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PROBABILITIES
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RANDOM VARIABLES

A random variable is a variable with a different random value in each “experiment” 

Random Variable: X 
P(X) is the distribution of X. 

If , we write  for the probability that X has value x 

 

If P(W) is the distribution of English words, we might have: 
 

, …

x ∈ X P(X = x)

Σx∈XP(X = x) = 1

P(W = the) = 0.1
P(W = syzygy) = 10−10
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https://www.aclweb.org/anthology/


JOINT AND MARGINAL PROBABILITIES

Random Variables W (words) and S (speaker) 

Joint distribution  such that: 
 

 
 
 
 

P(S, W)
Σs,wP(S = s, W = w) = 1

P(S = Trump, W = bigly) = 0.2
P(S = Trump, W = huge) = 0.4
P(S = Biden, W = people) = 0.3
P(S = Biden, W = fellas) = 0.1
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JOINT AND MARGINAL PROBABILITIES

Marginal distributions 
 
 

For our made up numbers: 
 

P(S = s) = Σw P(S = s, W = w)
P(W = w) = Σs P(S = s, W = w)

P(S = Trump) = 0.2 + 0.4 = 0.6
P(S = Biden) = 0.3 + 0.1 = 0.4
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CONDITIONAL DISTRIBUTIONS

 

Note that . 

You know this already, but do not confuse  and : 
     For our made up numbers: 

      

 

     

P(s |w) =
P(s, w)
P(w)

Σs P(s |w) = 1

p(w |s) p(s |w)

P(Trump |bigly) =
0.2
0.2

= 1

P(bigly |Trump) =
0.2
0.6

≈ 0.33
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EXPECTED VALUES

: number of occurrences of letter e in a word 

The expectation of  is 
 

 

For our made up numbers: 
 

ce(w)

ce(w)

E[ce] = Σw P(W = w)ce(w)

E[ce] = 0.2 ⋅ 0 + 0.4 ⋅ 1 + 0.3 ⋅ 2 + 0.1 ⋅ 1 = 1.1
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LOGARITHMS

Some identities that will be useful
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LOGARITHMS

 

Used to simplify expressions like a product of probabilities: 
 
               

Take the log of everything, and now you have a sum: 
 
              

p(x1, …, xn) = Πip(xi)

log p(x1, …, xn) = Σi log p(xi)
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LOGARITHMS

 

Used to simplify expressions like a product of probabilities: 
 
               

Take the log of everything, and now you have a sum: 
 
               

For two probabilities  comparing  and  is equivalent. 

Instead of multiplying two probabilities  we can just add 

p(x1, …, xn) = Πip(xi)

log p(x1, …, xn) = Σi log p(xi)

p, q log p log q

p ⋅ q log p + log q
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SOFTMAX

Let  be a vector of real numbers 

We define .

x = [x1, x2, …, xn]

[softmax x]i =
exp xi

Σn
i′ =1 exp xi′ 
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WORKING WITH TEXT
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SOME TERMINOLOGY

A word is an ill-defined concept: 

Type: a class of tokens that use the same character sequence 

Token: an individual occurrence of a type in speech or writing 

Vocabulary: the set of types
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https://en.wikipedia.org/wiki/Type%E2%80%93token_distinction

do — do not — don’t 
Lebensversicherungsgesellschaftsangestellter (life insurance company employee) 

莎拉波娃现在居住在美国东南部的佛罗⾥达。 (Sharapova now lives in Us southeastern Florida)

https://en.wikipedia.org/wiki/Type%E2%80%93token_distinction


SOME TERMINOLOGY
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A rose is a rose is a rose.

#Types: 4 

Vocabulary: {a, rose, is, .} 

#Tokens: 9



TEXT NORMALIZATION

“Don’t think of an elephant!,” says George.

Elephants are not something you should be thinking, according to Lakoff.

Dr. Lakoff asks that you do not think of an elephant.



SEGMENTATION

“ Do n’t think of an elephant ! , ” says George .

Elephants are not something you should be thinking , according to Lakoff .

Dr. Lakoff asks that you do not think of an elephant .



TRUE CASING

“ do n’t think of an elephant ! , ” says George .

elephants are not something you should be thinking , according to Lakoff .

dr. Lakoff asks that you do not think of an elephant .

Tools: 
 - NLTK (https://www.nltk.org/) 
 - spacy (https://spacy.io/) 
 - Moses tools (http://www.statmt.org/moses/?n=Moses.SupportTools)

https://www.nltk.org/
https://spacy.io/
http://www.statmt.org/moses/?n=Moses.SupportTools


MORE READINGS

RegExes: https://web.stanford.edu/~jurafsky/slp3/2.pdf 

Working with text: https://web.stanford.edu/~jurafsky/slp3/slides/
2_TextProc_Jan_06_2021.pdf  
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https://web.stanford.edu/~jurafsky/slp3/2.pdf
https://web.stanford.edu/~jurafsky/slp3/slides/2_TextProc_Jan_06_2021.pdf
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NEURAL NETS
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“NEURAL” NETS

Original Motivation: The Brain 
 
 
 
Current Implementation: Computation Graphs
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Image credit: Wikipedia

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi



COMPOSITE FUNCTIONS

We will build computation graphs using an “ordered series of equations”. 

Each equation is only a function of the preceding equations 

We can represent the above equation using intermediate variables:
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f(x, y, z) = z + sin(x2 + y × exp(z))

a = x2

b = exp(z)
c = y × b
d = a + c
e = sin(d)
f = e + z



AUTODIFF

Main idea behind AD: as long as we have access to the derivatives of a set of 
primitives, then we can stick these together to get the derivative of any composite 
function 

Saving the values of intermediate variables (dynamic programming!) allows for low 
computational complexity (exponential —> linear). 
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GENERAL AUTODIFF FRAMEWORK
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f(y, z) = y + z ∂
∂x

f(y, z) =
∂y
∂x

+
∂z
∂x

f(y, z) = y × z ∂
∂x

f(y, z) = y
∂z
∂x

+ z
∂y
∂x

f(y, z) = y3 ∂
∂x

f(y, z) = 3y2 ∂y
∂x

f(y, z) = log(y) ∂
∂x

f(y, z) =
1
y

∂y
∂x

Primitives Their Derivatives

1. All edges (hyperedges) are made of primitives 
2. Perform the forward pass, to compute the 

functions’ value 
3. Run back-propagation using the stored forward 

values, using the derivatives



EXAMPLE GRADIENT CALCULATION

f(x, y, z) = z + sin(x2 + y × exp(z))

a = x2

b = exp(z)

c = y × b

d = a + c

e = sin(d)

f = e + z

fo
rw

ar
d

ba
ck

w
ar

d

∂f
∂e

= 1

∂f
∂d

=
∂f
∂e

∂e
∂d

=
∂f
∂e

cos(d)

∂f
∂c

=
∂f
∂d

∂d
∂c

=
∂f
∂d

1

∂f
∂b

=
∂f
∂c

∂c
∂b

=
∂f
∂c

y

∂f
∂z

=
∂f
∂b

∂b
∂z

+ 1 =
∂f
∂b

exp(z) + 1
We can easily write the derivatives 
of individual terms in the graph. 

Given all these, we can work 
backwards to compute the 
derivative of  with respect 
to each variable.

f(x, y, z)

∂f
∂a

=
∂f
∂d

∂d
∂a

=
∂f
∂d

1



COMPUTATION GRAPHS

A node is a {tensor, matrix, vector, scalar} value

y = x>Ax+ b · x+ c

expression:

x

graph:
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COMPUTATION GRAPHS

An edge represents a function argument 
(and also an data dependency). They are just 
pointers to nodes.

A node with an incoming edge is a function of 
that edge’s tail node.

y = x>Ax+ b · x+ c

x

expression:

graph:

f(u) = u>

A node knows how to compute its value and the 
value of its derivative w.r.t each argument (edge) 
times a derivative of an arbitrary input       .@F

@f(u)

@f(u)

@u

@F
@f(u)

=

✓
@F

@f(u)

◆>
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COMPUTATION GRAPHS

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary, 
binary, … n-ary. Often they are unary or binary.
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COMPUTATION GRAPHS

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:
Computation graphs are directed and acyclic.
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COMPUTATION GRAPHS

A

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

x

f(x,A) = x>Ax

@f(x,A)

@A
= xx>

@f(x,A)

@x
= (A> +A)x

expression:

graph:
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COMPUTATION GRAPHS

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:
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COMPUTATION GRAPHS

y = x>Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

FORWARD PROPAGATION
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graph:

FORWARD PROPAGATION
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f(u) = u>
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f(U,V) = UV
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graph:

FORWARD PROPAGATION
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

FORWARD PROPAGATION
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

FORWARD PROPAGATION

37



x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

FORWARD PROPAGATION
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

FORWARD PROPAGATION
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x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x>

x>A

b · x

x>Ax

FORWARD PROPAGATION

x>Ax+ b · x+ c
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BACK-PROPAGATION

Back-propagation: 
Process examples in reverse topological order 
Calculate the derivatives of the parameters with respect to the final value 
(This is usually a “loss function”, a value we want to minimize) 

Parameter update: 
Move the parameters in the direction of this derivative 
W -= α * dl/dW

41



NEURAL NETWORK FRAMEWORKS

Examples in this class will be in DyNet 
or PyTorch: 

intuitive, program like you think (c.f. 
TensorFlow, Theano) 

fast for complicated networks on CPU 
(c.f. autodiff libraries, Chainer, PyTorch) 

has nice features to make efficient 
implementation easier (automatic 
batching)
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Static Frameworks Dynamic Frameworks 
(Recommended!)

+Gluon

+Eager



BASIC PROCESS IN DYNAMIC NEURAL NETWORK FRAMEWORKS

Create a model 

For each example 

create a graph that represents the computation you want 

calculate the result of that computation 

if training, perform back propagation and update
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NEXT CLASS PREVIEW

The building blocks of words 

Lexicons 

Edit Distance 
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ASSIGNMENT 1 OUT!


