MOOC Prediction Analysis and Pattern Discovery

Zhouxiang Cai
Co Tran
Rachel Witner

Mentor:
Prof. Huzefa Rangwala

Overview

- Motivation/background
- The data
- Co Tran's work
- Rachel's work
- Zhouxiang's work

ENGAGE IN MORE THAN A COURSE: ENGAGE IN A LEARNING EXPERIENCE.

Enroll in open, online courses from colleges, universities, and organizations worldwide.

Motivation

- How to define a successful MOOC?
- How to define course completion?
- 38% of user-course pairs were active for at least one week
- $\quad 9 \%$ of students were "active" for at least half of the weeks of a course
- 0.08% of student enrollment logs had a date of completion
- 37% of computed final scores were missing
- 45% of non-missing computed final scores were 0
- How to define engagement?
- Are there recurring patterns of interaction across courses, users, and time?

The Data

- Canvas Network open courses released by Harvard Dataverse
- January 2013 to July 2016
- ~380 courses
- ~400,000 students enrolled
- User page views (requests)

Typology of learning behaviors of students in online courses - Co Tran

Motivation : - Previous studies of student learning pattern researched on the sample size of 1 or 2 courses.

Objective : - Studying the learning behaviors of students in the scale of multi-course using cluster analysis.

Method

Course-wise features computing normalized by the number of students

Courses cluster
analysis(Hierarchical,
K-mean, DBSCAN) - extract the characteristics of courses

Choose a cluster based on low variance features and distinctive characteristics

All time behaviors:
What are the consistent learning behaviors through the courses?

Time dependent behaviors: What are the learning behaviors at each time period? How do they change through the courses?

Extract the student ids in the cluster and computed page views by content (requests) features.
Divide the page views by quartile time intervals (0-25\%,25-50\%,.... And normalize by the length of course,

All time behaviors approach - Characteristics and student outcomes explained

Cluster 1: high engagement in discussion and reading wiki pages and higher average score.

Cluster 2: low engagement in discussion and reading wiki pages, high engagement in assignment and low average score.

Cluster 3: has low engaging in every activity especially in assignment, discussion, and reading wiki pages.

All time behaviors approach - Characteristics and student outcomes explained

Results - Time dependent behaviors approach

Cluser 1: normal engagement in all activities.
Cluster 2: Iow engagement in all activities.
Cluster 3: high engagement in all activities

Changes in the memberships of clusters

Jaccard similarity coefficient:The Jaccard coefficient measures similarity between finite sample sets, and is defined as the size of the intersection divided by the size of the union of the sample sets.

$$
\begin{equation*}
J(A, B)=\frac{|A \cap B|}{|A \cup B|} \tag{3}
\end{equation*}
$$

group	cluster_1	cluster_2	cluster_3
group_25_50	1.0	0.928501193988	0.0468164794007
group_50_75	0.999194414608	0.887533683166	0.1053227633070
group_75_100	0.999194414608	0.866238401142	0.1274418604651
group_100_25	1.0	0.892426367461	0.0179257362356
group_25	3721	6906	238
group_50	3721	6823	321
group_75	3724	6486	655
group_100	3721	6587	557

Table 7: Jaccard coefficient and number of students in each cluster

Interesting findings

- Cluster 1 in both approaches has the same memberships
\longrightarrow The learning behaviors of students in cluster 1 are mostly the same in each intervals of time as well as throughout the courses.
- The exchanges in memberships of time dependent behaviors approach mostly appear in cluster 2 (low engagement) and cluster 3 (high engagement).

Data Visualizations

Data Visualizations

Frequency of users per country

Data Visualizations

Submissions (green) and due dates (red) for 2 randomly selected individuals

Data Visualizations

Distribution of Courses per Student

Avg \% of quizzes a student completed per course vs. courses per student
count
160000
120000
80000
40000

Data Visualizations

Quizzes per week per course

Data Visualizations

Avg Quiz Completion Rate vs Quizzes Per Week

Weekly Interaction Clustering

user id	course id	week	count social	count quiz subs	count other	label
876763763	3425142	23	0	8	1	$?$
876763763	3425142	25	2	0	0	$?$
876763763	9812343	5	4	2	0	$?$
892332345	1434241	57	3	5	2	$?$
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\cdots

[^0]CLARA (Clustering Large Applications)

- Draw a random sample D' from the original dataset D
- Apply PAM (partitioning around medoids) algorithm to D ' to find the k medoids
- Use these k medoids and the dataset D to calculate the current dissimilarity
- If it is smaller than the one you get in the previous iteration, then these k medoids are kept as the best k medoids
- The whole process is performed a specified number of times
- In this case, I used 5,000 samples of size 10,000

Weekly Interaction Clustering

Clustered Weekly Course Interactions		clust er	social interactions	quiz submissions	non-assess ment activities	label + interpretation
[Cluster - 1 ㅁ 2 -3 - ㅁ. 5	1	2.99	0.217	3.72	M - moderate activity in all three features
		2	1.13	0.440	1.00	L - low activity in all three features
		3	4.15	1.94	0.00	S - mostly social interaction; no non-assessment activity
		4	1.50	10.7	0.057	Q - most quiz submissions
		5	0.286	0.252	2.00	A - moderate non-assessment; low quiz and social
		6	. 0146	0.239	8.74	N - mostly non-assessment activity

Creation of interaction string for each user-course. For weeks with no interaction, E represents 'enrolled in course but didn't interact with it' and O represents weeks before or after the course's official start/end dates.

user id	course id	engagement string
876763763	3425142	OOOEEEEEEMLQSEAENOOOO...
876763763	9812343	OOOQEEANEEOOOOOOOOOO...
892332345	1434241	OOOOOSSEEEELLEEOOOOOO...

Quiz completion rate, by number of active weeks

Early Warning Approach

1: Nationally, the average 6 -year graduation rate is $60 \backslash \%$.
2: In universities or online courses with high enrollment, faculty and advisors are unaware of the challenges faced by students until the end of the semester.

3: Students without up-to-date help would fail in classes and can't graduate on time.

4: An early warning approach is a tool that can help instructors to identify students at-risk of receiving poor grades

Feature Description (Course Feature)

CourseLen: How long a course is.

Type: There have 12 different discipline courses in database.
Size: denoted how many students register for this course.
\#Q: The total number of quizzes of a course.
\#A: The total number of assignment of a course

Feature Description (Student Feature)

QSubmission: How many quiz submissions of a student made before a specific timing.
QScore: How many scores student earned based on the submitted quiz and normalized the value by comparing the average quiz score of the class.

QAttempt: The average attempts times of the submitted quiz made by one student.
QTime: The average spending time of the summited quiz made by one student.
ASubmission: Same with QSubmission
AScore: Same with QScore
Acperday: How many times a student access to course management system

Basic Framework

Student In-class Feature	Method Learning	Student Final Outcome

Figure 10: Avaerage accuracy using course, student, hybrid features respectively for three different classification method.
4) Altare

Ejther

6entulat

Time-Stamp	$\mathbf{1 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{3 0 \%}$	$\mathbf{4 0 \%}$	$\mathbf{5 0 \%}$	$\mathbf{6 0 \%}$	$\mathbf{7 0 \%}$	$\mathbf{8 0 \%}$	$\mathbf{9 0 \%}$	$\mathbf{1 0 0 \%}$
LR_C	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44
LR_S	0.48	0.527	$\mathbf{0 . 5 7 6}$	$\mathbf{0 . 6 1 9}$	$\mathbf{0 . 6 5 7}$	$\mathbf{0 . 6 8 5}$	$\mathbf{0 . 7 2 4}$	$\mathbf{0 . 7 7 1}$	$\mathbf{0 . 8 0 9}$	$\mathbf{0 . 8 5 3}$
LR_H	$\mathbf{0 . 4 8 5}$	$\mathbf{0 . 5 3}$	0.567	0.608	0.645	0.672	0.716	0.759	0.796	0.84
KNN_C	0.384	0.384	0.384	0.384	0.384	0.384	0.384	0.384	0.384	0.384
KNN_S	0.391	0.396	0.398	0.401	0.403	0.411	0.423	0.433	0.444	0.45
KNN_H	0.39	0.393	0.396	0.397	0.399	0.405	0.418	0.425	0.434	0.438
RF_C	0.425	0.424	0.426	0.424	0.422	0.424	0.428	0.427	0.423	0.424
RFS	0.456	0.485	0.508	0.538	0.565	0.592	0.624	0.656	0.68	0.707
RF_A	0.455	0.48	0.499	0.514	0.545	0.567	0.603	0.621	0.648	0.667

Table 3: Average F1 Score of 586 students

Time-Stamp	$\mathbf{1 0 \%}$	$\mathbf{2 0} \%$	$\mathbf{3 0 \%}$	$\mathbf{4 0 \%}$	$\mathbf{5 0 \%}$	$\mathbf{6 0 \%}$	$\mathbf{7 0 \%}$	$\mathbf{8 0 \%}$	$\mathbf{9 0 \%}$	$\mathbf{1 0 0 \%}$
LR_C	0.551	0.551	0.551	0.551	0.551	0.551	0.551	0.551	0.551	0.551
LR_S	0.592	0.626	$\mathbf{0 . 6 6 5}$	$\mathbf{0 . 7 0 1}$	$\mathbf{0 . 7 3 1}$	$\mathbf{0 . 7 5 5}$	$\mathbf{0 . 7 8 6}$	$\mathbf{0 . 8 2 4}$	$\mathbf{0 . 8 5 6}$	$\mathbf{0 . 8 9 1}$
LR_H	$\mathbf{0 . 5 9 9}$	$\mathbf{0 . 6 3 1}$	0.66	0.694	0.724	0.745	0.779	0.815	0.846	0.88
KNN_C	0.583	0.583	0.583	0.583	0.583	0.583	0.583	0.583	0.583	0.583
KNN_S	0.591	0.594	0.595	0.597	0.598	0.605	0.613	0.62	0.627	0.632
KNN_H	0.59	0.591	0.594	0.595	0.595	0.6	0.609	0.614	0.62	0.624
RF_C	0.572	0.572	0.572	0.57	0.569	0.572	0.574	0.574	0.568	0.569
RF_S	0.601	0.627	0.646	0.67	0.693	0.715	0.738	0.765	0.783	0.802
RF_H	0.599	0.622	0.64	0.652	0.676	0.697	0.725	0.739	0.76	0.772

Table 4: Average F1 Score of 586 students

Figure 12: Average accuracy and F1 score result for Course-Specific-Approach

Full Paper Available

Designing Early Warning Approach using Student's Early In-class Study Behavior

abstract

 bon Cuerna Netwark epencosiren which hare whiciert clumern

 soscily cevenid 4
CCS CONCEPTS

KEYWORDS

为

$$
\begin{aligned}
& \begin{array}{l}
\text { Huxefa Rangwala } \\
\text { Cerorge Nasen Vivirenty }
\end{array}
\end{aligned}
$$

1 introduction

 Des Naine cravo har been ppliot to underturad haver

 peltornacer of the midere:

2 LITERATURE REVIEW

Thovieng Civand Ituexta Rengrovis

Mgare : A: A momple tadent enterent timeseries atic

 Treos hen makee C

Edoctional insitation will effer the sume conse in diferen

Thanks for this summer

[^0]: $n=480,000$

