ANTONIS ANASTASOPOULOS CS499 INTRODUCTION TO NLP PRELIMINARIES

https://cs.gmu.edu/~antonis/course/cs499-spring21/

STRUCTURE OF THIS LECTURE

Probability
Refresher

Neural Nets
Primer

PROBABILITIES

RANDOM VARIABLES

A random variable is a variable with a different random value in each "experiment"
Random Variable: X
$P(X)$ is the distribution of X.
If $x \in X$, we write $P(X=x)$ for the probability that X has value x
$\Sigma_{x \in X} P(X=x)=1$
If $\mathrm{P}(\mathrm{W})$ is the distribution of English words, we might have:
$P(W=$ the $)=0.1$
$P(W=$ syzygy $)=10^{-10}, \ldots$

JOINT AND MARGINAL PROBABILITIES

Random Variables W (words) and S (speaker)
Joint distribution $P(S, W)$ such that:
$\Sigma_{s, w} P(S=s, W=w)=1$
$P(S=$ Trump,$W=$ bigly $)=0.2$
$P(S=$ Trump,$W=$ huge $)=0.4$
$P(S=$ Biden,$W=$ people $)=0.3$
$P(S=$ Biden,$W=$ fellas $)=0.1$

JOINT AND MARGINAL PROBABILITIES

Marginal distributions
$P(S=s)=\Sigma_{w} P(S=s, W=w)$
$P(W=w)=\Sigma_{s} P(S=s, W=w)$
For our made up numbers:
$P(S=$ Trump $)=0.2+0.4=0.6$
$P(S=$ Biden $)=0.3+0.1=0.4$

CONDITIONAL DISTRIBUTIONS

$$
P(s \mid w)=\frac{P(s, w)}{P(w)}
$$

Note that $\Sigma_{s} P(s \mid w)=1$.
You know this already, but do not confuse $p(w \mid s)$ and $p(s \mid w)$:
For our made up numbers:

$$
\begin{aligned}
& P(\text { Trump } \mid \text { bigly })=\frac{0.2}{0.2}=1 \\
& P(\text { bigly } \mid \text { Trump })=\frac{0.2}{0.6} \approx 0.33
\end{aligned}
$$

EXPECTED VALUES

$c_{e}(w)$: number of occurrences of letter e in a word
The expectation of $c_{e}(w)$ is

$$
E\left[c_{e}\right]=\Sigma_{w} P(W=w) c_{e}(w)
$$

For our made up numbers:

$$
E\left[c_{e}\right]=0.2 \cdot 0+0.4 \cdot 1+0.3 \cdot 2+0.1 \cdot 1=1.1
$$

LOGARITHMS

Some identities that will be useful

$$
\begin{aligned}
\log \exp x & =x \\
\log x y & =\log x+\log y \\
\log \prod_{i} x_{i} & =\sum_{i} \log x_{i} \\
\log x^{n} & =n \log x \\
\log 1 & =0
\end{aligned}
$$

$$
\begin{aligned}
\exp \log x & =x \\
\exp (x+y) & =\exp x \exp y \\
\exp \sum_{i} x_{i} & =\prod_{i} \exp x_{i} \\
\exp n x & =(\exp x)^{n} \\
\exp 0 & =1
\end{aligned}
$$

LOGARITHMS

Used to simplify expressions like a product of probabilities:

$$
p\left(x_{1}, \ldots, x_{n}\right)=\Pi_{i} p\left(x_{i}\right)
$$

Take the log of everything, and now you have a sum:

$$
\log p\left(x_{1}, \ldots, x_{n}\right)=\Sigma_{i} \log p\left(x_{i}\right)
$$

LOGARITHMS

Used to simplify expressions like a product of probabilities:

$$
p\left(x_{1}, \ldots, x_{n}\right)=\Pi_{i} p\left(x_{i}\right)
$$

Take the log of everything, and now you have a sum:

$$
\log p\left(x_{1}, \ldots, x_{n}\right)=\Sigma_{i} \log p\left(x_{i}\right)
$$

For two probabilities p, q comparing $\log p$ and $\log q$ is equivalent.
Instead of multiplying two probabilities $p \cdot q$ we can just add $\log p+\log q$

SOFTMAX

Let $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a vector of real numbers
We define $[\operatorname{softmax} \mathbf{x}]_{i}=\frac{\exp x_{i}}{\sum_{i^{\prime}=1}^{n} \exp x_{i^{\prime}}}$.

WORKING WITH TEXT

SOME TERMINOLOGY

A word is an ill－defined concept：
do - do not - don't

Lebensversicherungsgesellschaftsangestellter（life insurance company employee）莎拉波娃现在居住在美国东南部的佛罗里达。（Sharapova now lives in Us southeastern Florida）
Type：a class of tokens that use the same character sequence
Token：an individual occurrence of a type in speech or writing
Vocabulary：the set of types
https：／／en．wikipedia．org／wiki／Type\％E2\％80\％93token distinction

SOME TERMINOLOGY

A rose is a rose is a rose.
\#Types: 4
Vocabulary: \{a, rose, is, . \}
\#Tokens: 9

TEXT NORMALIZATION

"Don't think of anelephant!,' says George.
Elephantsare not something you should be thinking, according to Lakoff.
Dr. Lakoff asks that you do not think of anelephant.

SEGMENTATION

" Do n't think of anelephant! ," says George.
Elephants are not something you should be thinking, according to Lakoff .
(Dr.) Lakoff asks that you do not think of an lephant.

TRUE CASING

" do n't think of an elephant!," says George .
elephants are not something you should be thinking, according to Lakoff .
dr. Lakoff asks that you do not think of an elephant .

Tools:

- NLTK (https://www.nltk.org/)
- spacy (https://spacy.io/)
- Moses tools (http://www.statmt.org/moses/?n=Moses.SupportTools)

MORE READINGS

RegExes: https://web.stanford.edu/~jurafsky/slp3/2.pdf
Working with text: https://web.stanford.edu/~jurafsky/slp3/slides/
$\underline{2}$ TextProc Jan 06 2021.pdf

NEURAL NETS

"NEURAL" NETS

Original Motivation: The Brain

Current Implementation: Computation Graphs

Image credit: Wikipedia

COMPOSITE FUNCTIONS

We will build computation graphs using an "ordered series of equations".
Each equation is only a function of the preceding equations

$$
f(x, y, z)=z+\sin \left(x^{2}+y \times \exp (z)\right)
$$

We can represent the above equation using intermediate variables:

$$
\begin{aligned}
& a=x^{2} \\
& b=\exp (z) \\
& c=y \times b \\
& d=a+c \\
& e=\sin (d) \\
& f=e+z
\end{aligned}
$$

AUTODIFF

Main idea behind AD: as long as we have access to the derivatives of a set of primitives, then we can stick these together to get the derivative of any composite function

Saving the values of intermediate variables (dynamic programming!) allows for low computational complexity (exponential $\longrightarrow>$ linear).

GENERAL AUTODIFF FRAMEWORK

Primitives
Their Derivatives

$$
\begin{array}{ll}
f(y, z)=y+z & \frac{\partial}{\partial x} f(y, z)=\frac{\partial y}{\partial x}+\frac{\partial z}{\partial x} \\
f(y, z)=y \times z & \frac{\partial}{\partial x} f(y, z)=y \frac{\partial z}{\partial x}+z \frac{\partial y}{\partial x} \\
f(y, z)=y^{3} & \frac{\partial}{\partial x} f(y, z)=3 y^{2} \frac{\partial y}{\partial x} \\
f(y, z)=\log (y) & \frac{\partial}{\partial x} f(y, z)=\frac{1}{y} \frac{\partial y}{\partial x}
\end{array}
$$

1. All edges (hyperedges) are made of primitives
2. Perform the forward pass, to compute the functions' value
3. Run back-propagation using the stored forward values, using the derivatives

EXAMPLE GRADIENT CALCULATION

$a=x^{2}$

$e=\sin (d)$
$\frac{\partial f}{\partial z}=\frac{\partial f}{\partial b} \frac{\partial b}{\partial z}+1=\frac{\partial f}{\partial b} \exp (z)+1$
$\frac{\partial f}{\partial b}=\frac{\partial f}{\partial c} \frac{\partial c}{\partial b}=\frac{\partial f}{\partial c} y$
$\frac{\partial f}{\partial c}=\frac{\partial f}{\partial d} \frac{\partial d}{\partial c}=\frac{\partial f}{\partial d} 1 \quad \frac{\partial f}{\partial a}=\frac{\partial f}{\partial d} \frac{\partial d}{\partial a}=\frac{\partial f}{\partial d} 1$
$\frac{\partial f}{\partial d}=\frac{\partial f}{\partial e} \frac{\partial e}{\partial d}=\frac{\partial f}{\partial e} \cos (d)$
$\frac{\partial f}{\partial e}=1$

We can easily write the derivatives of individual terms in the graph.

Given all these, we can work backwards to compute the derivative of $f(x, y, z)$ with respect to each variable.
$f=e+z$

COMPUTATION GRAPHS

expression: X
graph:

A node is a $\{$ tensor, matrix, vector, scalar\} value
(x)

COMPUTATION GRAPHS

expression:
\mathbf{x}^{\top}
graph:

A node with an incoming edge is a function of that edge's tail node.

A node knows how to compute its value and the value of its derivative w.r.t each argument (edge) times a derivative of an arbitrary input $\frac{\partial \mathcal{F}}{\partial f(\mathbf{u})}$.

$$
\frac{\partial f(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathcal{F}}{\partial f(\mathbf{u})}=\left(\frac{\partial \mathcal{F}}{\partial f(\mathbf{u})}\right)^{\top}
$$

An edge represents a function argument (and also an data dependency). They are just pointers to nodes.

COMPUTATION GRAPHS

expression:
$\mathbf{x}^{\top} \mathbf{A}$
graph:

Functions can be nullary, unary,
binary, ...n-ary. Often they are unary or binary.

COMPUTATION GRAPHS

expression:
$\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$
graph:
Computation graphs are directed and acyclic.

COMPUTATION GRAPHS

expression: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$
graph:

COMPUTATION GRAPHS

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c
$$

graph:

COMPUTATION GRAPHS

expression:
$y=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c$
graph:

variable names are just labelings of nodes.

FORWARD PROPAGATION

graph:

BACK-PROPAGATION

Back-propagation:

Process examples in reverse topological order
Calculate the derivatives of the parameters with respect to the final value (This is usually a "loss function", a value we want to minimize)
Parameter update:
Move the parameters in the direction of this derivative W - $=\boldsymbol{\alpha}$ * $\mathrm{dl} / \mathrm{dW}$

NEURAL NETWORK FRAMEWORKS

Examples in this class will be in DyNet or PyTorch:
intuitive, program like you think (c.f. TensorFlow, Theano)
fast for complicated networks on CPU (c.f. autodiff libraries, Chainer, PyTorch)
has nice features to make efficient implementation easier (automatic batching)

BASIC PROCESS IN DYNAMIC NEURAL NETWORK FRAMEWORKS

Create a model
For each example
create a graph that represents the computation you want
calculate the result of that computation
if training, perform back propagation and update

NEXT CLASS PREVIEW

The building blocks of words
Lexicons
Edit Distance

ASSIGNMENT 1 OUT!

