
Soon, linguists will be wandering around everywhere, saying things 
like "colorless green ideas sleep furiously" and "more people have 
been to Russia than I have," and speech will become unintelligible.



COMMON ERRORS IN ASSIGNMENT 1

hamlet = ''.join(lines)

for x in sentences: 
 x.lower() 
 tok_again = nltk.word_tokenize(x) 
 lower_case_words.append(tok_again) 
 #This gets us total set count aka types 
 lower_count = lower_count + len(set(tok_again))

tokens = nltk.word_tokenize(data.lower()) 
    get_types = nltk.pos_tag(tokens) 
    types = [] 
    for t in get_types: 
        if not types.__contains__(t[1]): 
            types.append(t[1])

- READ AND FOLLOW THE INSTRUCTIONS 
- In the future, I will not grade anything that does not follow the instructions 

- Your report should be self-sufficient 
- Provide answers to all questions 

- Put your name in the PDF
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DENSE VECTORS 
(NEURAL EMBEDDINGS)



WHY DENSE VECTORS?

PPMI vectors are: 

- long: length   
- sparse: most elements are 0 

The alternative is to learn vectors which are: 

- short: length 200-1000 
- dense: most elements are non-zero

|V | = [20,000 − 50,000]

5

Advantages 
1. Easier to use in ML 
2. Might generalize better than storing explicit 

counts 
3. May do better at capturing synonymy: 

    - car and automobile are synonyms 
    - but in PPMI they are separate dimensions 
    - a word with car as neighbor, and a different 
word with automobile as neighbor are not 
captured as similar



OPTION 1: SINGULAR VALUE DECOMPOSITION

Intuition: approximate the big matrix  
using fewer dimensions 

SVD: Any  matrix  can be written  
as a product of three matrices: 

- : rows equal to original, but  columns are dimensions in the new latent 
space 
- : diagonal  matrix of singular values expressing the importance of each 
dimension 
- : columns equal to original, but  rows correspond to singular values

w × c X

W m < k

S m × m

C m < k
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OPTION 1: SINGULAR VALUE DECOMPOSITION

Intuition: approximate the big matrix  
using fewer dimensions 

SVD: Any  matrix  can be written  
as a product of three matrices: 
 

Instead of keeping all  dimensions, we only keep the top  singular values. 

Now, each row of truncated  is a -dimensional vector representing a word . 

w × c X

m k

W k w
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OPTION 2: LEARN (NEURAL) DENSE VECTORS FROM SCRATCH

Prediction-based models 

Idea: learn embeddings as part of the process of word prediction 

Implementation:  
        train a neural network to predict the context given a word 
        or the opposite: train a NN to predict a word given the context (LM?) 

Advantages: 
        fast, easy to train 
        pre-trained embeddings for 100s of languages are 
        available online!
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WORD EMBEDDINGS FROM LANGUAGE MODELS
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CONTEXT WINDOW METHODS

If we don’t need to calculate the probability of the sentence, other methods possible! 

These can move closer to the contexts used in count-based methods 

These drive word2vec, etc.
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CONTINUOUS BAG-OF-WORDS (CBOW; MIKOLOV ET AL. 2013)

Predict word based on sum of surrounding embeddings
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Predict word based on sum of surrounding embeddings
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CONTINUOUS BAG-OF-WORDS (CBOW; MIKOLOV ET AL. 2013)



Predict word based on surrounding embeddings

CONTINUOUS BAG-OF-WORDS (CBOW; MIKOLOV ET AL. 2013)



SKIP-GRAM (MIKOLOV ET AL. 2013)

Predict each word in the context given the word
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SKIP-GRAM (MIKOLOV ET AL. 2013)

Predict each word in the context given the word
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h = vj

o = W′ h

Use softmax to turn 
into probabilities:

p(wt−1 |wt) = softmax(o)



COUNT-BASED AND PREDICTION-BASED METHODS

Strong connection between count-based methods and prediction-based methods 
(Levy and Goldberg 2014) 

Skip-gram objective is equivalent to matrix factorization with PMI and discount for 
number of samples k (sampling covered next time)
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Mw,c = PMI(w, c)� log(k)



EMBEDDINGS CAPTURE RELATIONAL MEANING
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v(king) − v(man + v(woman) ≈ v(queen)

v(Paris) − v(France + v(Italy) ≈ v(Rome)



CAN WE TRAIN EMBEDDINGS ON ALL OF WIKIPEDIA

Yes! In fact, good embeddings need lots of (appropriate) data 

There already exist pertained models 

word2vec 
Glove 
FastText 
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In future classes we’ll talk about 
contextualized embeddings (e.g. BERT, ELMo)

https://radimrehurek.com/gensim/auto_examples/tutorials/run_word2vec.html

https://fasttext.cc/docs/en/cheatsheet.html

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/
https://fasttext.cc/
https://radimrehurek.com/gensim/auto_examples/tutorials/run_word2vec.html
https://fasttext.cc/docs/en/cheatsheet.html


TYPES OF EVALUATION

Intrinsic vs. Extrinsic 

Intrinsic: How good is it based on its features? 

Extrinsic: How useful is it downstream? 

Qualitative vs. Quantitative 

Qualitative: Examine the characteristics of examples. 

Quantitative: Calculate statistics
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INTRINSIC EVALUATION OF EMBEDDINGS (CATEGORIZATION FROM SCHNABEL ET AL 2015)

Relatedness: The correlation btw. embedding cosine similarity and human eval of 
similarity? 

Analogy: Find x for “a is to b, as x is to y”. 

Categorization: Create clusters based on the embeddings, and measure purity of 
clusters. 

Selectional Preference: Determine whether a noun is a typical argument of a verb.
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EXTRINSIC EVALUATION: USING WORD EMBEDDINGS IN SYSTEMS

Initialize w/ the embeddings 

Concatenate pre-trained embeddings with learned embeddings 

Latter is more expressive, but leads to increase in model parameters
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