DEPARTMENT OF COMPUTER SCIENCE

Volgenau School of Engineering
George Mason University
4400 University Dr., MS 4A5
Fairfax, VA 22030

Dr. Sanjeev Setia, Chair
cs.gmu.edu
703.993.1530

Report created by Home Row Editorial, LLC
Design and layout by Tracy Bank Designs, LLC

Faculty and establishment photos courtesy
George Mason University Creative Services
MESSAGE FROM
THE CHAIR
SANJEEV SETIA

This is an exciting time for the CS department at Mason. Recognizing the importance of the field of computing to the economic vitality of the region, the state of Virginia has made an unprecedented commitment to invest in CS education in state universities over the next decade. Indeed, this investment by the state was a key factor in Amazon's decision to select Northern Virginia for its HQ2.

Partly in response to Amazon's HQ2 decision and the forthcoming investment from the state, Mason has announced the creation of a School of Computing (SoC) as well as the Institute for Digital Innovation (IDIA). This report contains an article on these initiatives, which promise to significantly elevate the profile of computing at Mason. The faculty of the CS department are looking forward to playing a key role in both the SoC as well as IDIA.

Nationwide, the last decade has seen an explosion of interest in computing. At Mason, the number of undergraduate students enrolled in computer science has quadrupled since 2011. Notably the increase in our student numbers has not come at the expense of academic quality; our incoming freshmen class continues to increase both in size and quality (as reflected in the high school GPAs and SAT scores of the incoming students).

In response, we have added several new faculty members. Since the last edition of this departmental report, we have six new tenure-track faculty members — Foteini Baldimtsi, Jonathan Bell, Yue Cheng, Eric Osterweil, Parth Pathak, and Craig Yu and six teaching track faculty members — Kevin Andrea, Ivan Avramovic, Ping Deng, Socrates Dimitriadis, Michael Neary, and Shvetha Soundararajan. You can learn about these outstanding faculty members in the report's Faculty Profiles section.

Over the last three years, several faculty received national and university awards for excellence in teaching and research. Jonathan Bell and Thomas LaToza received NSF CAREER awards, bringing to fourteen the number of Career and Young Investigator awards by our faculty. Danny Menasce (2017) and Jeff Offutt (2019) received the statewide Outstanding Faculty award for excellence in research, teaching, knowledge integration, and public service from the State Council of Higher Education of Virginia (SCHEV).

The Department has also maintained its recent tradition of having at least one of its faculty win a Mason Teaching Excellence award every year. Recent awardees include Yotam Gingold (2017), Amarda Shehu (2018), and Paul Ammann (2019). Ten CS faculty have won this award over the last eight years demonstrating the department’s good fortune in being able to recruit outstanding faculty as well as a department-wide commitment to teaching excellence.

The department is equally committed to excellence in research. The department’s research expenditures have more than doubled over the last five years, exceeding $14M for FY2019. This report contains articles on Duminda Wijesekera’s research on autonomous vehicles and a new NSF REU (Research Experience for Undergraduates) site on big data research established by Huzefa Rangwala and Mark Snyder. Last, but not least, the report includes profiles of three of our outstanding alumni — Zachary Ferguson (BS, 2017), Laurel Fielding (MS, 2007), and An Wang (PhD, 2018).

I invite you to read this departmental report for more information about our faculty, our academic programs, and the exciting ongoing research in the Computer science department at George Mason University.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message from the Chair</td>
<td>3</td>
</tr>
<tr>
<td>CS Fast Facts</td>
<td>5</td>
</tr>
<tr>
<td>10 Weeks Transforms 10 Students</td>
<td>6</td>
</tr>
<tr>
<td>Distinguished Lecture Series</td>
<td>7</td>
</tr>
<tr>
<td>PhD Recipients</td>
<td>8</td>
</tr>
<tr>
<td>8 Years of Award Winning CS Faculty</td>
<td>10</td>
</tr>
<tr>
<td>Faculty Profiles</td>
<td>12</td>
</tr>
<tr>
<td>Alumni Profiles</td>
<td>38</td>
</tr>
<tr>
<td>Planning for the Future: A New School of Computing</td>
<td>41</td>
</tr>
<tr>
<td>The Drive to Research</td>
<td>42</td>
</tr>
<tr>
<td>External Funding</td>
<td>45</td>
</tr>
</tbody>
</table>
FAST FACTS ABOUT CS@GMU

FACULTY
52
41 Tenure Track

FY18 Research EXPENDITURES
$8.3M
Grants with PI in CS Department

$7.8M
Grants with PI in other Mason units

Faculty AWARDS
14 NSF Career Awards
1 AFOSR Young Investigator Award
2 ACM Fellows
4 IEEE Fellows
1 IAPR fellow
11 Mason Teaching Excellence Award Winners
2 SCHEV Outstanding Faculty Award Winners

Students
1782 Undergraduates
348 Masters
145 PhD

PROGRAMS
MS in Computer Science, MS in Information Systems, MS in Information Security, MS in Software Engineering
PhD in Computer Science

DEGREES Conferred
2017-18: 250 Undergrad, MS 123, PhD 16
The REU program is sponsored by the National Science Foundation. NSF says, “The projects involve students in meaningful ways in ongoing research programs or in research projects specifically designed for the REU program.” Students receive a stipend, as well as room and board.

The George Mason University Educational Data Mining program is run by professors Huzefa Rangwala and Mark Snyder, with support from various graduate students and faculty in the department and across the university and the Office of Student Scholarship (OSCAR).

“There are dozens of REU programs around the country, but Mason didn’t have one,” says Rangwala. “We felt the Department of Computer Science would be an ideal place to host one.” George Mason University’s location outside of Washington, DC, its campus facilities, and reputation of its CS Department, were ideal for the program.

“This summer will be our second of three years,” says Snyder. “Students are working with educational data mining sets and looking at MOOCs, demographics, the use of videos, assessments, and chat functions.”

Students apply from all over the country. Last year students came from Texas, Colorado, and Arizona. “It’s competitive,” says Snyder. “We receive between 150-175 applications and can only accept ten students. We work to have a gender and diversity balance.”

In addition to doing original research, students learn how to research. The program goes fast, and starts with two weeks of training tutorials. Students read and evaluate papers, work with mentors, and learn “that even failing in a research project is progress,” says Rangwala.

Snyder explains that the research findings are exciting and advance the educational and computing disciplines. The knowledge students gain is where the program shows its value. In the past year, two academic papers related to the research have been published.

A student from last summer says, “I’ve learned some things about myself, like what strategies work best for me to manage my time, the importance of setting smaller goals for myself to accomplish, and what motivates me to pursue my academic/career goals when grades are not relevant. I’ve learned that it’s not always clear which direction you should take a research project next, and that there are more subjective decisions that must be made than one may expect.”

Rangwala and Snyder are also learning. Both professors teach full CS course loads during the year, and are dedicated to students and teaching. They feel students need more interactive opportunities and skills to find mentors and learn to apply their classroom studies to real research. This isn’t easy in an undergrad culture that focuses on grades and output. They are quick to say, “This is not a class.” However, they will be making course-like adjustments this year with evaluations and how they structure the schedule. While students will not be graded, they will be working in a more familiar environment. The change will become part of their internal learning data, and may result in more changes next year.

“It’s gratifying to see how students’ mentality change from the start to the finish of the program,” says Snyder. “Their idea of research changes, and they learn how to collaborate and present their findings in a real environment.”
DISTINGUISHED LECTURE SERIES

Each year the Department of Computer Science hosts its Distinguished Lecture Series to feature notable and engaging computer scientists to come and share their research with the Mason community.

2015-2016

Henrik Christensen, 10/30/15
Georgia Institute of Technology
2D and 3D Model Based Visual Tracking

Carla Brodley, 11/11/15
Northeastern University
Challenges and Opportunities of Applied Machine Learning

Bruce Maggs, 2/24/16
Duke University
The Internet at the Speed of Light

Christos Faloutsos, 3/25/16
Carnegie Mellon University
Mining Large Graphs: Patterns, Anomalies and Fraud Detection

Maneesh Agrawala, 4/29/16
University of California, Berkeley
Storytelling Tools

2016-2017

Scott Klemmer, 10/3/16
University of California, San Diego
Design at Large

Adam Porter, 10/28/16
University of Maryland
Model Testing of Complex Systems—Some Challenges and Future Directions

Hugo Krawczyk, 12/5/16
IBM Research
Passwoqr (In)Security—You and Zuckerberg on the Same Sinking Ship

Phil Levis, 2/13/17
Stanford University
Securing the Internet of Things

Prem Devanbu, 4/24/17
University of California, Davis
On the Exploitation of Nature Software

2017-2018

Aidong Zhang, 9/25/17
SUNY Buffalo & NSF
Data Driven Self-Learning for Knowledge Discovery

James Kurose, 10/23/17
National Science Foundation
An Expanding and Expansive View of Computing

Hadas Kress-Gazit, 11/10/17
Cornell University
Synthesis for Robots: Guarantees and Feedback for Complex Behaviors

Xiaodang Zhang, 12/1/17
Ohio State University
Fast Data Accesses in Both Memory and Disks in Large Clusters

Nancy Amato, 2/26/18
Texas A&M University
Sampling-Based Motion Planning: From Intelligent CAD to Crowd Simulation to Protein Folding

Ming Lin, 3/5/18
University of North Carolina, Chapel Hill
Reconstructing Reality: From Physical World to Virtual Environments

Ari Juels, 3/30/18
Cornell Tech
Smart Contracts and Bug Bounties

Klara Nahrstedt, 4/6/18
University of Illinois at Urbana-Champaign
Toward Multi-view Live 360 Video Broadcasting

Prem Devanbu, 4/23/18
University of California, Davis
Studying and Exploiting the "Naturalness" of Code

2018-2019

Tarek F. Abdelzaher, 9/7/18
University of Illinois at Urbana-Champaign
Deep Learning for IoT Systems

Adam Smith, 9/21/18
Boston University
Privacy, Stability and Generalization

Romit Roy Choudhury, 10/5/18
University of Illinois at Urbana-Champaign
The Internet of Acoustic Things (IoAT)

Ling Liu, 10/22/18
Georgia Institute of Technology
Trust and Privacy of Deep Learning in Adversarial Settings

Ricardo Baeza-Yates, 11/9/18
CTO of NTENT & Northeastern
Explainable AI

Ming Lin, 11/26/18
University of Maryland
Reconstructing Reality: From Physical World to Virtual Environments

Mihai Pop, 11/30/18
University of Maryland
From Clustering to Variant Discovery: Algorithmics Opportunities in Microbiome Research

Tao Xie, 2/8/19
University of Illinois at Urbana-Champaign
Intelligent Software Engineering: Synergy between AI and Software Engineering

Pierre Baldi, 4/5/19
University of California Irvine
Deep Learning in the Biomedical Sciences

Mona Singh, 4/29/19
Princeton University
Deciphering cellular networks: From normal functioning to disease
PhD RECIPIENTS 2016-2019

2016

COMPUTER SCIENCE

Irina Hashmi
Probabilistic Approaches to Protein-protein Docking
Amarda Shehu, PhD, Department of Computer Science

Anveshi Charuvaka
Regularized Learning in Multiple Tasks with Relationships
Huzefa Rangwala, PhD, Department of Computer Science

Changwei Liu
A Probabilistic Logic Programming Based Model For Network Forensics
Duminda Wijesekera, PhD, Department of Computer Science

Ehsan Kouroshfar
An Empirical Study of the Interplay Between Architecture and Software Quality Using Evolutionary History of the Software
Paul Ammann, PhD, Department of Computer Science

Eric Donghui Yuan
Architecture-Based Self-Protecting Software Systems
Hassan Gomaa, PhD, Department of Computer Science

Mohammad Atiqul Haque
Reliability Management Techniques For Energy-Aware Multiprocessor Real-Time Systems
Hakan Aydin, PhD, Department of Computer Science

Sharath Hiremagalore
Zero-Day Web Attack Detection Using Collaborative and Transduction-Based Anomaly Detection
Angelos Stavrou, PhD, Department of Computer Science

Suhas Singapogu
Command and Control Knowledge Discovery and Ontology Matching Using XML Schema
J Pullen, DSc, Department of Computer Science

Wentao Chang
Mitigating Information Leakage Threats from Browser Extensions
Songqing Chen, PhD, Department of Computer Science

INFORMATION TECHNOLOGY

Alaa Aref El Masri
Active Authentication Using Behavioral Biometrics and Machine Learning
Harry Wechsler, PhD, Department of Computer Science

Hanan Abdullah S Mengash
Decision Guided Group Package Recommender Based On Multi-Criteria Optimization and Voting
Alexander Brodsky, PhD, Department of Computer Science

Hesham Altaleb
Market-Based Decision Guidance Framework for Power and Alternative Energy Collaboration
Alexander Brodsky, PhD, Department of Computer Science

Jing Guan
A Model-Based Testing Technique for Component-Based Real-Time Embedded Systems
Jeff Offutt, PhD, Department of Computer Science

Riyadh Mahmood
An Evolutionary Approach for System Testing of Android Applications
Sam Malek, PhD, Department of Computer Science

Sean Palka
Automated Test Case Generator for Phishing Prevention Using Generative Grammars and Discriminative Methods
Damon McCoy, PhD, Department of Computer Science

Thabet Kacem
Secure ADS-B
Duminda Wijesekera, PhD, Department of Computer Science

2017

COMPUTER SCIENCE

Ajay Nagarajan
Realizing Cyber Resilience with Hybrid Intrusion Tolerance Architectures
Arun Sood, PhD, Department of Computer Science

Azad Naik
Hierarchical Classification with Rare Categories and Inconsistencies
Huzefa Rangwala, PhD, Department of Computer Science

Evan Behar
Dynamic Minkowski Sum Operations
Jyh-Ming Lien, PhD, Department of Computer Science

Gene Shuman
Using Myoelectric Signals to Classify Prehensile Patterns
Zoran Duric, PhD, Department of Computer Science

Huangxin Wang
Effective and Economical Moving Target Defense for Secure Cloud Computing
Fei Li, PhD, Department of Computer Science

Mansour Mustafa Abdulaziz
Data Collection Techniques Using Multi-Channel Network Coding in Low-Power and Lossy Networks
Robert Simon, PhD, Department of Computer Science

Maryam Bandari
Energy Management in Performance-Sensitive Wireless Sensor Networks
Robert Simon, PhD, Department of Computer Science

Nariman Mirzaei Alvari
Automated Input Generation Techniques for Testing Android Applications
Paul Ammann, PhD, Department of Computer Science

Zhonghua Xi
Making Shapes Foldable
Jyh-Ming Lien, PhD, Department of Computer Science

Anthony Melaragno
Secure Broadcast for Vehicular Communications
Duminda Wijesekera, PhD, Department of Computer Science

Charles Smutz
Countering Malicious Documents and Adversarial Learning
Angelos Stavrou, PhD, Department of Computer Science

Emad Yousif Albassam
A Model-Based Approach for Self-Configuration and Self-Healing in Component-Based Software Systems
Hassan Gomaa, PhD, Department of Computer Science

James Pope
A Control Plane for Low Power, Lossy Networks
Robert Simon, PhD, Department of Computer Science

K.R Damindra Savithri Bandara
Secure Intelligent Radio for Trains
Duminda Wijesekera, PhD, Department of Computer Science

Kamaleldin Mustafa Mohamed
A Secure Lightweight Framework for Hosting and Consuming Web Services in Smart Mobile
Duminda Wijesekera, PhD, Department of Computer Science

INFORMATION TECHNOLOGY

Alaa Aref El Masri
Active Authentication Using Behavioral Biometrics and Machine Learning
Harry Wechsler, PhD, Department of Computer Science
Mahmoud Awad
Dynamic Derivation of Analytical Performance Models in Automatic Systems
Daniel Menasce, PhD, Department of Computer Science

Mohammad Karami
Understanding and Undermining the Business of DDOS Booter Services
Jim Chen, PhD, Department of Computer Science & Damon McCoy, PhD

INFORMATION TECHNOLOGY

Noha M. A. Hazzazi
Automating the Verification of Blood Safety Workflow
Duminda Wijesekera, PhD, Department of Computer Science

Upsorn Praphamontripong
Testing Web Applications with Mutation Analysis
Jeff Offutt, PhD, Department of Computer Science

Vasilios Tzeremes
End User Software Product Line Support for Smart Spaces
Hassan Gomaa, PhD, Department of Computer Science

COMPUTER SCIENCE

2018

An Wang
Songqing Chen, PhD

Ermo Wei
Learning to Cooperate via Reinforcement Learning
Sean Luke, PhD

Drew Wicke
Bounty Hunting: A Dynamic Multiagent Task Allocation Mechanism
Sean Luke, PhD

Mengbai Xiao
Improving Resource Utilization for Internet Mobile Streaming Services
Songqing Chen, PhD

INFORMATION TECHNOLOGY

Jason Porter
Decentralized Runtime Architecture Discovery and Testbed for Adaptation and Failure Recovery of Large Dynamic Distributed Systems
Daniel Menasce, PhD and Hassan Gomaa, PhD, Information Technology

Michael Reep
Legal Ontologies for Protecting Genetic Privacy in EHR Systems and their Enforcements Mechanisms
Duminda Wijesekera, PhD, Information Technology

Eniye Tebeekaemi
An Integrated Cyber-Physical Security Model For A Decentralized and Autonomous Smart Power Grid
Duminda Wijesekera, PhD, Information Technology

Yun Guo
Automatically Localizing and Repairing SQL Faults
Ami Motro, PhD

Rohan Khade
A Framework for Finding Patterns in Mixed and Streaming Data
Jessica Lin, PhD

Songrun Liu
Open Up New Possibilities of Linear Blend Skinning
Yotam Gingold, PhD

Arsalan Mousavian
Semantic and 3D Understanding of a Scene for Robot Perception
Jana Košecká, PhD

Md. Alimoor Reza
Parsing Indoor Scenes with RGB-D Images and Videos
Jana Košecká, PhD

Andeep Singh Toor
Collaborative Context-Aware Visual Question Answering
Harry Wechsler, PhD

2019

COMPUTER SCIENCE

Indranil Banerjee
Problems on Sorting, Sets and Graphs
Dana Richards, PhD

Arda Gumusalan
Dynamic Modulation Scaling Enabled Real Time Transmission Scheduling For Wireless Sensor Networks
Robert Simon, PhD

Yun Guo
Towards Automatically Localizing and Repairing SQL Faults
Jeff Offut, PhD & Amiho Motro, PhD

Mohan Krishnamoorthy
Stochastic Optimization based on White-box Deterministic Approximations: Models, Algorithms and Application to Service Networks
Alexander Brodsky, PhD & Daniel Menascé, PhD

Arsalan Mousavian
Semantic and 3D Understanding of a Scene for Robot Perception
Jana Košecká, PhD

Zhiyun Ren
Academic Performance Prediction with Machine Learning Techniques
Huzefa Rangwala, PhD

Md. A. Reza
Scene Understanding for Robotic Applications
Jana Košecká, PhD

Venkateshwar Tadakamalia
Analysis and Autonomic Elasticity Control for Multi-Server/Queues Under Traffic Surges in Cloud Environments
Daniel A. Menascé, PhD

Jianchao Tan
Image and Video Decomposition and Editing
Yotam Gingold, PhD

Qi Xing
Data-Driven Biomedical Analysis, Modeling and Validation
Qi Wei, PhD, Department of Bioengineering

Chaitanya Yavvari
Using Vehicular Dynamics to Enhance Safety and Security in Connected Autonomous Vehicles
Duminda Wijesekera, PhD & Zoran Duric PhDScience

INFORMATION TECHNOLOGY

Noor Bajunaid
Modeling and Optimization of Performance and Reliability of Distributed Autonomic Systems
Daniel Menasce, PhD

Robert Kurtz
Improving Mutation Testing with Dominator Mutants
Paul Ammann, PhD

Mohammad Rezaeirad
Methods for reducing threat intelligence pollution: An Empirical Study on Remote Access Trojan Ecosystem
Damon McCoy, PhD
EIGHT YEARS OF AWARD-WINNING CS FACULTY

The Department of Computer Science is serious about CS education. With an enrollment boom that shows no sign of slowing, our department’s commitment to teaching excellence continues to be our number one priority.

Our approach to teaching has changed as well. Gone are the days of traditional classroom lectures. Our faculty recognize our students have different learning styles and expectations.

Our department recently finished a three-year $900K Google Computer Science Capacity Award Grant to develop new CS teaching methods. The program, SPARC, tested self-paced learning styles in introductory CS classes.

We have also completed our second year of a National Science Foundation (NSF) Research Experience for Undergraduates program (REU). The program’s goal is to teach research methodology in a non-competitive learning environment.

These programs, along with dozens of student-centered faculty-sponsored research initiatives, build a sense of community from the first CS class a student takes to the moment of graduation.

It starts and grows with our faculty who for the past eight years have earned the highest awards from the University and the State of Virginia.

“The department of Computer Science is one of those departments in which faculty excel at both missions of teaching/mentoring and research/scholarship,” says Kimberly Eby, George Mason University Associate Provost of Faculty Affairs and Development.

“Their faculty have won at least one of the university Teaching Excellence Awards every single year since 2012. They are also well represented in the list of recipients of our Office of Student Scholarship, Creative Activities, and Research (OSCAR) Mentoring Excellence Awards. With respect to their research and scholarship, their faculty continue to engage in cutting-edge research, breaking new ground within the discipline and in collaboration with faculty from other disciplines. The innovation, creative approaches, and commitment to excellence that these faculty bring to all aspects of their work is truly remarkable. I have been grateful to the leadership of the department for fostering a culture where faculty clearly thrive.”

This year, Paul Ammann received one of the university’s awards for Teaching Excellence.

The Teaching Excellence Awards are both institutional recognition and monetary acknowledgment of the significant work that faculty members devote to course planning and preparation; curriculum development; and innovative teaching, advising, and undergraduate and graduate mentoring.

Paul Amman works with students to produce ShowMe videos, where he and the students work in an online conversation to solve a problem. He said, “I want the ShowMe videos to serve as online versions of class lectures that students can look at outside of the class meeting, thereby letting me ‘flip’ the classroom time for focus on exercises.”

The 2019 Commonwealth of Virginia, State Council of Higher Education Outstanding Faculty Award was given to Jeff Offutt.

The Award recognizes and rewards excellence in teaching, research and scholarship, and public service among Virginia institutions, and is the highest honor presented to college and university faculty in the state of Virginia.
Peter Blake, director of SCHEV said, “We are fortunate that Virginia is home to one of the world’s great systems of higher education, The Outstanding Faculty Awards recognize faculty members who have dedicated their lives to research, teaching and mentorship. Their work improves the lives of everyone in the Commonwealth.”

In 2017, Daniel A. Menascé received this honor. He said, “Most importantly, what I try to do with my students is tell them they need to learn how to learn,” he said. “You need to keep learning after you graduate. That is what is going to allow you to be a successful professional.”

Jeff Offutt is no stranger to accolades. He is a past recipient of the University Outstanding Teacher Award and this year received a department faculty award. But for this dedicated researcher and instructor, the SCHEV award, in his own words, was a “thrill and an honor.”

When asked about the importance of teaching he said, “I love I can make a meaningful, long-term, positive impact. College is hard, and when I can help students succeed, and plant seeds that become time bombs that go off years or decades in the future, I am inspired to work harder because my work matters. Research is rarely big or loud, but creates ripples and currents that have effects over many years. I’ve had students from years past tell me they used something I taught, or something I invented, to make better software with less effort. These things are incredibly fulfilling to me.”

Offutt is quick to point out that he’s not the first to win this award, and the entire CS faculty is worthy of praise. He said, “Computer science is in great demand right now, and George Mason is ideally positioned to help our region grow. This award emphasizes that the entire department is ready and excited to contribute.”

PAST OUTSTANDING TEACHER AWARD WINNERS

<table>
<thead>
<tr>
<th>Year</th>
<th>Name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>Amarda Shehu</td>
</tr>
<tr>
<td>2017</td>
<td>Yotam Gingold, Chris Kaufmann</td>
</tr>
<tr>
<td>2016</td>
<td>Kinga Dobolyi, Mark Snyder</td>
</tr>
<tr>
<td>2015</td>
<td>Sean Luke</td>
</tr>
<tr>
<td>2014</td>
<td>Huzefa Rangwala</td>
</tr>
<tr>
<td>2013</td>
<td>Jeff Offutt</td>
</tr>
<tr>
<td>2012</td>
<td>Tamara Maddox</td>
</tr>
</tbody>
</table>

WHEN AN AWARD-WINNING PROFESSOR WINS AN AWARD

Commonwealth of Virginia, State Council of Higher Education Outstanding Faculty Award

Jeff Offutt is a past recipient of the University Outstanding Teacher Award and this year received a department faculty award. But for this dedicated researcher and instructor, the SCHEV award, in his own words, was a “thrill and an honor.”

When asked about the importance of teaching he said, “I love I can make a meaningful, long-term, positive impact. College is hard, and when I can help students succeed, and plant seeds that become time bombs that go off years or decades in the future, I am inspired to work harder because my work matters. Research is rarely big or loud, but creates ripples and currents that have effects over many years. I’ve had students from years past tell me they used something I taught, or something I invented, to make better software with less effort. These things are incredibly fulfilling to me.”

Offutt is quick to point out that he’s not the first to win this award, and the entire CS faculty is worthy of praise. He said, “Computer science is in great demand right now, and George Mason is ideally positioned to help our region grow. This award emphasizes that the entire department is ready and excited to contribute.”

The Outstanding Teaching Award recognizes his years of teaching at George Mason University, contributions to his field, and the example and mentoring he provides to junior faculty and the next generation of CS graduates - both undergraduate and graduate alike.
Jan Allbeck is currently the Associate Dean of the Honors College. She has taught at George Mason University since 2009. She has explored many aspects of computer graphics, but is most drawn to research at the crossroads of animation, artificial intelligence, and psychology in the simulation of virtual humans.

Selected Publications

Paul Ammann has taught at George Mason University since 1989. His areas of interest and expertise are software testing and secure information systems. He received the Volgenau School Outstanding Teaching Award in 2007.

Selected Publications
Kevin Andrea began teaching at George Mason University in 2017 before joining the faculty as a full-time instructor in 2018. He most recently completed a two-year position as a term research associate in support of the Center for Excellence in C4I and Cyber. Prior to joining the faculty, he served 11 years in the military, where he developed and conducted lectures and evaluation materials for training. As a PhD candidate, his research involves routing optimization and network security for Internet of Things devices. He is currently teaching low-level programming and systems programming courses.

Selected Publications

Ivan Avramovic has been a member of the Department of Computer Science as a full-time instructor since 2018, teaching programming and theory courses. He has also taught health informatics programming courses at George Mason University. Prior to academia, he worked professionally on programming and simulation projects at companies such as SAIC. His PhD research focuses on the analysis of randomized algorithms, combinatorics, and information dissemination algorithms.

Selected Publications
Hakan Aydin has taught at George Mason University since 2001. His research interests include real-time embedded systems, low-power computing, and fault tolerance. He was a recipient of the National Science Foundation CAREER award in 2006. He has served on the program committee of various conferences. He was also the technical program committee chair of the IEEE RTAS 2011, and the general chair of the IEEE RTAS 2012 conferences. He received the Department of Computer Science Teaching Award in 2006 and 2009.

Selected Publications

Foteini Baldimtsi has taught at George Mason University since 2016. Her research interests are cryptography, privacy, and data security. She focuses on designing provably secure cryptographic schemes for a variety of applications such as privacy preserving identity management, secure electronic payments and private and scalable blockchain transactions. She is a recipient of an IBM faculty award and her research is supported by NSF, NSA and the Zcash Foundation.

Selected Publications

Daniel Barbará has taught at George Mason University since 1997. His areas of expertise are data mining and machine learning. He served as the program chair of the SIAM International Conference on Data Mining in 2003, and he has received numerous grants from the National Science Foundation, the Army, and other federal and state institutions.

Selected Publications

Jonathan Bell joined George Mason University in 2015. He teaches and directs research in Software Engineering and Software Systems. His research makes it easier for developers to create reliable software by improving software testing. He has published 18 peer-reviewed papers on software testing and analysis, winning two Distinguished Paper awards (VMVM at ICSE 2014 and HitoshiIO at ICPC 2016). He is also the recipient of the NSF CAREER award. He teaches courses in distributed systems, web development, program analysis and software testing.

Selected Publications

Alex Brodsky joined George Mason University in 1993. His current research interests include Decision Support, Guidance and Optimization (DSGO) systems; and DSGO applications, including energy, power, manufacturing, sustainability and supply chain. Alex has published over 120 refereed papers, including six Best Paper Awards. For his research work related to DSGO systems, Alex received a National Science Foundation (NSF) CAREER Award, NSF Research Initiation Award, and funding from the Office of Naval Research (ONR), National Aeronautics and Space Administration (NASA), National Institute of Standards and Technology (NIST), and Dominion Virginia Power.

Alex’ roles include Conference Co-chair of the 21st International Conference on Enterprise Information Systems (ICEIS-2019); keynote speaker at ICEIS-2017; General Chair of the IEEE International Conference on Tools with Artificial Intelligence (ICTAI-2017); keynote speaker at ICTAI-2016; Program Chair of ICTAI-2013; Program Co-chair of the IEEE ICDE workshop on Data-Driven Decision Guidance and Support Systems (DGSS 2012, and DGSS 2013); a general vice co-chair of IEEE ICDE 2012; and Conference Chair of the International Conference on Principles and Practice of Constraint Programming (CP99).

Selected Publications

Songqing Chen has taught at George Mason University since 2004. His areas of interest and expertise are Internet content delivery systems, Internet measurements and modeling, system security, and distributed systems. In addition to the National Science Foundation CAREER and AFOSR Young Investigator Awards, he has received the George Mason University Emerging Researcher, Scholar, and Creator Award, the Volgenau Rising Star Faculty Award, and the Department of Computer Science Outstanding Research Award (three times).

Selected Publications

Yue Cheng’s research interests are in distributed systems, storage systems, serverless and cloud computing, and high-performance computing. He is currently working on redesigning the serverless computing infrastructure and systems support for federated learning.

Selected Publications
Ping Deng began teaching at George Mason University in 2018. She teaches courses in C programming and data management and mining. Her research interests include database and data mining.

Selected Publications

Socrates Dimitriadis enjoys teaching programming courses and likes to put an emphasis on the algorithmic thinking as well as the pragmatic aspects of software development. Before coming to George Mason University, he spent over ten years working as a full stack developer, and he has built a web portal that attracts more than 100,000 visitors per day. His interests include computational cognitive science, human and computer vision, and the multifaceted process of learning, from brain plasticity to neural networks to lifelong learning.
Zoran Durić
Associate Professor
PhD Computer Science,
University of Maryland, College Park, 1995

Zoran Duric is the program coordinator for the Master of Computer Science Degree. He has taught at George Mason University since 1995. His main research interests are applying computer vision and video image processing to analyze movements of humans and vehicles. He is a deputy editor of Pattern Recognition Journal and a member of the editorial board of IEEE Transactions on Intelligent Transportation Systems.

Selected Publications

Carlotta Domeniconi
Associate Professor
PhD Computer Science,
University of California, Riverside, 2002

Carlotta Domeniconi has taught at George Mason University since 2002. Her research interests include machine learning, data mining, classification, clustering, and big data, with applications in text mining, social network analysis, financial data mining, and learning analytics.

Selected Publications
Yotam Gingold directs the Creativity and Graphics Lab (CraGL). Its mission is to solve challenging visual, geometry, and design problems and pursue foundational research into human creativity. He has taught at George Mason University since 2012. His research interests include interactive geometric modeling, color, creativity support, and crowdsourcing. His research has been incorporated into Adobe Illustrator as the Puppet Warp tool.

Selected Publications

Dov Gordon has taught at George Mason University since 2015. Prior to joining George Mason University, he was a recipient of the computing innovations postdoctoral fellowship, and spent three years working in a private research lab. His research is in cryptography; he discovers new ways to compute on encrypted data so that user privacy can be maintained throughout the lifetime of the data. His work spans both the theoretical foundations of cryptography, as well as the practical aspects of applying the research to real problems.

Selected Publications
Larry Kerschberg has taught at George Mason University since 1986 and served as chair of the Department of Information and Software Engineering from 1989-1997. His current research interests include social networks, social semantic search, agent-based systems, semantic web, knowledge management, and intelligent information integration. He has over 40 years of experience in both industry and academia, and is the principal inventor on two patents related to intelligent semantic search. He is a founding editor-in-chief of Springer’s Journal of Intelligent Information Systems, which has been in continuous publication since 1992.

Selected Publications

Jana Košecká has taught at George Mason University since 1999. Her research interests are the acquisition of static, dynamic, and semantic models of environments by means of visual sensing, object recognition, scene parsing, and human-robot interaction. She has over 90 selected publications in referred journals and conferences and is a coauthor of a monograph titled, Invitation to 3D Vision: From Images to Geometric Models.

Selected Publications
Fei Li has taught at George Mason University since 2007. His areas of research interests and expertise include design and analysis of online algorithms, approximation algorithms, randomized algorithms, and scheduling algorithms. He has been on the editorial board of the Sustainable Computing: Informatics and Systems (SUSCOM).

Selected Publications

Thomas LaToza has taught at George Mason University since 2015. He works at the intersection of software engineering and human-computer interaction, investigating how humans interact with code and designing new ways to build software. He served as co-chair of the Seventh Workshop on the Evaluation and Usability of Programming Languages and Tools, guest editor of the IEEE Software Theme Issue on Crowdsourcing for Software Engineering, and as co-chair of the Fourth International Workshop on Crowdsourcing in Software Engineering. He is a recipient of the 2019 NSF Career Award. His 2006 paper on Maintaining Mental Models was recognized as a Google Scholar Classic Paper.

Selected Publications

Jyh-Ming Lien is an affiliate of the Motion and Shape Computing (MASC) group and the Autonomous Robotics Laboratory at George Mason University. He has taught at George Mason University since 2007. His research goal is to develop efficient, robust and practical algorithms for designing, manipulating and analyzing shape, structure and motion. His research finds applications in the areas of robotics, computational geometry, and computer graphics.

Selected Publications

Jessica Lin joined George Mason University in 2005. Her areas of interest and expertise are temporal, spatiotemporal, multimedia, and stream data mining. Her work focuses on the development of efficient algorithms to visualize and discover non-trivial patterns (e.g. anomalies, motifs, contrasting patterns, and latent structure) in massive time series data. Her work has been applied in domains as diverse as medicine, geoinformatics, earth sciences, astronomy, manufacturing, and national security.

Selected Publications
3. Senin, Pavel et al. 2018 “GrammarViz 3.0: Interactive Discovery of Variable-length Time Series Patterns.” ACM Transactions on Knowledge Discovery from Data, 12(1), article no. 10.
Sean Luke is the head of the George Mason University Autonomous Robotics Laboratory. He has taught at George Mason University since 2000. His areas of interest and expertise include stochastic optimization and metaheuristics, evolutionary computation, multi-agent systems and multi-agent learning, autonomous robotics and robot swarms, and simulation development. He is the author of Essentials of Metaheuristics, and of several very widely used open-source software packages, including the MASON multi-agent simulator and the ECJ evolutionary computation toolkit.

Selected Publications

Tamara Maddox has been teaching in the Department of Computer Science at George Mason University since 1999. She is the coordinator of the department’s Computer Law and Ethics program and Undergraduate Teaching Assistant program. She teaches courses in computer law and ethics and core technical courses in the curriculum, including C, C++, and Java. She was previously the department’s assistant chair from 2003-2006.

Selected Publications

Daniel Menascé has taught at George Mason University since 1992. He is a Fellow of the ACM and of the IEEE, a recipient of the Outstanding Faculty Award from the Commonwealth of Virginia in 2017, and the recipient of the 2001 A.A. Michelson Award from the Computer Measurement Group. He has published over 270 articles and five books that received over 11,560 citations. His h-index is 52. His areas of interest and expertise include autonomic computing, software performance engineering, security-performance tradeoffs, cloud computing, service-oriented computing, modeling and analysis of computer systems, and web and e-commerce systems.

Selected Publications

Amihai Motro was the director of the Department of Computer Science’s PhD program from 2005-2015. He has taught at George Mason University since 1990. His research interests are in database management, information systems (with a focus on information integration), information retrieval, cooperative user interfaces, virtual enterprises, and service-oriented architectures.

Selected Publications

Michael Neary is a lecturer of computer science who primarily teaches introductory programming courses. His research interests are in intelligent tutoring systems, educational technology, and computer science education.

Selected Publications

Jeff Offutt is full professor of Software Engineering. He has published over 180 refereed research papers with an h-index of 63, is the co-author of *Introduction to Software Testing*, and is editor-in-chief of Wiley’s *Journal of Software Testing, Verification and Reliability*. He is PI and co-PI on two educational research projects. One increases the scale at which introductory programming courses can be taught at universities while dramatically reducing cheating, and the other develops materials to integrate Computer Science standards of learning into K-5 classrooms. He was founding steering committee chair of the IEEE International Conference on Software Testing, Verification, and Validation. He received the Outstanding Faculty Award from the State Council of Higher Education for Virginia in 2019, the university’s Teaching Excellence Award, Teaching with Technology, in 2013, was named an Outstanding Faculty member in 2008, 2009, and 2019, and his IEEE Software paper in software engineering education was chosen by ACM as a notable paper for 2014. His current projects include critical systems testing, testing and analysis of web and mobile applications, model-based testing, and software engineering education.

Selected Publications

Eric Osterweil received his PhD from UCLA in 2010, and has been teaching at George Mason University since 2018. Before joining the Department of Computer Science faculty, Eric was a principle scientist at VeriSign, Inc. His current research is informed by his ongoing memberships in operations, standards, and Internet-governance communities, and focuses on cybersecurity, privacy, and large-scale measurements.

Selected Publications

John Otten has been teaching at George Mason University since 2014. He has taught courses in C programming, computer ethics, data structures, and software engineering. He has also co-developed and is currently teaching Essentials of Computer Science, a new required course for undergraduate computer science students. Before joining the university, he was employed by General Dynamics for over 21 years. While working in industry, he performed research and developed systems for a wide variety of computer science applications including parallel and high-performance computing, embedded systems, simulations, signal processing, automatic target recognition, automotive networks, and cellular technology.

Selected Publications
Parth Pathak joined George Mason University in the fall of 2016. The focus of his research is to make wireless networks and mobile systems more efficient, accessible, robust and pervasive. His research interests are in next generation wireless networks, mobile systems, ubiquitous computing, Internet of Things (IoT) and cyber physical systems. Before joining George Mason University, he was a post-doc at University of California, Davis. He is currently teaching a graduate course in wireless and mobile computing.

Selected Publications

Mark Pullen is the director of the Center of Excellence in Command, Control, Communications, Computing, Intelligence, and Cyber. He has taught at George Mason University since 1992. His research interests include networked multimedia applications (with an emphasis on command and control), networked education and training, distributed virtual simulation, and interoperation of command and control with simulations. He is a fellow of the IEEE, fellow of the ACM, and recipient of the IEEE Harry Diamond Award.

Selected Publications
Huzefa Rangwala is interested in data mining, learning analytics, bioinformatics and high-performance computing, with an emphasis on the development of computational methods for proteins structure and function prediction, metagenomic analysis, and drug design. He is the recipient of the 2013 NSF CAREER award, the 2014 George Mason University Teaching Excellence Award, the 2014 George Mason University Creator, Researcher and Scholar Award and the 2018 George Mason University Undergraduate Research Mentor Award.

Selected Publications

Dana Richards has taught at George Mason University since 1994. His research focus is in algorithms. He previously worked at the National Science Foundation and at the University of Virginia.

Selected Publications
Katherine Russell
Instructor
MS Computer Science, George Mason University, 2011

Katherine "Raven" Russell has taught at George Mason University since 2014. Her current research areas are in delay tolerant and information-centric networking. She has over ten years of industry experience as a professional web developer, and is currently a PhD candidate in the Department of Computer Science.

Selected Publications

Sanjeev Setia
Professor
PhD Computer Science, University of Maryland, College Park, 1993

Sanjeev Setia's research interests are in ad hoc and sensor networks, network security, performance evaluation of computer systems, and computer science education. In recent years, he has worked extensively on security mechanisms and protocols for ad hoc and wireless sensor networks. He has served as Chair of the Department of Computer Science since September 2011.

Selected Publications
Amarda Shehu is the Co-Director of the Center for Adaptive Human-Machine Partnership (CAHMP), a Transdisciplinary Center for Advanced Study at George Mason University. She also holds affiliate appointments in the Department of Bioengineering and in the School of Systems Biology. Shehu has taught at George Mason University since 2008. Her research focuses on novel algorithms in artificial intelligence and machine learning to bridge between computer and information science, engineering, and the life sciences. Shehu has published over 120 technical papers with postdoctoral, graduate, undergraduate, and high-school students. She is the chair of the steering committee of the ACM/IEEE Journal on Transactions in Bioinformatics and Computational Biology, where she is also an associate editor. Shehu is the recipient of an NSF CAREER Award. Her research is supported by various NSF programs, including Information Integration and Informatics, Foundations of Emerging Technologies, Robust Intelligence, Computing Core Foundations, and Software Infrastructure, and various state and private research awards. Shehu received the 2018 Mason University Teaching Excellence Award, the 2014 Mason Emerging Researcher/Scholar/Creator Award, and the 2013 Mason OSCAR Undergraduate Mentor Excellence Award.

Selected Publications

Mark Snyder has taught at George Mason University since 2011. His research interests are in languages and type theory, domain specific languages, and the application of functional languages.

Selected Publications
Robert Simon has taught at George Mason University since 1996. His research interests are in wireless and mobile networking, distributed systems, system and network level modeling and performance analysis and cyber security. He has received numerous grants, from NSF, multiple DoD agencies and industry.

Selected Publications

Arun Sood has taught at George Mason University since 1987. His areas of interest are security architectures, intrusion tolerance, image analysis and computer vision, optimization, parallel and distributed processing, performance modeling, and simulation and modeling. His research team developed “Self-Cleansing Intrusion Tolerance Technology,” which was the winner of the Global Security Challenge sponsored by the Security Technology of Tomorrow Challenge.

Selected Publications
Angelos Stavrou is the Director of the Center for Assurance Research and Engineering (CARE). He has served as PI on research awards from NSF, DARPA, IARPA, DHS, AFOSR, ARO, ONR. He is a member of NIST’s Mobile Security team with more than 125 peer-reviewed articles. Stavrou received his M.Sc. in Electrical Engineering, M.Phil. and PhD (with distinction) in Computer Science from Columbia University. He holds an M.Sc. in theoretical Computer Science from University of Athens, and a B.Sc. in Physics with distinction from University of Patras, Greece. Stavrou is an Associate Editor of IEEE Transactions on Reliability and a co-chair of the IEEE Blockchain initiative. His research includes security and reliability for distributed systems, security principles for virtualization, and anonymity focused on building and deploying large-scale systems. He received the Department of Computer Science Outstanding Research Award in 2010, 2016 and 2018 and the 2012 Emerging Researcher, Scholar, Creator Award. In 2013, he received the IEEE Reliability Society Engineer of the Year award. He is a NIST guest researcher, a member of the ACM and USENIX, and a senior IEEE member. His team was awarded the DHS Cyber Security Division’s "Significant Government Impact Award" in 2017. Stavrou is supported by two DHS grants, and two NSF grants: NSF CNS-1421747 on “Scalable Techniques for Better Situational Awareness: Algorithmic Frameworks and Large-Scale Empirical Analyses” and NSF DUE-1303299 on “Bridging the Cybersecurity Leadership Gap: Assessment, Competencies and Capacity Building. Projects include research in security mobile and IoT devices.

Selected Publications

Gheorghe Tecuci is the director of the Learning Agents Center, Member of the Romanian Academy and former Chair of Artificial Intelligence in the Center for Strategic Leadership of the U.S. Army War College. He has followed a career-long interest in the development of a computational theory and technology, enabling non–computer scientists to directly teach their expertise to cognitive agents, enabling these agents to act as cognitive assistants to experts, as expert consultants to non-experts, and as intelligent tutors to students. Recently, he has focused on the development of cognitive agents for evidence-based reasoning tasks, such as intelligence analysis, cybersecurity, and medicine. Such agents start with a significant amount of domain-independent knowledge of evidence-based reasoning, significantly accelerating their teaching. Tecuci has published over 200 papers, including 11 books, with contributions to artificial intelligence, instructable agents, knowledge engineering, machine learning, evidence-based reasoning, and critical thinking.

Selected Publications

Pearl Wang joined George Mason University in 1983 as a founding member of the Department of Computer Science and served as the Associate Chair for several years. She is also an ABET volunteer and serves on ABET CAC Commission and the CSAB Board. She is currently a member of the Steering Committee for the CC2020 curriculum report project. Her research interests have included interconnection networks for massively parallel systems, and the development of sequential and parallel algorithms for combinatorial optimization problems. She has served on the editorial boards of professional journals, including the *IEEE Transactions on Parallel and Distributed Systems*, the *Journal of Parallel and Distributed Computing*, and the *European Journal of Operational Research*.

Selected Publications

Gheorghe Tecuci

Professor

PhD Computer Science, University of Paris-Sud and Polytechnic Institute of Bucharest, 1988

Pearl Y. Wang

Associate Professor

PhD Mathematics, University of Wisconsin, Milwaukee, 1983
Xinyuan (Frank) Wang’s research interests are around computer network and system security. His work includes malware analysis and defense, attack attribution, anonymity and privacy, covert channel and steganography, VoIP security, and digital forensics. He has developed CipherXRay – a novel binary analysis framework that can automatically identify and recover the cryptographic operations and transient secrets from the execution of potentially obfuscated binary executables. Dr. Wang is a recipient of an NSF CAREER award and the lead inventor of ten US patents.

Selected Publications

Harry Wechsler has taught at George Mason University since 1988. His expertise includes image analysis and computer vision; data mining, machine learning, and pattern recognition; contents based image retrieval (CBIR); and cyber security, biometrics, and identity management. His research focuses on robust authentication for uncontrolled settings characterized by incomplete information and uncertainty. He is a Fellow of the IEEE, and a Fellow of the IAPR. He holds, together with his former doctoral students, seven patents.

Selected Publications

Elizabeth White has taught at George Mason University since 1994. Her areas of interest and expertise include compilers, software architecture, distributed computing, and dynamic reconfiguration. She is an NSF CAREER Award recipient.

Selected Publications

Duminda Wijesekera is a professor in the Department of Computer Science and a visiting research scientist at the National Institute of Standards and Technology (NIST). He leads the Laboratory of Radio and RADAR Engineering (RARE), collaboration between academia, industry and government located at George Mason University.

His current research addresses multiple areas. The first is the security and safety of cyber physical systems. Research in this area includes safety and security of Intelligent Transportation Systems (ITS) that includes trains, aircraft, ships, and automobiles and creating secure cognitive radio networks that ensure mandated safety guarantees for these transportation modes. He also collaborates on systems and communication security of power grids.

Selected Publications

Craig Yu has taught at George Mason University since 2019. His research interests include computer graphics, computer vision, human-computer interaction, and virtual reality, particularly on devising novel computational design tools and extended reality technologies. He is the lead inventor of Make-it-Home (SIGGRAPH 2011), a pioneering system for automating interior design and virtual world generation.

Selected Publications

Yutao Zhong's research interests are in program performance analysis and optimization, programming languages, and compilers. She worked in the Department of Computer Science between 2005 and 2010 and rejoined the department in 2014. She has been promoted to term associate professor, effective fall 2019.

Selected Publications

ALUMNI PROFILES

Computer Science Department graduates have distinguished themselves in academic, government, and business careers in the metro Washington, DC community and across the globe. Our featured alumni have maintained their research interests while applying their academic foundations to reach the top of their professional careers.

AN WANG

An Wang’s enthusiasm for her research in large scale distributed systems and cyber security, her students, and her choice to pursue an academic career is infectious. A 2018 PhD graduate, Wang is an assistant professor at Case Western Reserve University. She says, “Academia allows me to be innovative.” That’s a statement with a promise coming from someone who has worked on projects at some of the tech industry’s most creative places such as Nokia Bell Labs and Facebook.

Wang’s Mason story begins in China in 2012. At the conclusion of her BS degree in Computer Science from Jilin University, she wanted to pursue a PhD program in the United States. But where? Programs and opportunities crisscrossed the nation. With an aunt living in Seattle, the idea of a West Coast university was appealing. Then she connected with Songqing Chen and his research in Internet content delivery, cloud computing, cyber security, and distributed systems. His work and his lab was a strong fit for her research interests. Additionally, she was impressed with the size of Mason’s CS department and excited about being near Washington, DC.

"Cyber security can be applied everywhere. Network security and large scale systems issues are important."

“I had lots of research projects to choose from,” says Wang. “The CS faculty is involved in many different disciplines, it was a rich research environment.”

“An is one of my best students,” says Songqing Chen. “She started to work on SDN when it was in its infancy. Today SDN has been adopted by all major industrial players, such as Google, Facebook. Her dissertation addressed several critical issues in SDN, particular the software defined measurement in SDN. Her work attracted lots of attentions and some of the work has been open sourced.”

Wang also started work as a graduate research assistant and discovered how much she enjoys working with students. “I really like interacting with faculty and students, sharing ideas and projects.”

An was faced with a second major career decision, where to go and what to do after completing her PhD. She had offers from industry even before she finished and Chen is happy to brag for her that she had more than five tenure-track assistant professorship offers from major research universities.

She likes the environment at Case Western and is especially interested in the university’s collaboration with area businesses, such as the local energy companies. “I’m now working on writing grants and proposals where I can be the full PI.” She wants to establish more connections with industry and other national labs.

Of her students at Case Western she says, “We have great discussions in..."
class and two of our projects have turned into serious research and conference papers.”

When asked about her thoughts as a woman working in CS she laughs and admits it’s a challenge. “I’m one of three female faculty members in the entire department. Case also has more male student than females.” She says the department is working to discuss these issues with women to hear more about their concerns and she works on a committee to promote women in STEM. Her current research is on the IoT security environment. “This is a hot topic,” she says. She’s working on some projects with her master’s students. “Cyber security can be applied everywhere. Network security and large scale systems issues are important.” Case’s industry collaborations give her a path to put her ideas into practice. It’s both academic rewarding and essential for the Cleveland community she now happily calls home.

LAUREL FIELDING

Computer Science at George Mason University is more than a course of study. CS is a community of students, faculty, researchers, industry, and alumni who engage in a continuous technology conversation. This course of study has at its core, innovation and future-forward thinking.

Laurel Fielding, a 2007, MS graduate in software engineering, Industry Advisory Board Member, and adjunct faculty member represents the spirit and strength of the CS community. As the CTO of Netcomm, Laurel is a technology conductor. And while this isn’t a professional C-suite title, it embodies the blend of the traditional CTO functions and her enthusiasm for her employees, customers, students, and her passion for learning and teaching.

Laurel’s CS journey is a lesson in itself to students. Opportunities are everywhere if you’re curious and interested. Her first taste of tech began in the midst of the dot-com boom. “I was working for a start-up company in Rosslyn, Virginia,” she says. “I was doing marketing work and realized what the company needed was more ASP programmers.” She changed jobs, was fortunate to find a mentor, and began gathering and improving her skills.

Laurel has a non-technical undergraduate degree in philosophy and never imagined a career in IT. She explains she has a logic and problem solving brain and the work was interesting and changing fast.

The more involved in computers she became with each new job, the more she realized she wanted deeper skills. That push led her to George Mason University. Like many Virginia students, the school’s location was the driving factor in her choice. The University has a mission to meet the needs of the business community and local students. As a working professional, the program was ideal.

Laurel took several years to complete her studies fitting in her career and having children. Today she mentors staff and students alike with the well-learned advice, “you can do this one class at a time.” Her patience and focus paid off.

“I had a personal goal to become the CTO of an organization by the time I was forty.” Now guiding the technology programs at Netcomm, she says she likes her role and how she is involved in lots of different things. She enjoys the challenge of IT and how she needs to continue learning to stay at the top of her field.

Laurel’s continued involvement with the CS department and community is important to keeping her edge. She joined the Industry Advisory Board in 2015. This volunteer board provides industry insight into the real-world technology challenges in the DC market. They help inform the department about trends and needs for specific classes. This gives CS students an edge in the market.

Laurel also keeps her edge by teaching. She joined the adjunct faculty staff and teaches CS software engineering 619. “Teaching was a new experience for me and I was nervous. Once I got into the class, I realized how much I love it.” She says she enjoys working with the students, graduate students like she once was, who are coming from professional careers. They bring ideas and problems to the class and leave with solutions and skills.

She says she can see herself returning to school for a PhD. Her personal tech interests overlap with her CTO role. She’s interested and concerned with issues of technology and privacy. She sees the need to have important conversations about technology. She’s a supporter of women in tech careers as well. She works with the University of Maryland and supports an all-women’s hack-a-thon. “I don’t love the separation of women in tech programs because in the workforce men and women must work together,” she says. “However, we have to work through the social constraints, girls who believe math is hard. We lose them as early as the sixth grade.” At Netcomm she promotes a diversified workforce and says they have a good balance of men and women.

Laurel wants to have a voice in the technology community and the CS department is helping her achieve that. The more involved she remains, the stronger her resolve is to mentor others and pursue her own interests. It’s more than a career, it’s a vision and a passion.

continued on page 38 ...
ZACHARY FERGUSON

Like many students, Zachary Ferguson came to his computer science major with an interest in game development. However, he diverted his studies when he discovered the many different opportunities and directions available at George Mason University.

Zachary’s George Mason University story starts close to his home. A Northern Virginia native, he was interested in staying nearby. His college search led him to the university because of its unique applied computer science concentration in computer game design. “The campus community was important to me,” Zachary says, “I wanted to be in a place where I felt I was part of the school.” His CS direction changed, however, when he began working with Professor Yotam Gingold in the Creativity and Graphics Lab (CraGL).

CS at Mason offers various research opportunities and Zachary jumped on the chance. His work concentrated on 3D modeling and animation. “Our research helps 3D artists and animators working with textured 3D objects.”

“I like the idea of teaching and the freedom to choose your own research topics.”

The research led to a paper presented at SIGGRAPH Asia 2017: “Seamless: Seam erasure and seam-aware decoupling of shape from mesh resolution.” “Working with Yotam and his Ph.D. student, Songrun Liu, to create something original was a great opportunity,” says Zachary. “Looking back, I am stunned by how much I learned and advanced my skills through research.” He also says the experience of putting a paper together, working through comments and revisions, has been invaluable.

In addition to a published paper as an undergrad, Zachary received the 2017 Distinguished Academic Achievement Award.

Upon graduation, Zachary moved into a Ph.D. program at New York University. He was interested in continuing with his graphics research. He just completed his second year and enjoys the research his new team does. He has several years to go before he finishes, but looking ahead, he sees himself moving into academia. “I like the idea of teaching and the freedom to choose your own research topics.” He definitely caught the research bug at George Mason University and is using it to advance his interests and the computer graphics field.
PLANNING FOR THE FUTURE:
A NEW SCHOOL OF COMPUTING

What’s so special about Northern Virginia? A great quality of life, a business-friendly community, and of course, George Mason University.

It’s no wonder to us that Amazon selected Northern Virginia as the site of its newest headquarters. The region has what Amazon needs - people. According to the Computing Technology Industry Association (CompTIA), Virginia has the third highest concentration of technology workers in the country. Additionally, we have a higher number of women and African Americans working in tech than any other areas of the nation.

Amazon is expected to bring in 25,000 jobs to the area; spurring business growth across the region. In January, Microsoft also announced an expansion of its Virginia-based data center capabilities.

With more tech needs comes the need for more tech workers. As part of its bid to lure Amazon, the Virginia State Assembly promised an investment in a “tech talent investment fund” to train more undergraduate and graduate students in computer science and related fields in the next twenty years.

George Mason University will be a major beneficiary of the new fund; which stands to reason, since our existing Arlington Campus is adjacent to the new Amazon headquarters.

The university has pledged to invest more than $250 million over the next five years to grow programs, hire large numbers of new faculty, and expand its campus in Arlington to 1.2 million square feet.

“This is a significant moment for the region, and the result of our tremendous collaboration with partners in the public and private sectors,” said George Mason University President, Ángel Cabrera. “Our goal is to not only produce high-quality graduates who can take on big roles at existing companies like Amazon, but to also have graduates who can start the Amazons of the future.”

The university also has plans to launch a new School of Computing, to bring the power of computing to a wide variety of fields. It will collaborate across the university, to advance the application of computing technology and data sciences to fields ranging from government to business to education to health care.

“Mason’s a research university, and part of our mission is actually working with corporations in the region, and creating new ventures, new tech ventures. We’re very excited about the possibilities that Amazon brings, particularly in the consumer market, attracting building companies that have a focus on the consumer marketplace, rather than the federal marketplace,” said Deborah Crawford, vice president for research innovation and economic impact at George Mason University.

The university is committed to doubling the number of students they are producing with tech degrees at the undergraduate level, currently 5,000, with similar goals at the graduate level.

“We are looking at offering both online and hybrid programs that appeal to working professionals who want to up-skill their capabilities in tech,” said Crawford. The university will also continue its partnership with Northern Virginia Community College to help students afford a degree and help students changing careers.

New spaces, improved resources, and a commitment to growth and education will keep computer science studies as a cornerstone to the region’s growing tech economy.
THE DRIVE TO RESEARCH
AND THE RESEARCH OF DRIVING

The Department of Computer Science boasts several active research projects. Some are theoretical, but others, like the work coming from the Radar and Engineering Lab (RARE) are lockstep, and at times several steps ahead of the most talked about advances in technology.

Professor Duminda Wijesekera oversees the projects and research and is the Director of the RARE Lab. His students describe him as innovative and enterprising with deep knowledge and foresight. And maybe a little fearless. When asked about an upcoming sensor test on self-driving cars, he laughed and said he may attach the sensors to his own car.

And while that may sound unsafe for an experiment, safety is what his research is all about. As an educator, researcher, and consultant, Wijesekera has been working with private industry and the federal government for decades on sensor and radio technology with a specialty in positive train control systems. And while that work continues, one of the RARE lab’s deepest projects concerns systems for driverless vehicles.

To have a sense of today’s driverless car research needs, it’s important to go back to the starting line. In 2004, the Defense Advanced Research Projects Agency (DARPA) “ran its path breaking Grand Challenge with the goal of spurring on American ingenuity to accelerate the development of autonomous vehicle technologies that could be applied to military requirements.” A second challenge was held in 2005 and DARPA reports, “challenges helped to create a mindset and research community that a decade later would render fleets of autonomous cars and other ground vehicles a near certainty for the first quarter of the 21st century.”

If this is true, by 2025 we should be sitting back and letting our cars and trucks take us where we need to travel. However, as Wijesekera explains, not so fast. He predicts we won’t see reliable and safe autonomous vehicles until 2040 or 2050. Several companies have made great strides in driverless technology. Close to fifty companies are now working on driverless tech, including car giants GM, Ford, and BMW and tech giants Waymo (formerly Google’s self-driving car project), Apple, and Tesla.

It’s essential for the industry to experiment and to test, but as headlines show, accidents are happening with Uber, Waymo, and Tesla making the news. The vehicles need to react to more than stop lights and speed limits.

Wijesekera explains just a few of the issues with current sensor technology. The cameras fitted on modern
vehicles don't work well in low light. The fatal 2018 Uber crash in Arizona involving a self-driving car (Volvo SUV) was determined to be caused in part by low light. Thermal imaging has problems too. While human heat signatures can be detected, if a car’s engine is running hot, the sensors may not see the people. Work needs to be done on sensor and camera placement to allow for these variables in different vehicles.

He further explains there is a need for mechanical systems that connect basic functions such as ABS braking systems; communication between vehicles through radio signals to determine traffic and controls such as railroad crossing gates and traffic lights; and additional sensors for thermal imaging. Add a layer, and there is a need to modify roads and mark street signs, guard rails, etc. This is also connected through wireless technology where everything has to be hardened against cyber security threats.

In basic terms, a vehicle on the road needs to transmit location, speed, and surroundings/conditions such as road surface to the cars in its immediate vicinity. Sensor radios have a one kilometer range. There is no need to accept transmissions from vehicles beyond this range. The car doesn’t need to know what is happening a mile up the road. The cars process a constant flow of signals, about ten messages a second with a ten second processing time. However, a cyber-attack could disrupt the signals making it take longer to react or overload the vehicle with more signals than it needs or signals from vehicles out of range. The vehicle wouldn’t be able to determine which signals are the ones to follow. The result is a crash.

OFF THE ROAD AND INTO THE LAB

The RARE Lab’s goal is not to design and launch an autonomous vehicle, though the researchers all think that would be a great project if it were not for funding limitations. The lab’s PhD students, Santos Jha, Chaitanya Yavvari, Paul Seymore, and Yongxin Wang are researching three key areas: cyber security, sensors, and parking detection. The lab is also cross-disciplinary and works with Dr. Cing-Dao (Steve) Kan, Professor and Director of the Center for Collision Safety and Analysis, part of the College of Science.

The center has expertise in vehicle safety collisions. Kan and his team have developed fifteen vehicle models that are used to run and crash on simulated road and highway conditions. These highly accurate simulations are used to analyze passenger risk, crashes, road conditions, and physical materials. Computer simulations allow researchers to collect almost unlimited data in the space of time it would take to run actual road tests. This along with not having to crash actual cars is both fast and cost-effective.

However, both Kan and Wijesekera agree, you can’t account for human factors. Cars can be tested on icy roads, low light, and heavy traffic, but you can never predict a scenario when people are involved. For instance, how will they react when an emergency vehicle comes on the scene?

Chaitanya Yavvari, who is working on vehicle sensor issues, describes a potential and yet to be determined problem with driverless cars in a city. Cars will follow speed limits and obey all traffic lights and signs, that’s a good thing. Additionally,
the default will be to stop and allow pedestrians to cross roads. That's essential for safety. This means driverless cars will move slower than traditional traffic. If you've ever been behind a slow driver, you can imagine how aggravated the other drivers may become. They may not behave according to road rules. Add a common scenario of a busy city where pedestrians don't wait for lights and dash across intersections at will (i.e., New York City) and the driverless cars will struggle to move at all.

Yongxin Wang explains another sensor problem with detecting people. The majority of vehicle accidents happen at intersections. If a pedestrian is blocked by a building or object, vehicles that rely only on cameras may not detect the person. This turns the busy intersection into a series of blind spots. Currently, four types of sensors are available: cameras that detect color images; thermal to register heat signatures, LiDAR that uses pulsed laser images to detect light and distances; and radar to detect movement.

A series of sensors will be needed to account for low light, severe weather, and daylight versus dark. With the right sensor mix, the vehicles will be able to detect people and transmit this vital data to the surrounding autonomous vehicles.

These essential human factor issues are leading to the RARE Lab's next test, a real road test on Intelligent Parking using a Blue Tooth system. The plan is to fit sensors onto a car and use the campus' Patriot Drive loop as a control track. The campus with defined loops is situated between two major roads. The team has already designed and run computer models with data provided by campus parking services. The test is to determine if autonomous driving buses can move students efficiently from parking lots to main campus. The test will determine the quality of the designed sensors and how they communicate with the vehicles systems, speed the vehicle can travel, autobraking, and the time it takes to complete specific tasks.

Santos Jha, who is working on cyber security issues, says the goal of a driverless vehicle is to leave its resting station, perform its mission (transporting passengers or goods) and return safely. He admits this should be everyone's goal who gets into a vehicle too. But what happens if a bad actor is able to disrupt a vehicle's onboard systems or communication protocols? Anything from a traffic jam to a crash. His work is in developing cryptography protocols to build resiliency and harden systems. The lab has already published a paper with the IEEE on how long it will take a system to process a message under heavy traffic conditions.

Everyone in the lab is working on a specific piece of the puzzle, but they all collaborate and share work and results. Like a car with a myriad of moving parts and control systems, everything must communicate to move. The team is excited about the parking experiment, moving from computer models to the street. The promise of computer science research in practice.
EXTERNAL FUNDING

<table>
<thead>
<tr>
<th>Name</th>
<th>Project</th>
<th>Funding Details</th>
</tr>
</thead>
</table>
| **Ammann, Paul** | Tools for Automated Detection and Assessment of Security Vulnerabilities in Mobile Applications | US Department of Homeland Security
9/23/2014 - 6/22/2018
$190,198 |
| | Automated Test Decision Framework | The MITRE Corporation
12/1/2017 - 8/31/2018
$34,174 |
| **Baldimtsi, Foteini** | SaTC: CORE:Small: Collaborative Research: Dependable Real-Time Computing on Heterogeneous Chip Multiprocessor | National Science Foundation
8/15/2014 - 7/31/2018
$269,966 |
| | Energy-aware standby-sparing for periodic real-time applications on heterogeneous chip multiprocessor systems | University of Texas at San Antonio
7/25/2017 - 8/24/2017
$6,756 |
| **Barbara, Daniel** | Advanced Predictive Analysis Capabilities | Decisive Analytics Corporation
3/15/2017 - 9/14/2017
$27,738 |
| | Parsing and Role Labeling in Combination Effort | Decisive Analytics Corporation
10/22/2018 – 9/10/2020
$302,376 |
| **Bell, Jonathan** | Blockchaining Collaborative Data Management | National Security Agency
5/18/2018 - 5/18/2023
Co-PI: Baldimtsi, Foteini; LaToza, Thomas
$250,000 |
| | SHF: Medium: Collaborative Research: Enhancing Continuous Integration Testing for the Open-Source Ecosystem | National Science Foundation
10/1/2018 - 9/30/2022
$399,591 |
| | Enabling Testing and Dynamic Analysis Research at a Very Large Scale | Amazon Web Services
12/18
$8,000 |
| | NSF Student Travel Grant for 2018 ACM SIGPLAN Conference on Systems, Programming, Languages and Applications: Software for Humanity (SPLASH) | National Science Foundation
8/1/2018 - 1/31/2019
$30,000 |
| | CAREER: Amplifying Developer-Written Tests for Code Injection Vulnerability Detection | National Science Foundation
5/1/2019 - 4/30/2024
$500,000 |
| | NSF Student Travel Grant for 2019 ACM SIGPLAN Conference on Systems, Programming, Languages and Applications: Software for Humanity (SPLASH) | National Science Foundation
8/1/2019 - 1/31/2020
$30,000 |
| **Chen, Songqing** | Moving Target Defense Through Dynamic Virtual Machine Placement in Clouds | US Department of the Army
6/1/2015 - 5/31/2018
Co-PI: Li, Fei
$390,000 |
| | NSF Student Travel Grant for 2018 ACM SIGPLAN Conference on Systems, Programming, Languages and Applications: Software for Humanity (SPLASH) | National Science Foundation
8/1/2018 - 1/31/2019
$30,000 |
| | DDoS Detection and Mitigation via Programmable SDN Traffic Measurement | US Department of Commerce
6/1/2016 - 5/31/2018
$100,000 |
| | DDDoS Detection and Mitigation via Programmable SDN Traffic Measurement | US Department of Commerce
9/1/2018 - 8/31/2020
$100,000 |
| **Domeniconi, Carlotta** | Development of Competitive Intelligence Analysis Enhancement Using Structured and Unstructured Data | FedSavvy Strategies, LLC
8/22/2016 - 8/21/2017
$52,516 |
<table>
<thead>
<tr>
<th>Name</th>
<th>Project Description</th>
<th>Funding Agency</th>
<th>Dates</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gingold, Yotam</td>
<td>CAREER: Direct Manipulation of Numerical Optimization for Structured Geometry Creation</td>
<td>National Science Foundation</td>
<td>2/1/2015 - 1/31/2020</td>
<td>$549,373</td>
</tr>
<tr>
<td></td>
<td>Applying Secure Multiparty Computation to the Secure Evaluation of Tor Network Statistics</td>
<td>US Department of the Navy</td>
<td>1/3/2017 - 12/2018</td>
<td>$156,664</td>
</tr>
<tr>
<td>LaToza, Thomas</td>
<td>Crowd Programming</td>
<td>Regents of the University of California</td>
<td>1/1/2016 - 6/30/2019</td>
<td>$325,000</td>
</tr>
<tr>
<td></td>
<td>SHF: Medium: Collaborative Research: Programming Strategies</td>
<td>National Science Foundation</td>
<td>10/1/2017 - 9/30/2021</td>
<td>$606,791</td>
</tr>
<tr>
<td></td>
<td>CAREER: SHF: Debugging Mental Models</td>
<td>National Science Foundation</td>
<td>2/1/2019 - 1/31/2024</td>
<td>$514,962</td>
</tr>
<tr>
<td>Li, Fei</td>
<td>STTR Phase I: Accelerating the dissemination of healthcare interventions that improve care for high-need/high-cost patients</td>
<td>Health Network Research Group, LLC</td>
<td>1/1/2018 - 2/28/2019</td>
<td>$67,500</td>
</tr>
<tr>
<td>Lien, Jyh-Ming</td>
<td>II-NEW: Acquisition of a Light Detection and Ranging (LiDAR) Scanner System</td>
<td>National Science Foundation</td>
<td>5/1/2012 - 4/30/2017</td>
<td>$255,000</td>
</tr>
<tr>
<td></td>
<td>Multifunctional Origami Structures - Advancing the Emerging Frontier of Active Compliant Mechanisms</td>
<td>University of Arizona</td>
<td>8/1/2012 - 7/31/2017</td>
<td>$50,000</td>
</tr>
<tr>
<td></td>
<td>DDDAMS-Based Urban Surveillance and Crowd Control via UAVs and UGV’s</td>
<td>University of Arizona</td>
<td>3/1/2017 - 6/30/2018</td>
<td>$63,358</td>
</tr>
<tr>
<td></td>
<td>Modeling of Laser Formed Structures</td>
<td>US Department of the Army</td>
<td>5/1/2019 - 4/30/2021</td>
<td>$60,000</td>
</tr>
<tr>
<td>Lin, Jessica</td>
<td>NRL: User Information Demand Modeling</td>
<td>Naval Research Laboratory</td>
<td>09/30/2016 - 09/29/2017</td>
<td>$73,968</td>
</tr>
<tr>
<td></td>
<td>Trajectory Pattern Mining and user Behavior Characterization on Large-Scale Track Data</td>
<td>Strategic Analysis Inc.</td>
<td>3/1/2017 - 9/29/2017</td>
<td>$51,127</td>
</tr>
<tr>
<td></td>
<td>Scalable Multivariate Temporal Pattern Discovery</td>
<td>Semiconductor Research Corporation</td>
<td>6/1/2015 - 11/30/2017</td>
<td>$160,000</td>
</tr>
<tr>
<td></td>
<td>CI-EN: Enhancement of a Large-scale Multiagent Simulation Tool</td>
<td>National Science Foundation</td>
<td>9/1/2017 - 8/31/2020</td>
<td>$896,303</td>
</tr>
<tr>
<td>Menasco, Daniel A</td>
<td>RASS: Resilient Autonomic Software Systems</td>
<td>US Department of the Air Force</td>
<td>10/15/2015 - 10/14/2018</td>
<td>$1,016,641</td>
</tr>
<tr>
<td></td>
<td>Offutt, Jeff</td>
<td>Google</td>
<td>6/1/2015 - 5/31/2020</td>
<td>$900,000</td>
</tr>
<tr>
<td></td>
<td>SPARC: Self-Paced Learning Increases Retention and Capacity</td>
<td>Naval Research Laboratory</td>
<td>09/30/2016 - 09/29/2017</td>
<td>$73,968</td>
</tr>
<tr>
<td></td>
<td>Pathak, Parth</td>
<td>National Science Foundation</td>
<td>10/1/2017 - 9/30/2020</td>
<td>$266,000</td>
</tr>
<tr>
<td>Project Title</td>
<td>Funding Agency</td>
<td>Start Date</td>
<td>End Date</td>
<td>Funding Amount</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>II-NEW: 60 GHz Millimeter-wave Testbed for Multi-gigabit Wireless Networking</td>
<td>National Science Foundation</td>
<td>10/1/2017 - 9/30/2019</td>
<td>Co-PI: Simon, Robert P; Mark, Brian L (Electrical and Computer Engineering); Tian, Zhi (Electrical and Computer Engineering)</td>
<td>$843,718</td>
</tr>
<tr>
<td>Tracing Networks of Gangs using Data Analytics.</td>
<td>Department of Homeland Security</td>
<td>11/1/2017-10/31/2020</td>
<td>$750,000</td>
<td></td>
</tr>
<tr>
<td>BIGDATA: IA: DKA: Collaborative Research: Learning Data Analytics: Providing Actionable Insights to Increase College Student Success.</td>
<td>National Science Foundation</td>
<td>09/01/2014-08/31/2018</td>
<td>Co-PI: Aditya Johri (Information Sciences and Technology) and Jaime Lester (Higher Education Program)</td>
<td>$766,202</td>
</tr>
<tr>
<td>NSF CAREER: Annotating the Microbiome Using Machine Learning Methods.</td>
<td>National Science Foundation</td>
<td>03/01/2013-02/28/2018</td>
<td>$550,000</td>
<td></td>
</tr>
<tr>
<td>Shehu, Amarda</td>
<td>Collaborative: A plug-and-play software platform of robotics-inspired algorithms for mapping protein structures and motions</td>
<td>National Science Foundation</td>
<td>2/1/2015 - 1/31/2019</td>
<td>$217,288</td>
</tr>
<tr>
<td>III: Medium: Collaborative Research: Guiding Exploration of Protein Structure Spaces with Deep Learning</td>
<td>National Science Foundation</td>
<td>7/1/2018 - 6/30/2021</td>
<td>$493,718</td>
<td></td>
</tr>
<tr>
<td>Stavrou, Angelos</td>
<td>Enhanced Cyber Defense by Leveraging Involuntary Analog Emissions</td>
<td>Defense Advanced Research Projects Agency (DARPA); Power Fingerprinting, Inc.</td>
<td>Co PI: Auffret, Jean-Pierre (Center for Assurance Research and Engineering)</td>
<td>$1,454,051</td>
</tr>
</tbody>
</table>
Democratizing DDoS Defenses Using Secure Indirection Networks
Defense Advanced Research Projects Agency (DARPA)
4/1/2016 - 6/30/2019
Co-PI: Fleck, Daniel P (CSIS)
$4,213,701

Extreme DDoS Defense- TA3
Vencore Labs Inc
4/20/2016 - 12/31/2019
$944,150

Towards Measuring Security for IoT
US Department of Commerce
9/1/2016 - 8/31/2019
$473,632

Anti-Ransomware Testing
Mitsui Bussan Secure Directions, Inc
2/9/2018 - 8/30/2019
Co-PI: Fleck, Daniel P (Center for Assurance Research and Engineering)
$23,200

Co-Arg: Cogent Argumentation System with Crowd Elitication
IARPA
1/3/2017 - 12/2/2018
Co-PI: Marcu, Dorin (Learning Agents Center); Boicu, Mihai (Information Science and Technology); Holincheck, Nancy M (College of Education and Human Development); Motti, Vivian (Information Sciences and Technology); Winston, Thomas. (Information Sciences and Technology)
$2,930,784

Agile Cognitive Assistants for Advanced Persistent Threat Detection
Air Force Research Laboratory (AFRL)
1/1/2017 - 1/24/2019
Co-PI: Marcu, Dorin (Learning Agents Center); Boicu, Mihai (Information Science and Technology)
$649,999

Wang, Xinyuan
Tactical Immune System (TIS) Based on Dynamically Assigned Sense of Self
CyberRock, Inc.
9/1/2016 - 5/31/2017
$64,703

Tactical Immune System based on Dynamically Assigned Sense of Self (Phase II)
CyberRock, Inc.
1/1/2018 - 8/31/2019
$280,352

Wijesekera, Duminda
Cyber Security Risk Management for Connected Railroads
Rutgers University/Federal Railroad Administration
9/22/2017 - 11/21/2019
$300,000

Cloud Forensic Analysis using Volatile Memory, System calls and IDS Alerts
National Institute of Standards and Technology (NIST)
8/15/2018 - 8/14/2019
$85,000

Sharing Human Genomic Data
Logistics Management Institute LMI
Co-PI: Bo, Yu (VSE)
10/3/2016 - 9/30/2017
$50,000

Technical Support for DOT Positive Train Control Program
Syntek Technologies Inc
9/1/2016 - 8/31/2018
Co-PI: Costa, Paulo Cesar (Systems Engineering and Operations Research)
$1,296,887

Global Impact of Conflict Economies Due to Evolving Clandestine Organ Trade
North Carolina State University
1/3/2017 - 12/31/2017
$85,997

Technical Support for DOT Positive Train Control Program
Syntek Technologies Inc
9/1/2016 - 8/31/2018
Co-PI: Costa, Paulo Cesar (Systems Engineering and Operations Research)
$1,296,887

Global Impact of Conflict Economies Due to Evolving Clandestine Organ Trade
North Carolina State University
1/3/2017 - 12/31/2017
$85,997
GRANTS WITH PIS IN OTHER DEPARTMENTS
GEORGE MASON UNIVERSITY

CyberSecurity Curricula Development
Department of Defense
9/14/2017 - 9/1/2019
PI: Auffret, Jean-Pierre (Center for Assurance Research and Engineering)
Co-PI: Stavrou, Angelos
$135,170

CDI Type II: Cyber-Enabled Understanding of Complexity in Socio-Ecological Systems via Computational Thinking
National Science Foundation
9/1/2011-6/30/2017
PI: Cioffi-Revilla, Claudio (Center for Social Complexity)
Co-PI: Luke, Sean; Schopf, Paul (Atmospheric, Oceanic and Earth Sciences)
$1,946,568

Megacities Command and Control Assessment Capability
Defense Advanced Research Projects
1/24/2017 - 7/24/2017
PI: Hieb, Michael R. (C4I and Cyber Center)
Co-PI: Pullen, J Mark; Crooks, Andrew T (Computational and Data Science); Allbeck, Jan M
$374,998

Preparing K-5 Teachers to Integrate the Computer Science Standards of Learning in Inclusive Classrooms to Support Students with High Incidence Disabilities
National Science Foundation
10/1/2018-09/2021
PI: Amy Hutchison (College of Education and Human Development)
Co-PI: Offutt, Jeff
$999,423

Collaborative Research: Deep Insights Anytime, Anywhere (DIA2)
National Science Foundation
4/18/2014- 8/31/2017
PI: Johri, Aditya (Information Sciences and Technology)
Co-PI: Domeniconi, Carlotta
$372,251

Network Analysis and Opportunities for Disruption of Organ Trafficking
National Science Foundation
PI: Koizumi, Naoru (Center for Study of International Medical Policies and Practices)
Co-PI: Wijesekera, Duminda
2018-2020
$291,510

III: Summarizing Heterogenous Crowdsourced & Web Streams Using Uncertain Concept Graphs.
National Science Foundation
08/01/2018-07/29/2021
PI: Purohit, Hemant (Information Sciences and Technology)
Co-PI: Rangwala, Huzefa
$259,701

Statistical Inference for Molecular Landscapes
National Science Foundation
8/1/2018 - 7/31/2021
PI: Qiao, Wanli (Statistics)
Co-PI: Shehu, Amarda
$100,000

High-dimensional Statistics and Biomolecular Modeling as a Powerful Microscope over Pathogenic Mutations in Proteinopathies
Jeffress Memorial Trust
6/30/2017 - 3/30/2019
PI: Qiao, Wanli (Statistics)
Co-PI: Shehu, Amarda
$118,718

Close Air Support Experimentation Campaign
Griffiss Institute/ US Department of the Air Force
3/15/2016 - 3/31/2017
PI: Roeting, William H (C4I and Cyber Center)
Co-PI: Pullen, J Mark
$1,499,955

Mobile Unmanned/manned Distributed Lethality Airborne Network (MUDLAN), Joint Capabilities Technology Demonstration (JCTD) Phase 1
Alien Science & Technology Corporation
9/13/2017 - 6/20/2019
PI: Roeting, William H (C4I and Cyber Center)
Co-PI: Pullen, J Mark
$7,561,429

Mobile Manned/Unmanned Distributed Lethality Airborne Network (MUDLAN)
US Department of the Air Force
3/2/2018 - 3/1/2021
PI: Roeting, William H (C4I and Cyber Center)
Co-PI: Pullen, J Mark
$20,095,000

MUDLAN Enhanced Rapid Integration for Transition (MERIT)
US Department of the Air Force
8/14/2018 - 8/13/2022
PI: Roeting, William H (C4I and Cyber Center)
Co-PI: Pullen, J Mark; Crissman, Sherry (C4I and Cyber Center)
$33,300,012

CPS: Synergy: A Novel Biomechatronic Interface Based on Wearable Dynamic Imaging Sensors.
National Science Foundation
02/01/2014-01/31/2018
PI: Siddhartha Sikdar (Bioengineering)
Co-PI: Huzefa Rangwala, Jana Kosecka and Houman Homayoun (Electrical and Computer Engineering)
02/01/2014-01/31/2018
$995,055
The finest clothing made is a person’s own skin, but of course society demands something more than this.

– Mark Twain