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ENGAGE IN MORE THAN A COURSE:
ENGAGE IN A LEARNING
EXPERIENCE.




Motivation

e How to define a successful MOOC?

e How to define course completion?

38% of user-course pairs were active for at least one week

~9% of students were “active” for at least half of the weeks of a course
0.08% of student enroliment logs had a date of completion

37% of computed final scores were missing

45% of non-missing computed final scores were O

e How to define engagement?
e Are there recurring patterns of interaction across courses, users, and time?

O O O O O



The Data

e Canvas Network open
courses released by
Harvard Dataverse
January 2013 to July 2016
~380 courses

e ~400,000 students
enrolled

e User page views
(requests)
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Typology of learning behaviors of students in
online courses - Co Tran

Motivation : - Previous studies of student learning pattern researched on the
sample size of 1 or 2 courses.

Objective : - Studying the learning behaviors of students in the scale of
multi-course using cluster analysis.



Method

Courses cluster
analysis(Hierarchical,
K-mean, DBSCAN) - extract
the characteristics of

Choose a cluster based
on low variance features
and distinctive

Course-wise features
computing normalized
by the number of

students characteristics
courses
All time behaviors: /Extract the student ids in thh
What are the consistent learning cluster and computed page
behaviors through the courses? Students cluster views by content (requests)
analysis(Hierarchical features. _
Cluster Analysis) Divide the page views by
Time dependent behaviors: quartile time intervals
What are the learning behaviors at (0-25%,25-50%,.... And
each time period? How do they normalize by the length of

change through the courses? Qourse,




All time behaviors approach - Characteristics and
student outcomes explained

— - Cluster 1: high engagement in
o160 - discussion and reading wiki pages
empank g — and higher average score.
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All time behaviors approach - Characteristics and
student outcomes explained
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Results - Time dependent behaviors approach
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Cluser 1: normal
engagement in all
activities.

Cluster 2: low
engagement in all
activities.

Cluster 3: high
engagement in all
activities
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Changes in the memberships of clusters

Jaccard similarity coefficient:The Jaccard coefficient measures
similarity between finite sample sets, and is defined as the size of
the intersection divided by the size of the union of the sample sets.

|AnN B|
J(A,B) = AU B| (3)

group cluster.1 cluster.2 cluster 3
group.25.50 | 1.0 0.928501193985 | 0.0468164794007
group.50.75 | 0.999194414608 | 0.887533683166 | 0.1053227633070
group 75100 | 0.999194414608 | 0.866238401142 | 0.12744 18604651
group.100.25 | 1.0 0892426367461 | 0.0179257362356
group.25 3721 6906 238

group.50 3721 6823 32

group.75 3724 6486 655

group.100 3721 6587 557

Table 7: Jaccard coefficient and number of students in each

cluster




Interesting findings

- Cluster 1in both approaches has the same memberships

—® The learning behaviors of students in cluster 1 are mostly the same in each intervals of time as
well as throughout the courses.

- The exchanges in memberships of time dependent behaviors approach mostly
appear in cluster 2 (low engagement) and cluster 3 (high engagement).



Data Visualizations

Course durations

= Mathematics & Statatcs
o Medcal Pre-Mecha!

- Prvysical Scierces

= Pyclesacnt and Apphed Soences
o Soca Soences
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Data Visualizations 90000

Frequency of users per country




Course

Data Visualizations

Submissions (green) and due dates (red) for 2 randomly selected individuals
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Data V|Sua l_|Zat| ons Avg % of quizzes a student completed per

course vs. courses per student
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Data Visualizations

Quizzes per week per course

Business and Management Computer Science
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Data Visualizations

Avg Quiz Completion Rate vs Quizzes Per Week
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Week

y Interaction Clustering

user id course week count count count | label
id social quiz subs | other
876763763 | 3425142 23 0 8 1 ?
876763763 | 3425142 25 2 0 0 ?
876763763 | 9812343 5 4 2 0 ?
892332345 | 1434241 57 3 5 2 ?
n = 480,000

CLARA (Clustering Large Applications)

e Drawarandomsample D' from the
original dataset D

e Apply PAM (partitioning around medoids)
algorithm to D' to find the k medoids

e Usethese k medoids and the dataset D to
calculate the current dissimilarity

e Ifitissmaller thanthe one you getinthe
previous iteration, then these k medoids
are kept as the best k medoids

e Thewhole processis performed a
specified number of times

e Inthiscase, | used 5,000 samples of size
10,000



Weekly Interaction Clustering

Optimal number of clusters
@
¥ 200
B
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: clust social quiz non-assess label + interpretation
Clustered Weekly Course Interactions er | interactions | submissions ment
Quiz submissions activities
-~ Cluster T
@ 1 1 2.99 0.217 3.72 M — moderate activity in all three
o2 features
|3
o : ; 2 1.13 0.440 1.00 L — low activity in all three features
(=
3 4.15 1.94 0.00 S — mostly social interaction; no
non-assessment activity
4 4 1.50 10.7 0.057 Q - most quiz submissions
:- 5 0.286 0.252 2.00 A — moderate non-assessment; low
i quiz and social
¥ 6 .0146 0.239 8.74 N — mostly non-assessment activity
Social nlorachonss
\ -

Non-assessment activibes

p
-




user id course id | week | count | count quiz | count label
social subs other
876763763 | 3425142 23 0 8 1 Q
876763763 | 3425142 25 2 0 0 S
876763763 | 9812343 5 4 2 0 S
892332345 | 1434241 57 3 5 2 M
user id course id engagement string
876763763 3425142 OOOEEEEEEMLQSEAENOQQQO...
876763763 9812343 OOOQEEANEEOOOOOOO0O0O0O....
892332345 1434241 OOOOOSSEEEELLEEOOOOOO...

Creation of interaction
string for each
user-course. For weeks
with no interaction, E
represents ‘enrolled in
course but didn't
interact with it"and O
represents weeks
before or after the
course's official
start/end dates.



Quiz completion rate, by number of active weeks
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Early Warning Approach

1: Nationally, the average 6-year graduation rate is 60\%.

2: In universities or online courses with high enrollment, faculty and advisors are unaware of the challenges faced by students
until the end of the semester.

3: Students without up-to-date help would fail in classes and can't graduate on time.

4: An early warning approach is a tool that can help instructors to identify students at-risk of receiving poor grades
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Feature Description (Course Feature)

CourselLen: How long a course is.

Type: There have 12 different discipline courses in database.
Size: denoted how many students register for this course.
#Q: The total number of quizzes of a course.

#A: The total number of assignment of a course



Feature Description (Student Feature)

QSubmission: How many quiz submissions of a student made before a specific timing.

QScore: How many scores student earned based on the submitted quiz and normalized the value by comparing the average
quiz score of the class.

QAttempt: The average attempts times of the submitted quiz made by one student.
QTime: The average spending time of the summited quiz made by one student.
ASubmission: Same with QSubmission

AScore: Same with QScore

Acperday: How many times a student access to course management system



Basic Framework

Student

In-class
Feature

Method
Learning

Student

Final
Outcome
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Figure 10: Avaerage accuracy using course, student, hybrid features respectively for three different classification method.
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Time-Stamp | 10% | 20% | 30% | 40% 50% | 60% 70% 80% | 90% | 100%
LR.C 044 | 044 | 044 0.44 0.44 0.44 0.44 0.44 0.44 0.44

LR.S 048 | 0.527 | 0.576 | 0.619 | 0.657 | 0.685 | 0.724 | 0.771 | 0.809 | 0.853
LR_H 0.485 | 0.53 | 0.567 | 0.608 | 0.645 | 0.672 | 0.716 | 0.759 | 0.796 | 0.84

KNN_C 0384 | 0.384 | 0.384 | 0.384 | 0.384 | 0.384 | 0384 | 0.384 | 0.384 | 0.384
KNN_S 0.391 | 0.396 | 0.398 | 0.401 | 0403 | 0.411 | 0423 | 0433 | 0444 | 045

KNN_H 039 | 0393 | 0396 | 0.397 | 0399 | 0.405 | 0.418 | 0.425 | 0.434 | 0.438
RF.C 0.425 | 0.424 | 0.426 | 0.424 | 0.422 | 0.424 | 0.428 | 0.427 | 0.423 | 0.424
RF._S 0.456 | 0.485 | 0.508 | 0.538 | 0.565 | 0.592 | 0.624 | 0.656 | 0.68 | 0.707
RF_A 0.455 | 048 | 0.499 | 0514 | 0.545 | 0.567 | 0.603 | 0.621 | 0.648 | 0.667

Table 3: Average F1 Score of 586 students

Time-Stamp | 10% 20% 30% | 40% | 50% | 60% | 70% | 80% 20% | 100%
LR.C 0.551 | 0.551 | 0.551 | 0.551 | 0.551 | 0.551 | 0.551 | 0.551 | 0.551 | 0.551
LR_S 0.592 | 0.626 | 0.665 | 0.701 | 0.731 | 0.755 | 0.786 | 0.824 | 0.856 | 0.891
LR_H 0.599 | 0.631 | 0.66 | 0.694 | 0.724 | 0.745 | 0.779 | 0.815 | 0.846 | 0.38

KNN_C 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583 | 0.583
KNN_S 0.591 | 0.594 | 0.595 | 0.597 | 0.598 | 0.605 | 0.613 | 0.62 | 0.627 | 0.632
KNN_H 0.59 | 0.591 | 0594 | 0.595 | 0.595 0.6 0.609 | 0.614 | 0.62 | 0.624
RF.C 0.572 | 0.572 | 0.572 | 0.57 | 0.569 | 0572 | 0.574 | 0.574 | 0.568 | 0.569
RF.S 0.601 | 0.627 | 0.646 | 067 | 0.693 | 0.715 | 0.738 | 0.765 | 0.783 | 0.802
RF_H 0.599 | 0.622 | 0.64 | 0.652 | 0.676 | 0.697 | 0.725 | 0.739 | 0.76 | 0.772

Table 4: Average F1 Score of 586 students
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Thanks for this summer



