
BEFORE WE START
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Assignment 2 deadline pushed to Tuesday noon 

Error in Assignment 2: 

    Use “Pikachu”, “Charizard” and “Charmander” 
   (as opposed to “pikachu”, “charizard”, “charmander”) 

Using NLTK n-grams is ok, but I think you could implement it 
on your own. 



VECTOR SEMANTICS

ANTONIS ANASTASOPOULOS 
CS499 INTRODUCTION TO NLP

https://cs.gmu.edu/~antonis/course/cs499-spring21/
With adapted slides by Graham Neubig

https://cs.gmu.edu/~antonis/course/cs499-spring21/


STRUCTURE OF THIS LECTURE
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SENTENCE REPRESENTATIONS

We can create a vector or sequence of vectors from a sentence 
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this is an example

this is an example

“You can’t cram the meaning of a whole %&!$ing 
sentence into a single $&!*ing vector!” 

— Ray Mooney

Obligatory Quote!



GOAL FOR TODAY

Briefly Introduce tasks, datasets and methods 

Introduce different training objectives 

Talk about multitask/transfer learning
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TASKS USING SENTENCE 
REPRESENTATIONS



WHERE WOULD WE NEED/USE 
SENTENCE REPRESENTATIONS?

Sentence Classification 

Paraphrase Identification 

Semantic Similarity 

Entailment 

Retrieval
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SENTENCE CLASSIFICATION

Classify sentences according to various traits 

Topic, sentiment, subjectivity/objectivity, etc.
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I   hate   this  movie

I   love   this   movie

very good 
good 

neutral 
bad 

very bad

very good 
good 

neutral 
bad 

very bad



DATA EXAMPLE: STANFORD SENTIMENT TREEBANK (SOCHER ET AL. 2013)

In addition to standard tags, each constituent tagged with a sentiment value
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PARAPHRASE IDENTIFICATION (DOLAN AND BROCKETT 2005)

Identify whether A and B mean the same thing
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• Note: exactly the same thing is too restrictive, so 
use a loose sense of similarity

Charles O. Prince, 53, was named as Mr. Weill’s successor.

Mr. Weill’s longtime confidant, Charles O. Prince, 53,  
was named as his successor. 



SEMANTIC SIMILARITY/RELATEDNESS (MARELLI ET AL. 2014)

Do two sentences mean something similar?
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• Like paraphrase identification, but with shades of gray.



TEXTUAL ENTAILMENT (DAGAN ET AL. 2006, MARELLI ET AL. 2014)

Entailment: if A is true, then B is true (c.f. paraphrase, where opposite is also true) 

The woman bought a sandwich for lunch 
→ The woman bought lunch 

Contradiction: if A is true, then B is not true 

The woman bought a sandwich for lunch 
→ The woman did not buy a sandwich 

Neutral: cannot say either of the above 

The woman bought a sandwich for lunch 
→ The woman bought a sandwich for dinner
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MODEL FOR SENTENCE PAIR PROCESSING

Calculate vector representation 

Feed vector representation into classifier
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this is an example

this is another example

classifier yes/no

How do we get such a representation?



MULTI-TASK LEARNING 
OVERVIEW



TYPES OF LEARNING

Multi-task learning is a general term for training on multiple tasks 

Transfer learning is a type of multi-task learning where we only really care about one 
of the tasks 

Domain adaptation is a type of transfer learning, where the output is the same, but 
we want to handle different topics or genres, etc.
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PLETHORA OF TASKS IN NLP

In NLP, there are a plethora of tasks, each requiring different varieties of data 

Only text: e.g. language modeling 

Naturally occurring data: e.g. machine translation 

Hand-labeled data: e.g. most analysis tasks 

And each in many languages, many domains!
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RULE OF THUMB 1: MULTITASK TO INCREASE DATA

Perform multi-tasking when one of your two tasks has many fewer data 

General domain → specific domain 
(e.g. web text → medical text) 

High-resourced language → low-resourced language 
(e.g. English → Telugu) 

Plain text → labeled text 
(e.g. LM -> parser)
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RULE OF THUMB 2: TASK RELATEDNESS

Perform multi-tasking when your tasks are related 

e.g. predicting eye gaze and summarization (Klerke et al. 2016)
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STANDARD MULTI-TASK LEARNING

Train representations to do well on multiple tasks at once
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this is an example
LM

Tagging
Encoder

• In general, as simple as randomly choosing minibatch from one 
of multiple tasks 

• Many many examples, starting with Collobert and Weston (2011)



PRE-TRAINING

First train on one task, then train on another
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this is an example TranslationEncoder

this is an example TaggingEncoder

Initialize

• Widely used in word embeddings (Turian et al. 2010) 

• Also pre-training sentence encoders or contextualized word 
representations (Dai et al. 2015, Melamud et al. 2016)



THINKING ABOUT MULTI-TASKING, AND PRE-TRAINED REPRESENTATIONS

Many methods have names like SkipThought, ParaNMT, CoVe, ELMo, BERT along with 
pre-trained models 
These often refer to a combination of 

Model: The underlying neural network architecture 
Training Objective: What objective is used to pre-train 
Data: What data the authors chose to use to train the model 

Remember that these are often conflated (and don't need to be)!
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END-TO-END VS. PRE-TRAINING

For any model, we can always use an end-to-end training objective 

Problem: paucity of training data 

Problem: weak feedback from end of sentence only for text classification, etc. 

Often better to pre-train sentence embeddings on other task, then use or fine tune on 
target task 
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TRAINING SENTENCE 
REPRESENTATIONS



GENERAL MODEL OVERVIEW
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I hate this movie

lookup lookup lookup lookup

softmax

probs

some complicated function 
to extract combination 

features 

scores



Model: LSTM 
Objective: Language modeling objective 
Data: Classification data itself, or Amazon reviews

LANGUAGE MODEL TRANSFER (DAI AND LE 2015)
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• Downstream: On text classification, initialize 
weights and continue training



CONTEXTUALIZED WORD 
REPRESENTATIONS



CONTEXTUALIZED WORD REPRESENTATIONS

Instead of one vector per sentence, one vector per word!
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this is an example

this is another example

classifier yes/no

How to train this representation?



BI-DIRECTIONAL LANGUAGE MODELING OBJECTIVE (ELMO; PETERS ET AL. 2018)
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Downstream: Finetune the weights of the linear combination of layers on 
the downstream task

• Model: Multi-layer bi-directional LSTM 

• Objective: Predict the next word left->right, next word right->left 
independently 

• Data: 1B word benchmark LM dataset



MASKED WORD PREDICTION (BERT; DEVLIN ET AL. 2018)

Like ELMo, uses bidirectional context, but with transformer model as base (+ tricks 
for efficient training)
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• Model: Multi-layer self-attention. Input sentence or pair, w/ [CLS] 
token, subword representation 
 
 
 
 
 
 

• Objective: Masked word prediction + next-sentence prediction 

• Data: BooksCorpus + English Wikipedia



SELF-ATTENTION

From http://jalammar.github.io/illustrated-transformer/
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MASKED WORD PREDICTION (DEVLIN ET AL. 2018)

1. predict a masked word 

80%: substitute input word with [MASK] 

10%: substitute input word with random word 

10%: no change 

Like context2vec, but better suited for multi-layer self attention
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CONSECUTIVE SENTENCE PREDICTION (DEVLIN ET AL. 2018)

1. classify two sentences as consecutive or not: 

50% of training data (from OpenBooks) is "consecutive" 
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USING BERT WITH PRE-TRAINING/FINETUNING

Use the pre-trained model as the first “layer” of the final model, then train on the 
desired task
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USING BERT WITH PRE-TRAINING/FINETUNING

Use the pre-trained model as the first “layer” of the final model, then train on the 
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USING BERT FOR REPRESENTATIONS

Use the pre-trained model to obtain contextualized word representations for the input
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[visualization from The Illustrated BERT: https://jalammar.github.io/illustrated-bert/]

https://jalammar.github.io/illustrated-bert/


WHICH METHOD IS 
BETTER?



WHICH MODEL?

Not very extensive comparison... 

Wieting et al. (2015) find that simple word averaging is more robust out-of-domain 

Devlin et al. (2018) compare unidirectional and bi-directional transformer, but no 
comparison to LSTM like ELMo (for performance reasons?)
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WHICH TRAINING OBJECTIVE?

Not very extensive comparison... 

Zhang and Bowman (2018) control for training data, and find that bi-directional LM 
seems better than MT encoder 

Devlin et al. (2018) find next-sentence prediction  objective good compliment to LM 
objective
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WHICH DATA?

Not very extensive comparison... 

Zhang and Bowman (2018) find that more data is probably better, but results 
preliminary. 

Data with context is probably essential.
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SOME RECENT 
IMPROVEMENTS



VARIOUS MONOLINGUAL BERTS

French: FlauBERT, CamemBERT 

BERTje, ALBERTO, BETO, KoBERT, FinBERT, Bangla-BERT, German, Chinese, Russian, 
Japanese, etc 
 

web-scale scraped corpora:  
https://oscar-corpus.com/
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https://oscar-corpus.com/


MBERT

BERT trained on more than 100 languages 

Really good starting point, but also issues for low-resource languages, e.g. over-
segmentation

50



ROBERTA

Original BERT model was under-trained 

Better trained, more data, and more robust model

51



XLM AND XLM-R

BERT problem: each sample in a single language 

Combine MLM with Translation LM
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NEXT CLASS PREVIEW

Part-of-speech and Part-of-speech tagging 
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