CLASSIFICATION OF SMARTWATCH **MOTION USING** MACHINE LEARNING Mia Cornwell and Kelly Glebus

Mason LIFE

WeLi Application

Research Question

How accurately can a student's behavior be automatically classified based on the available sensors in the devices used in the Wearable LIFE project?

Challenges

- Making dataset reflective
- Missing datapoints/labels
- Tutorial Code

ExtraSensory Dataset Repository

Both graphs taken from the ExtraSensory Dataset: <u>http://extrasensory.ucsd.edu/</u>

Relevant Sensors

ExtraSensory Dataset Sensors:

Phone Accelerometer Phone Gyroscope Phone Magnetometer Watch Accelerometer Watch Compass Location/ Location(quick) Audio/ Audio Magnitude Phone State Other

Watch Accelerometer Watch Compass Audio

Sony SmartWatch 3 Sensors: Ambient Light Sensors Accelerometer Compass Gyroscope GPS Huawei Watch 2 Sensors: GPS and Glonass Speaker/Microphone Accelerometer and Gyroscope Sensor Compass Heart Rate Sensor Barometer Capacitive Sensor Ambient Light Sensor

Relevant Labels

- Lying down
- Sitting
- Walking/Running
- Sleeping
- Watching TV
- Using the Internet
- Doing computer work
- Singing
- Talking
- Eating
- Grooming
- Elevator
- Stairs
- With Friends

```
import numpy as np;
import gzip;
import StringIO;
```

```
def parse_header_of_csv(csv_str):
    # Isolate the headline columns:
    headline = csv_str[:csv_str.index('\n')];
    columns = headline.split(',');
```

```
# The first column should be timestamp:
assert columns[0] == 'timestamp';
# The last column should be label_source:
assert columns[-1] == 'label_source';
```

```
# Search for the column of the first label:
for (ci,col) in enumerate(columns):
    if col.startswith('label:'):
        first_label_ind = ci;
        break;
    pass;
```

Feature columns come after timestamp and before the labels: feature_names = columns[1:first_label_ind];

How to Handle Missing Data

- Decided keeping missing data points could skew data
- Accuracy and relevancy →
 Delete missing data points from set

ExtraSensory Dataset Tutorial

Models

- Random Forest
- Logistic Regression
- Voted perceptron
- Naive Bayes

Results (Weka)

	Voted Perceptron (Weka)	Naive Bayes (Weka)	Logistic Regression (Weka)	Random Forest (Weka)	
Lying Down	75.01%	76.92%	99.70%	98.87%	
Sitting	51.17%	85.16%	98.68%	98.73%	
Walking	91.43%	86.14%	98.80%	97.90%	
Running	99.45%	91.77%	99.85%	99.73%	
Sleeping	80.61%	77.12%	97.18%	98.78%	
Lab Work	98.18%	78.96%	99.03%	99.40%	
Phone in Pocket	90.59%	73.15%	92.30%	95.53%	
Watching TV	94.31%	61.23%	94.99%	97.02%	
Surfing the Internet	93.09%	62.72%	93.48%	96.95%	
Singing	99.87%	87.04%	99.92%	99.91%	
Talking	86.70%	68.75%	90.77%	94.19%	
Computer Work	87.40%	60.46%	89.52%	95.36%	
Eating	94.03%	63.76%	94.07%	95.18%	
Toilet	99.20%	80.53%	99.20%	99.31%	
Grooming	98.85%	83.66%	98.83%	99.08%	
Stairs Going Up	99.73%	83.57%	99.89%	99.85%	
Stairs Going Down	99.74%	85.14%	99.91%	99.85%	
Elevator	99.97%	89.01%	99.94%	99.98%	
Standing	85.75%	79.49%	98.78%	98.51%	
At School	86.21%	68.49%	87.79%	94.14%	
Phone in Hand	95.89%	87.08%	96.04%	96.80%	
Phone in Bag	96.49%	81.32%	96.62%	98.09%	
Phone on Table	64.25%	57.59%	74.62%	93.90%	
With Friends	90.31%	75.54%	92.41%	97.19%	

Results (Code)

	Logistic Regression (Code)			Random Forest (Code)		
	Precision	Accuracy	Balanced Accuracy	Precision	Accuracy	Balanced Accuracy
Lying Down	0.66	0.85	0.86	0.95	0.94	0.9
Sitting	0.71	0.73	0.73	0.81	0.85	0.85
Walking	0.27	0.8	0.79	0.81	0.94	0.68
Running	0.09	0.9	0.9	0.97	0.99	0.75
Sleeping	0.64	0.87	0.89	0.96	0.97	0.93
Lab Work	0.48	0.87	0.89	0.98	0.98	0.94
Phone in Pocket	0.45	0.76	0.76	0.97	0.93	0.85
Watching TV	0.21	0.73	0.74	0.98	0.94	0.68
Surfing the Internet	0.23	0.7	0.72	0.94	0.93	0.7
Singing	0.18	0.92	0.92	1	1	0.86
Talking	0.29	0.69	0.71	0.95	0.89	0.65
Computer Work	0.3	0.69	0.7	0.96	0.9	0.7
Eating	0.12	0.67	0.69	0.98	0.94	0.52
Toilet	0.03	0.74	0.75	0.94	0.99	0.52
Grooming	0.05	0.75	0.75	1	0.98	0.54
Stairs Going Up	0.04	0.82	0.84	1	0.99	0.5
Stairs Going Down	0.04	0.82	0.83	1	0.99	0.5
Elevator	0.06	0.98	0.99	1	1	0.58
Standing	0.28	0.71	0.7	0.95	0.88	0.59
At School	0.33	0.71	0.71	0.98	0.9	0.72
Phone in Hand	0.17	0.69	0.67	0.99	0.93	0.62
Phone in Bag	0.41	0.85	0.84	0.99	0.97	0.89
Phone on Table	0.86	0.76	0.75	0.92	0.92	0.9
With Friends	0.36	0.72	0.73	0.95	0.93	0.8

Future Work

- Collect more data to test models
- Map specific motions to interventions
- Incorporate model into WeLi application

Acknowledgements

Vivian Motti Hui Zheng National Science Foundation ExtraSensory Dataset George Mason University Computer Science Department

Pictures found at:

https://www.oreilly.com/learning/handling-missing-data https://www.get-digital-help.com/2009/04/11/how-to-automatically-fill-all-blanks-with-missing-data-or-formula/ https://en.wikipedia.org/wiki/Predictive_analytics Hui Zheng and Vivian Genaro Motti. 2017. WeLi: A Smartwatch Application to Assist Students with Intellectual and Developmental Disabilities. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '17). ACM, New York, NY, USA, 355-356. DOI: https://doi.org/10.1145/3132525.3134770. https://mindwingconcepts.com/blogs/news/80321345-aligning-sgm-with-the-zones-of-regulation-and-tech-tie-ins https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d https://en.wikipedia.org/wiki/Naive_Bayes_classifier http://www.saedsayad.com/logistic_regression.htm https://www.researchgate.net/figure/Architecture-of-a-Voted-Perceptron_fig1_289318021 https://www.foodstuffsa.co.za/top-10-challenges-food-manufacturers/