 𝑟, once 

features are assigned to it. The computation is 

as follows:  
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𝑅𝑆(𝑟)

= ( ∑ 𝑅𝑆𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝐹𝑆(𝑗)

𝑗∈ 𝑅𝑆𝑐ℎ.𝐷𝑉.𝐼𝐵𝐹(𝑟)

+ ∑ 𝑅𝑆𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝐹𝑆(𝑗)

𝑗∈ 𝑅𝑆𝑐ℎ.𝐷𝑉.𝐼𝑇𝐹(𝑟)

)    

3. 𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑆𝑖𝑧𝑒𝐶𝑎𝑛𝑛𝑜𝑡𝐸𝑥𝑐𝑒𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

constraint:  

0 ≤ 𝑅𝑆(𝑟) ≤ 𝑅𝐶(𝑟)     ∀ 𝑟 ∈ [1. . 𝑁𝑅]  

4. Let 𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦 ∶ [1. . 𝑁𝑅 + 1] → ℝ+be a function 

described as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟) gives the day when release 

𝑟 actually starts, computed as: 

𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟)

=  {
1     𝑟 = 1                                                                                          

  
𝑅𝑠𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝑅𝐷(𝑟) + 𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟 − 1)∀ 𝑟 = [2. . 𝑁𝑅 + 1]

 

5. Let 𝑙𝑎𝑠𝑡𝐷𝑎𝑦 ∶ [1. . 𝑁𝑅 + 1] → ℝ+ be a function 

described as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅 + 1]),

𝑙𝑎𝑠𝑡𝐷𝑎𝑦(𝑟) gives the day when release 𝑟 ends, 

computed as:  

𝑙𝑎𝑠𝑡𝐷𝑎𝑦(𝑟)

=  {
𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟 + 1) − 1     𝑟 = [1. . 𝑁𝑅]

  
𝑅𝑆𝑐ℎ. 𝑇𝐻   ( 𝑟 = 𝑁𝑅 + 1 )                        

 

6. Let 𝑑𝑒𝑣𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦 ∶ [1. . 𝑁𝑅 + 1] → ℝ+ be a 

function described as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅 +

1]), 𝑑𝑒𝑣𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟) gives the dollar cost of 

development per day for release 𝑟, computed 

as:  

∀ 𝑟 = [1. . 𝑁𝑅 + 1], 

𝑑𝑒𝑣𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟)

= {
(

𝑅𝐶(𝑟)

𝑅𝑆𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝑅𝐷(𝑟)
× 𝐷𝐶)  (  ∀𝑟 = [1. . 𝑁𝑅]) 

0    (𝑟 = 𝑁𝑅 + 1)                                                     

 

 

7. Let 𝑜𝑝𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦 ∶ [1. . 𝑁𝑅 + 1] → ℝ+be a 

function described as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅 +

1]), 𝑜𝑝𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟) gives the dollar cost of 

operations per day for release 𝑟, and the 

period after the last release, computed as:  

𝑜𝑝𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟)

=  {

(𝑆𝑆 × 𝑂𝐶)                               𝑟 = 1                       

((∑𝑅𝐶(𝑖)) + 𝑆𝑆) × 𝑂𝐶      ∀ 𝑟 = [2. . 𝑁𝑅 + 1]

𝑟−1

𝑖=1

 

8. Let 𝑆𝑊𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦 ∶ [1. . 𝑇𝐻] → ℝ+be a 

function described as follows: (∀ 𝑑 ∈ [1. . 𝑇𝐻]),

𝑆𝑊𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑) gives the software cost 

accrued for each day 𝑑 in the time horizon, 

computed as:  
𝑆𝑊𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑)

= 𝑑𝑒𝑣𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟)
+ 𝑜𝑝𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐷𝑎𝑦(𝑟) 

where r is the release period (or period after 

the last release), where day d appears, i.e.,  

𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟) ≤ 𝑑 ≤ 𝑙𝑎𝑠𝑡𝐷𝑎𝑦(𝑟) 

9. Let 𝑆𝑊𝑃𝑎𝑦𝑚𝑒𝑛𝑡: [1. . 𝑁𝑆𝑃] → ℝ be a function 

described as follows: (∀ 𝑝 ∈ [1. . 𝑁𝑆𝑃]),

𝑆𝑊𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑑) gives the software payment in 

dollars, for each scheduled payment 𝑝, 

computed as follows:  

𝑆𝑊𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑝)

=

{
  
 

  
 

∑ 𝑆𝑊𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑)

𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦(𝑝)

𝑑=1

        𝑝 = 1               

∑ 𝑆𝑊𝐶𝑜𝑠𝑡𝐹𝑜𝑟𝐷𝑎𝑦(𝑑) 𝑝 = [2. 𝑁𝑆𝑃]  

𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦(𝑝)

𝑑=𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦(𝑝−1)+1

 

 

10. Let  𝐿𝑎𝑏𝑜𝑟𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤 ∶ [1. . 𝑇𝐻] → ℝ+, be a 

function described as follows: (∀ 𝑑 ∈

[1. . 𝑇𝐻]), 𝐿𝑎𝑏𝑜𝑟𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑) gives the cash 

flow of software labor cost for day 𝑑, is 

computed as: 

𝐿𝑎𝑏𝑜𝑟𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)

= {
−𝑆𝑊𝑃𝑎𝑦𝑚𝑒𝑛𝑡(𝑝) 𝑖𝑓 ∃𝑝|𝑑 = 𝑆𝑊𝑃𝑎𝑦𝐷𝑎𝑦(𝑝) 
0                                                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

11. Let 𝑅𝑒𝑙𝑅𝑒𝑠: [1. . 𝑁𝑅] →   2𝑅𝑒𝑠𝑆𝑒𝑡  be a function 

described as follows: (∀ 𝑟 ∈ [1. . 𝑁𝑅]),

𝑅𝑒𝑙𝑅𝑒𝑠(𝑟) gives the set of all resources 

required by release 𝑟, computed as: 

𝑅𝑒𝑙𝑅𝑒𝑠(𝑟)

= ⋃ 𝑅𝑆𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑅𝑒𝑠(𝑓)  

𝑓∈𝐼𝐵𝐹(𝑟)⋃𝐼𝑇𝐹(𝑟)

 

∀ 𝑟 ∈ [1. . 𝑁𝑅] 

12. Let  𝐶𝑢𝑚𝑅𝑒𝑙𝑅𝑒𝑠: [1. . 𝑁𝑅] →   2𝑅𝑆𝑐ℎ.𝑃𝑎𝑟𝑚.𝑅𝑒𝑠𝑆𝑒𝑡 

be a function described as follows: (∀ 𝑟 ∈

[1. . 𝑁𝑅]), 𝐶𝑢𝑚𝑅𝑒𝑙𝑅𝑒𝑠(𝑟) gives the 

cumulative set of resources required by all 

releases up to 𝑟, computed as:  



𝐶𝑢𝑚𝑅𝑒𝑙𝑅𝑒𝑠(𝑟) = {

∅                            𝑖𝑓 𝑟 = 0  

⋃𝑅𝑒𝑙𝑅𝑒𝑠(𝑖)      𝑖𝑓 𝑟 > 0 

𝑟

𝑖=1

 

13. Let  𝑁𝑒𝑤𝑅𝑒𝑙𝑅𝑒𝑠: [1. . 𝑁𝑅] →   2𝑅𝑒𝑠𝑆𝑒𝑡 be a 

function described as follows: (∀ 𝑟 ∈

[1. . 𝑁𝑅]), 𝑁𝑒𝑤𝑅𝑒𝑙𝑅𝑒𝑠(𝑟) gives the set of new 

resources required by release 𝑟 that were not 

paid in a previous release, computed as:  

 

𝑁𝑒𝑤𝑅𝑒𝑙𝑅𝑒𝑠(𝑟) = 𝑅𝑒𝑙𝑅𝑒𝑠(𝑟)
− 𝐶𝑢𝑚𝑅𝑒𝑙𝑅𝑒𝑠(𝑟 − 1)         

∀ 𝑟 ∈ [1. . 𝑁𝑅] 

14. Let 𝑅𝑒𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑅𝑒𝑙 ∶ [1. . 𝑁𝑅] → ℝ+be a 

function described as follows: (∀ 𝑟 ∈

[1. . 𝑁𝑅]), 𝑅𝑒𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑅𝑒𝑙(𝑟) gives the cost of 

all resources that need to be paid in release r 

and were not paid in a previous release, 

computed as:  

𝑅𝑒𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑅𝑒𝑙 (𝑟)

=  ∑ 𝑅𝑆𝑐ℎ. 𝑃𝑎𝑟𝑚. 𝑅𝑒𝑠𝐶𝑜𝑠𝑡(𝑒)

𝑒∈𝑁𝑒𝑤𝑅𝑒𝑙𝑅𝑒𝑠(𝑟)

 

∀ 𝑟 ∈ [1. . 𝑁𝑅] 

15. Let 𝑅𝑒𝑠𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤 ∶ [1. . 𝑇𝐻] → ℝ+be a 

function described as follows: (∀ 𝑑 ∈

[1. . 𝑇𝐻]), 𝑅𝑒𝑠𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑) gives the 

resource cash flow for each day 𝑑 in the time 

horizon, computed as follows:  

 

Let r(d) be a release during which day d occurs, 

i.e., firstDay(r(d))≤ d ≤ lastDay(r(d)) 

 

𝑅𝑒𝑠𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)

= {
−𝑅𝑒𝑠𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑅𝑒𝑙(𝑟)     𝑤ℎ𝑒𝑟𝑒 𝑑 = 𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦(𝑟(𝑑))

                     
0                                                                            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

∀ 𝑑 ∈ [1. . 𝑇𝐻] 

16. Let  𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤 ∶ [1. . 𝑇𝐻] → ℝ+, be a function 

described as follows: (∀ 𝑑 ∈ [1. . 𝑇𝐻]),

𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑) gives the total cash flow of 

software cost for day 𝑑, is computed as: 

𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)
= 𝐿𝑎𝑏𝑜𝑟𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)
+ 𝑅𝑒𝑠𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤(𝑑)        ∀ 𝑑 ∈ [1. . 𝑇𝐻]  

 

 

Constraints  
1. 𝑹𝒆𝒍𝒆𝒂𝒔𝒆𝑺𝒊𝒛𝒆𝑪𝒂𝒏𝒏𝒐𝒕𝑬𝒙𝒄𝒆𝒆𝒅𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 

(defined in computation #3) 

InterfaceMetrics, also denoted IM, is a tuple 

⟨𝐿𝑎𝑏𝑜𝑟𝐶𝑎𝑠ℎ𝐹𝑙𝑜𝑤, 𝑓𝑖𝑟𝑠𝑡𝐷𝑎𝑦, 𝑙𝑎𝑠𝑡𝐷𝑎𝑦⟩, where: 

• 𝑪𝒂𝒔𝒉𝑭𝒍𝒐𝒘(𝑑) is defined in computation #10.  

• 𝒇𝒊𝒓𝒔𝒕𝑫𝒂𝒚(𝑟) is defined in computation #4.  

• 𝒍𝒂𝒔𝒕𝑫𝒂𝒚(𝑟) is defined in computation #5.  

A9. Optimization Formalization 

The formalizations in the previous sections are 

building blocks; we now use them to formulate 

the optimization of the NPV of the final BPN 

configuration. Given the top-level formal 

optimization model 

𝑅𝑆𝑐ℎ ⟨
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠,
𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛, 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠, 𝐼𝑀

⟩,  

the optimal NPV BPN, for a time horizon of 𝑡ℎ 

days, is:  

𝑁𝑃𝑉𝐵𝑃𝑁
= 𝑀𝑎𝑥   𝑅𝑆𝑐ℎ. 𝐼𝑀. 𝑇𝑖𝑚𝑒𝑊𝑖𝑛𝑑𝑜𝑤𝑁𝑃𝑉(𝑡ℎ)  

𝑠. 𝑡.   𝑅𝑆𝑐ℎ. 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 

Each of the six formal components 

implements constraints that are then aggregated 

under RSch.Constraints. 

 The solution produces:  

4. Optimal NPV of the business benefit 

5. A release schedule, which is the result of the 

Solver instantiating IBF(r,f) and ITF(r,f). 

6. The service network configuration at the end 

of each release, which is captured by the 

instantiated variables On(s,r).  
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