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CLASSIFICATION
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NOTATION

Training examples  

Their categories (labels)  

A classifier  seeks to map  to   
 

A learner  tries to infer  from 

x = (x1, x2, …, xN)

y = (y1, y2, …, yN)

C xi yi

L C (x, y)
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PROBABILISTIC CLASSIFIERS
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X Y

return 
 

C

arg max
y′ 

p(y′ ∣ x)



GENERAL NOISY CHANNEL MODEL

X YC



GENERAL NOISY CHANNEL MODEL

SOURCE y x

p(y)
p(x |y)

A “story” of how the observed data came to be.

What portion of emails are expected to be spam vs. not spam? 

What proportion of product reviews are expected to get 1,2,3,4,5 stars?



NOISY CHANNEL CLASSIFIERS
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X Y

return 
 

C

arg max
y′ 

p(y′ ) × p(x ∣ y′ )



REPRESENTATION

Representing labels is easy (e.g. can be easily mapped to integers) 

Representing input text: features 

Any object  you might be given can be represented as a vector in a vector space 
    (as we already saw vectors for text are often sparse and high-dimensional) 

Designing  (“feature engineering”) 

What information do you need to solve the problem? 
What information do you need to avoid mistakes?

x ∈ 𝒳

Φ
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NAÏVE BAYES CLASSIFIER
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X Y

 
return  

C

ϕj ← [Φ(x)]j
arg max

y′ 

p(y′ ) × Πj(ϕj ∣ y′ )



NAÏVE BAYES LEARNER
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X

p( ⋅ )
 

 

L

∀y, p(y) ←
count(y)

N
∀y, ∀j, ∀f, p(ϕj(x) = f ∣ y) ←

count( f, y)
count(y)

 
return 

 

C

ϕj ← [Φ(x)]j

arg max
y′ 

p(y′ ) × Πj(ϕj ∣ y′ )

Y



LINEAR CLASSIFIER
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LINEAR CLASSIFIER
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LINEAR CLASSIFIER
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LINEAR CLASSIFIER (>2 CLASSES)
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X Y

 
return 

 

C

arg max
y′ 

wTΦ(x, y)



PERCEPTRON LEARNER
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X

w

 
for  
    select  
    # run current classifier 
     

    if !=  then #mistake 
         
return  

L

w ← 0
t = 1…T :

(xt, yt)

y ← arg max
y′ 

wTΦ(x, y′ )

y yt
w ← w + α[Φ(xt, yt) − Φ(xy, y)]

w

 
return 
     

C

arg max
y′ 

wTΦ(x, y)

Y



NEURAL NETWORK V1.0: LINEAR MODEL

Linear models:  
    e.g. 

f(l, d) = w ⋅ g(l, d) = w(l) ⋅ x(d)
y1 = x1w1,1 + x2w2,1 + x3w3,1 + x4w4,1 + x5w5,1 = w(1) ⋅ x(d)

Number of times Lost  
appears in a document

Number of times Barcelona  
appears in a document



NEURAL NETWORK V1.0: LINEAR MODEL

Linear models:  
    e.g. 

f(l, d) = w ⋅ g(l, d) = w(l) ⋅ x(d)
y1 = x1w1,1 + x2w2,1 + x3w3,1 + x4w4,1 + x5w5,1 = w(1) ⋅ x(d)

same as:

Still, similar words do not  
share parameters



NEURAL NETWORK V2.0: REPRESENTATION LEARNING

Big idea: induce low-dimensional dense feature representations of high-dimensional objects



NEURAL NETWORK V2.1: REPRESENTATION LEARNING

Big idea: embed words in a dense vector space and use the word embeddings as dense features

Does this really solve the problem?



NEURAL NETWORK V3.0: COMPLEX FUNCTIONS

Big idea: define more complex functions by adding a hidden layer

y = Wx y = W2h1 = W2(W1x) = Wx

?!?!?



NEURAL NETWORK V3.0: COMPLEX FUNCTIONS

Big idea: define more complex functions by adding a hidden layer

y = Wx y = W2h1 = W2 a1(W1x)

Induced features

           

Non-linear functions, 
e.g. logistic function 

a1(z) =
1

1 + e−z

a1(z)

z
Universal approximation theorem 

Cybenko., G. (1989)



NEURAL NETWORK V3.0: COMPLEX FUNCTIONS

Popular activation/transfer/non-linear functions:

https://en.wikipedia.org/wiki/Activation_function

https://en.wikipedia.org/wiki/Activation_function


NEURAL NETWORK V3.5: DEEPER NETWORKS

Wait — why do we need more layers?

y = W3h2 = W3 a2(W2 a1(W1x))



FEATURES AND 
EMBEDDINGS



SAMPLE REPRESENTATION

List of features → Category 

Category: “small” finite discrete # of classes 

- e.g. languageID, POS tag, Movie genre,  

Features: list of real numbers 

- All samples must have the same # of features
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HOW TO REPRESENT WORDS

Samples are movie reviews: 
    - A few sentences of text 
    - a class: 1-5 (1=very bad, 5=very good) 

Class: simple int 

Features: ??? 
    - encode the first  words (?)n
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# of words 
# of sentences 
# of exclamation points!!!! 
Does “good” appear? 
Does “bad” appear? 
…

Representing Classes 

 Categories to numbers: 
    Business           [1,0,0] 
    Sports              [0,1,0] 
    Entertainment [0,0,1] 
 (“One hot” representations) 

 Usually better than: 
    Business → 1 
    Sports → 2 
    Entertainment → 3 



HOW TO REPRESENT WORDS

Decide on vocabulary size + _other_ 

- Occurrence of word 
- Array of vocal size: set to 1 if word appears 
    (or set to # of occurrences of word) 
- Vocab should be most frequent/relevant words in corpus 
    - should we include very high frequency words? 
    - only content words? 
    - only words appearing more than once?
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HOW TO REPRESENT WORDS

One big vector for whole movie review 

- Lots of zeros and few ones 
- Might be 1000 or 10000 wide (or more) 

Often called “bag of words” representation 

- not care about word order 
- not case about # of occurrences of word 
- same length vector independent  
of length of review 
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Bag of Words 

Reviews are “similar” if vectors are similar 
    - similar means similar word distribution 
    - e.g. simple difference, edit diff, cosine similarity, … 

BUT: 
    - Is “I love the film” equally different from 
    - “I hate the film” or 
    - “I like the film”? 

Word similarity (“love” vs “hate” vs “like”) 
    - cannot just be a binary representation 

Contextual effects (“good” vs “not good”) 
    - need longer context 
    - could add bi-gram features to vectors



WORD DIFFERENCES

“like” and “love” more similar than “like” and “hate” 

Sparse vectors treat distance as the same 

Word Embeddings: 

- Dense (not sparse) representations 
- Distance metrics are more “meaningful” 
- Do dimension in word embeddings mean something? 
    (maybe, maybe not)
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CHOOSING WORD EMBEDDINGS

Use existing pre-trained library (word2vec, GloVe, ELMo, BERT, …) 

Train your own word2vec or skip-gram on your data 

Things to consider: 
     - are your data like others? 
     - do you have enough training examples? 
     - are there special meanings in your domain? 

How long should the dense vector be? 300? 768? 1000? Floats 
     - We don’t really know 
     - It’s not the size of the space represented → It’s if the dimensions found are useful 

Hard to implicitly control meaning in vectors 
     - Easy to explicitly do it, e.g. by concatenating word, POS tag, dependency parent, etc
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Word32vec and GloVe were standard 

“Everything is better with BERT” 
[Devlin et al 2019] 

Really: “everything is better taking  
context into account” 

SOTA performance in several NLP tasks 

Still better ones are being developed



SENTENCE/DOCUMENT EMBEDDINGS

We still need a fixed sized vector for the whole document 

    - so add up all the vectors 
    - so find the average of all the vectors 
    - so find the max of each value in vectors 
    - or do something else: 
            - Learn a representation from sequence of embeddings 
            - Train a model on all (whole) documents
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TOO MANY WORDS/FEATURES

Words 

Contextualized word embeddings 
    - care about some context 

Could once previous and next word vectors 

But, it gets very big very quickly 
    - even with case folding 

POS is more limited size 
    - e.g. 45ish tags (PTB), smaller 
representation 
    - smaller number of contexts
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Features 

If you have too many features 
    - each sample has some unique 
combination 
    -training works well, but no generalization 

How much is too much/too little? 
    - depends 
    - retraining is good (usually, if in similar 
domain) 
    - Ask yourself if the system has the features 
*you* think are important for the task 



SUMMARY

Features (must) be numeric 

Convert discrete features to one-hot 

Sparse vs Dense word representations 

Bag of Words (bi-grams/tri-grams) 

Word Embeddings (dense) 
    - pre-trained vs trained from scratch 

Are your features enough/not enough? 

Does it work? When does it fail? WHY?
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NEXT CLASS PREVIEW

Modeling the output space with Conditional Random Fields 
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