
CS499 INTRODUCTION TO NLP
PRELIMINARIES

ANTONIS ANASTASOPOULOS

https://cs.gmu.edu/~antonis/course/cs499-spring21/

https://cs.gmu.edu/~antonis/course/cs499-spring21/

STRUCTURE OF THIS LECTURE

2

1 2 43
Probability
Refresher

Working with
text

Regular
Expressions

Neural Nets
Primer

PROBABILITIES

3

RANDOM VARIABLES

A random variable is a variable with a different random value in each “experiment”

Random Variable: X
P(X) is the distribution of X.

If , we write for the probability that X has value x

If P(W) is the distribution of English words, we might have:

, …

x ∈ X P(X = x)

Σx∈XP(X = x) = 1

P(W = the) = 0.1
P(W = syzygy) = 10−10

4

https://www.aclweb.org/anthology/

JOINT AND MARGINAL PROBABILITIES

Random Variables W (words) and S (speaker)

Joint distribution such that:

P(S, W)
Σs,wP(S = s, W = w) = 1

P(S = Trump, W = bigly) = 0.2
P(S = Trump, W = huge) = 0.4
P(S = Biden, W = people) = 0.3
P(S = Biden, W = fellas) = 0.1

5

https://www.aclweb.org/anthology/

JOINT AND MARGINAL PROBABILITIES

Marginal distributions

For our made up numbers:

P(S = s) = Σw P(S = s, W = w)
P(W = w) = Σs P(S = s, W = w)

P(S = Trump) = 0.2 + 0.4 = 0.6
P(S = Biden) = 0.3 + 0.1 = 0.4

6

https://www.aclweb.org/anthology/

CONDITIONAL DISTRIBUTIONS

Note that .

You know this already, but do not confuse and :
 For our made up numbers:

P(s |w) =
P(s, w)
P(w)

Σs P(s |w) = 1

p(w |s) p(s |w)

P(Trump |bigly) =
0.2
0.2

= 1

P(bigly |Trump) =
0.2
0.6

≈ 0.33

7

https://www.aclweb.org/anthology/

EXPECTED VALUES

: number of occurrences of letter e in a word

The expectation of is

For our made up numbers:

ce(w)

ce(w)

E[ce] = Σw P(W = w)ce(w)

E[ce] = 0.2 ⋅ 0 + 0.4 ⋅ 1 + 0.3 ⋅ 2 + 0.1 ⋅ 1 = 1.1

8

https://www.aclweb.org/anthology/

LOGARITHMS

Some identities that will be useful

9

https://www.aclweb.org/anthology/

LOGARITHMS

Used to simplify expressions like a product of probabilities:

Take the log of everything, and now you have a sum:

p(x1, …, xn) = Πip(xi)

log p(x1, …, xn) = Σi log p(xi)

10

https://www.aclweb.org/anthology/

LOGARITHMS

Used to simplify expressions like a product of probabilities:

Take the log of everything, and now you have a sum:

For two probabilities comparing and is equivalent.

Instead of multiplying two probabilities we can just add

p(x1, …, xn) = Πip(xi)

log p(x1, …, xn) = Σi log p(xi)

p, q log p log q

p ⋅ q log p + log q

11

https://www.aclweb.org/anthology/

SOFTMAX

Let be a vector of real numbers

We define .

x = [x1, x2, …, xn]

[softmax x]i =
exp xi

Σn
i′ =1 exp xi′

12

WORKING WITH TEXT

13

SOME TERMINOLOGY

A word is an ill-defined concept:

Type: a class of tokens that use the same character sequence

Token: an individual occurrence of a type in speech or writing

Vocabulary: the set of types

14

https://en.wikipedia.org/wiki/Type%E2%80%93token_distinction

do — do not — don’t
Lebensversicherungsgesellschaftsangestellter (life insurance company employee)

莎拉波娃现在居住在美国东南部的佛罗⾥达。 (Sharapova now lives in Us southeastern Florida)

https://en.wikipedia.org/wiki/Type%E2%80%93token_distinction

SOME TERMINOLOGY

15

A rose is a rose is a rose.

#Types: 4

Vocabulary: {a, rose, is, .}

#Tokens: 9

TEXT NORMALIZATION

“Don’t think of an elephant!,” says George.

Elephants are not something you should be thinking, according to Lakoff.

Dr. Lakoff asks that you do not think of an elephant.

SEGMENTATION

“ Do n’t think of an elephant ! , ” says George .

Elephants are not something you should be thinking , according to Lakoff .

Dr. Lakoff asks that you do not think of an elephant .

TRUE CASING

“ do n’t think of an elephant ! , ” says George .

elephants are not something you should be thinking , according to Lakoff .

dr. Lakoff asks that you do not think of an elephant .

Tools:
 - NLTK (https://www.nltk.org/)
 - spacy (https://spacy.io/)
 - Moses tools (http://www.statmt.org/moses/?n=Moses.SupportTools)

https://www.nltk.org/
https://spacy.io/
http://www.statmt.org/moses/?n=Moses.SupportTools

MORE READINGS

RegExes: https://web.stanford.edu/~jurafsky/slp3/2.pdf

Working with text: https://web.stanford.edu/~jurafsky/slp3/slides/
2_TextProc_Jan_06_2021.pdf

19

https://web.stanford.edu/~jurafsky/slp3/2.pdf
https://web.stanford.edu/~jurafsky/slp3/slides/2_TextProc_Jan_06_2021.pdf
https://web.stanford.edu/~jurafsky/slp3/slides/2_TextProc_Jan_06_2021.pdf

NEURAL NETS

20

“NEURAL” NETS

Original Motivation: The Brain

Current Implementation: Computation Graphs

21

Image credit: Wikipedia

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

COMPOSITE FUNCTIONS

We will build computation graphs using an “ordered series of equations”.

Each equation is only a function of the preceding equations

We can represent the above equation using intermediate variables:

22

f(x, y, z) = z + sin(x2 + y × exp(z))

a = x2

b = exp(z)
c = y × b
d = a + c
e = sin(d)
f = e + z

AUTODIFF

Main idea behind AD: as long as we have access to the derivatives of a set of
primitives, then we can stick these together to get the derivative of any composite
function

Saving the values of intermediate variables (dynamic programming!) allows for low
computational complexity (exponential —> linear).

23

GENERAL AUTODIFF FRAMEWORK

24

f(y, z) = y + z ∂
∂x

f(y, z) =
∂y
∂x

+
∂z
∂x

f(y, z) = y × z ∂
∂x

f(y, z) = y
∂z
∂x

+ z
∂y
∂x

f(y, z) = y3 ∂
∂x

f(y, z) = 3y2 ∂y
∂x

f(y, z) = log(y) ∂
∂x

f(y, z) =
1
y

∂y
∂x

Primitives Their Derivatives

1. All edges (hyperedges) are made of primitives
2. Perform the forward pass, to compute the

functions’ value
3. Run back-propagation using the stored forward

values, using the derivatives

EXAMPLE GRADIENT CALCULATION

f(x, y, z) = z + sin(x2 + y × exp(z))

a = x2

b = exp(z)

c = y × b

d = a + c

e = sin(d)

f = e + z

fo
rw

ar
d

ba
ck

w
ar

d

∂f
∂e

= 1

∂f
∂d

=
∂f
∂e

∂e
∂d

=
∂f
∂e

cos(d)

∂f
∂c

=
∂f
∂d

∂d
∂c

=
∂f
∂d

1

∂f
∂b

=
∂f
∂c

∂c
∂b

=
∂f
∂c

y

∂f
∂z

=
∂f
∂b

∂b
∂z

+ 1 =
∂f
∂b

exp(z) + 1
We can easily write the derivatives
of individual terms in the graph.

Given all these, we can work
backwards to compute the
derivative of with respect
to each variable.

f(x, y, z)

∂f
∂a

=
∂f
∂d

∂d
∂a

=
∂f
∂d

1

COMPUTATION GRAPHS

A node is a {tensor, matrix, vector, scalar} value

y = x>Ax+ b · x+ c

expression:

x

graph:

26

COMPUTATION GRAPHS

An edge represents a function argument
(and also an data dependency). They are just
pointers to nodes.

A node with an incoming edge is a function of
that edge’s tail node.

y = x>Ax+ b · x+ c

x

expression:

graph:

f(u) = u>

A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)
times a derivative of an arbitrary input .@F

@f(u)

@f(u)

@u

@F
@f(u)

=

✓
@F

@f(u)

◆>

27

COMPUTATION GRAPHS

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary,
binary, … n-ary. Often they are unary or binary.

28

COMPUTATION GRAPHS

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:
Computation graphs are directed and acyclic.

29

COMPUTATION GRAPHS

A

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

x

f(x,A) = x>Ax

@f(x,A)

@A
= xx>

@f(x,A)

@x
= (A> +A)x

expression:

graph:

30

COMPUTATION GRAPHS

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:

31

COMPUTATION GRAPHS

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.

32

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

FORWARD PROPAGATION

33

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

FORWARD PROPAGATION

34

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

FORWARD PROPAGATION

35

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

FORWARD PROPAGATION

36

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

FORWARD PROPAGATION

37

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

FORWARD PROPAGATION

38

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

FORWARD PROPAGATION

39

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

FORWARD PROPAGATION

x>Ax+ b · x+ c

40

BACK-PROPAGATION

Back-propagation:
Process examples in reverse topological order
Calculate the derivatives of the parameters with respect to the final value
(This is usually a “loss function”, a value we want to minimize)

Parameter update:
Move the parameters in the direction of this derivative
W -= α * dl/dW

41

NEURAL NETWORK FRAMEWORKS

Examples in this class will be in DyNet
or PyTorch:

intuitive, program like you think (c.f.
TensorFlow, Theano)

fast for complicated networks on CPU
(c.f. autodiff libraries, Chainer, PyTorch)

has nice features to make efficient
implementation easier (automatic
batching)

42

Static Frameworks Dynamic Frameworks
(Recommended!)

+Gluon

+Eager

BASIC PROCESS IN DYNAMIC NEURAL NETWORK FRAMEWORKS

Create a model

For each example

create a graph that represents the computation you want

calculate the result of that computation

if training, perform back propagation and update

43

NEXT CLASS PREVIEW

The building blocks of words

Lexicons

Edit Distance

44

ASSIGNMENT 1 OUT!

