ANTONIS ANASTASOPOULOS
CS499 INTRODUCTION TO NLP

CONDITIONAL RANDOM
FIELDS

_ZNLP

https://cs.gmu.edu/~antonis/course/cs499-spring21/

STRUCTURE OF THIS LECTURE

Structured Structured
Prediction Perceptron

Conditional
Random Fields

@ Viterbi

A PREDICTION PROBLEM

Very good
good

| hate this movie neutral

\ bad
very bad

very good
good

| love this movie neutral
bad

very bad

TYPES OF PREDICTION

Two classes (binary classification)

: : osltive
| hate this movie oy
negative

* Multiple classes (multi-class classification)
very good
gooa

| hate this movie neutral
\\\\\\\\\\\‘ bad
very bad

» Exponential/infinite labels (structured prediction)

| hate this movie —— PRP VBP DT NN

| hate this movie —— kono eiga ga kirai

WHY CALL IT “STRUCTURED” PREDICTION?

Classes are too numerous to enumerate
Need some sort of method to exploit the problem structure to learn efficiently

Example of “structure”, the following two outputs are similar:

PRP VBP DT NN
PRP VBP VBP NN

MANY VARIETIES OF STRUCTURED PREDICTION!

Models:
RNN-based decoders
Convolution/self attentional decoders
CRFs w/ local factors
Training algorithms:
Structured perceptron, structured large margin
Sampling corruptions of data

Exact enumeration with dynamic programs

Reinforcement learning/minimum risk training

SEQUENCE LABELING

One tag for one word

e.g. Part of speech tagging

| hate this movie
PRP VBP DT NN

- e.g. Named entity recognition

The movie featured Keanu Reeves

O O O B-PER |-PER

SEQUENCE LABELING AS INDEPENDENT CLASSIFICATION

hate this movie <S>

v v

classifier classifier classifier classifier

p A . / . - N o

v v v v

PRP VBP DT NN

SEQUENCE LABELING W/ BILSTM

Still not modeling output structure! Outputs are independent

<S> 1 halte thlis molvie <T>

odo!

AT B e A a0 A

classifier classifier classifier classifier

s 252 = ot
PRP VBP DT NN

WHY MODEL INTERACTIONS IN OUTPUT?

Consistency is important!

time flies like an arrow

N V Prep DT N (time moves similarly to an arrow)
N NS \V DT N (“time flies” are fond of arrows)

(blease measure the time of flies
V .o T Plab = DT N 3

similarly to how an arrow would)

| max frequency

N NS Prep DT N (“time flies” that are similar to an arrow)

10

A TAGGER CONSIDERING OUTPUT STRUCTURE

Tags are inter-dependent

i halte thlis molvie <T>
T / / \ = /
m IOOOI'» I.\.':‘ﬂ IO\OOI'» m

Nxen f? ' A

classifier classmer C|aSSIerI’ classifier

_—

P%P / VBP/ DlT J N%\I

11

TRAINING STRUCTURED MODELS

Simplest training method “teacher forcing”

Just feed in the correct previous tag

12

TEACHER FORCING AND EXPOSURE BIAS

Teacher forcing assumes feeding correct previous input, but at test time we may make
mistakes that propagate

<S> hates this movie <S>
£\ /\ S AR
000 \ IO\Odw m
s \/ /‘f'/" < '/'Q“'/" i
classifier classifier fcl}svsﬁer classn‘ler

PF%N / NI&ISJ NNSJ NlilS

» Exposure bias: The model is not exposed to mistakes

during training, and cannot deal with them at test

13

LOCAL NORMALIZATION VS. GLOBAL NORMALIZATION

Locally normalized models: each decision made by the model has a probability that
adds to one

Y S (Y51 Xy, Y5 -1)

PY | X)= HZ

¥ Ves(yg‘X W, s et
J

Globally normalized models (a.k.a. energy-based models): each
sentence has a score, which is not normalized over a particular decision

Y4
S:L |1 S(yj‘Xaylr“ayj—l)

PYAe

Y = 5 i~
ZYGV Z| | S(yj‘Xaylaﬂwyj—l)
*

14

PROBLEMS TRAINING GLOBALLY NORMALIZED MODELS

Problem: the denominator is too big to expand naively

Ya
6E|j:|1 S5l X,y15eY5—1)

TR IR {3
T 62'3.:'1 S(Y;1X,915-,05—1)
&V %

We must do something tricky: PY|X)=
Consider only a subset of hypotheses

Design the model so we can efficiently enumerate all hypotheses

15

STRUCTURED
PERCEPTRON

THE STRUCTURED PERCEPTRON ALGORITHM

An extremely simple way of training (non-probabilistic) global models

Find the one-best, and if it's score is better than the correct answer, adjust
parameters to fix this

A

Y — argmax?#YS(? | X, (9) «— Find one best

S SLX 8 ST P thion s S DRlE

than reference

0 «— 0+ a<8S(§g|9X;9) 35(2‘9)(59)) « Increase score
of ret, decrease

end 1if score of one-best
(here, SGD update)

17

STRUCTURED PERCEPTRON LOSS

Structured perceptron can also be expressed as a loss function!

gpercept(Xa Y) == maX(O,S(f/ ‘ X,@) 38 S(Y ‘ X,H))

* Resulting gradient looks like perceptron algorithm

O ercops (X, Y; 0) {“%QX;@ OSIXO) i 9V | X;60) > S(Y | X;6)
90

0 otherwise

e This is a normal loss function, can be used in NNs

» But! Requires finding the argmax in addition to the true candidate: must do prediction during training

HINGE LOSS AND

COST-SENSITIVE TRAINING

PERCEPTRON AND UNCERTAINTY

Which is better, dotted or dashed?

Both have zero perceptron loss! o

ADDING A “MARGIN” WITH HINGE LOSS

Penalize when incorrect answer is within margin m

4 4
3 3
2 2
1
0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Perceptron Hinge

Uhinge (T, y;0) = max(0,m + S(g | z;0) — S(y | z;0))

2]

HINGE LOSS FOR ANY CLASSIFIER!

We can swap cross-entropy for hinge loss anytime

<S> | hate this movie <S>
R R A LTI AL
000 000 000 000 8¢ 2o
hinge hinge hinge hinge
l l l l
PRP VBP DT NN
loss = dy.pickneglogsoftmax(score, answer)

!

loss = dy.hinge(score, answer, m=1)
22

LOCALLY-DEPENDENT
MODELS

PROBLEMS

* Independent classification models
* Strong independent assumption

P(Y1X) = rkmm

* No guarantee of valid (consistent) structured outputs
 BIO tagging scheme in NER

* Locally normalized models (e.g. history-based RNN, seg2seq)
* Priororder

L
P = | | POMIX, 7<)

* Approximating decoding
* Greedy search
* Beam search

e Label bias

24

MODELS W/ LOCAL DEPENDENCIES

Some independence assumptions, but not entirely independent (local dependencies)

Exact and optimal decoding/training via dynamic programs

Conditional Random Fields!
(CRFs)

vy
A

AN "5 {/
A 5 O
i f :

4
. l}

25

LOCAL VS LOCALLY NORMALIZED

original local classification local + smoothness

@ @ i @ Output (g U E S T) Output
@ @ @Input @ @ @ @ @Input

local classification local + " correction”

original local classification local + geometry
26

REMINDER: GLOBALLY NORMALIZED MODELS

* Each output sequence has a score, which is not normalized over a
particular decision

P(Y|X) =

exp(S(Y, X)) P, X)
ZYI EXp(S(Y',X)) ZY/ l/)(Y"X)

where Y (Y, X) are potential functions.

CONDITIONAL RANDOM FIELDS

General form of globally normalized First-order linear CRF

Y (Y, X) i1 Vi i1, v, X)

PY|X) =o————— XLEE e e
(|) ZY/ lp(Y',X) P(Y‘X) ZYI %=1 lpi(y’i—lty,i'X)

28

POTENTIAL FUNCTIONS

W Yi_1, Vi X) = HYi_1, Y X) X|e(y;, X)

“Transition” “Emission”

Simpler Version

l//i(yi—la yi9 X) = t(yi—la yl) X e(yia X)

EXAMPLE

TRANSITION PARAMETERS

1=2

1=3

TRANSITION PARAMETERS

o
@G Vo
b

V0N
@«e \@V@
Iy

i
1l
>
X
5 5
< =

EMISSION PROBABILITIES

1 i=2 i=3

i

()

¢ ’
’ . ' . 2)
X
*
X X
L 4
; “ ' 8 »
*]

Equally likely?
33

EMISSION PROBABILITIES

1=2 1=3

%
’ v » \ s
* .

o S

4 .
V 4 AN

* L 4
< S
x . . x

o -
- V4

. 4
< -

Use Input!

EMISSION PROBABILITIES

1=2 1=3

%
’ v » \ s
* .

o S

4 .
V 4 AN

* L 4
< S
x . . x

o -
- V4

. 4
< -

Use Input!

Use Input!

EMISSION

PROBABILITIES

=3

N

X
$ o ’ 8 »
* .

EMISSION PROBABILITIES

=2

Det
0.05

Verb
0.05

/ ‘] A U
. .)
. . ®

A ¢ U y ¢

Adj
0.20

Use Input!

TRAINING

We want to maximize the probability
of the correct output sequence

Micy iicayeX) _ [ing Yii-1.yiX)
Yyr iy Yi(yriz1,y10.X) Z(X)
* Training: computing the partiticin function Z(X)

Z(X) = Z H¢i()’i—1»)’i»X)
v =1

« P(Y|X) =

* Decoding

y* = argmaxyP (Y |X)

TRAINING

We want to maximize the probability
of the correct output sequence

Traditionally:
1. Extract features from the input words/context/sentence

2. Train with features as input, target sequences as desired output
3. Use some optimization technique to weight the feature importance for each position

A bunch of algorithms are nicely implemented in scikit-learn:

https://sklearn-crfsuite.readthedocs.io/en/latest/

https://sklearn-crfsuite.readthedocs.io/en/latest/

IRY IT!

NOTEBOOK —FROM - T1HE
WERSIT.

DOWNLOA.

D,
i=
==
(L]

Ed
(1)

HASDH

ha

Break-Out Room Exercise [around 20 minutes]:
https://docs.google.com/document/d/1ifTqeamKé6cG2Zk-f5kDMvU_baNh3x-nbxQXz1d549HY /edit?usp=sharing

https://docs.google.com/document/d/1ifTqeqmK6cG2Zk-f5kDMvU_baNh3x-nbxQXz1d549HY/edit?usp=sharing

TRAINING & DECODING OF CRF:
VITERBI/FORWARD BACKWARD
ALGORITHM

Micy i@icayiX) _ [izg $iio.yeX)
Ty ey $i(v1im1,y70.X) Z(X)

P(Y|X) =

TRAINING

1=2

INTERACTIONS

- each label depends on the input and nearby labels

- but, given adjacent labels, the others do not matter!

- If we knew the score of every sequence y, y,, ...y,

we could easily compute the score of every sequence y;,y,, ...y, _1,V,

- So, we only really need to know the score of all the sequences ending in each y,_,

(Think of that as a “pre-calculation” that happens before we think about y,

STEP 1: INITIAL

First, calculate transition from <S> and emission of the
first word for every POS

natural
0:<S>} | 1:NN/score[*1 NN'] = T(NN|<S>) + S(natural | NN)

1:JJ }SCOFG[1 JJ"] = T(JJ|<S>) + S(natural | JJ)

1:\VB |score["1 VB"] = T(VB|<S>) + S(natural | VB)

1:LRB|score[*1 LRB'] = T(LRB|<S>) + S(natural | LRB)

1:RRBscore[*1 RRB"] = T(RRB|<S>) + S(natural | RRB)

STEPS: MIDDLE PARTS

For middle words, calculate the scores for all possible previous POS tags

natural language
score['2 NN"] = log_sum_exp(

score['2 JJ'] = log_sum_exp(

score["1 NN”] + T(JJINN) + S(language | JJ),
score["1 JJ"] + T(JJ|JJ) + S(language | JJ),
[1 :RRB] LZ RRB} score[“1 VB”] + T(JJ|VB) + S(language | JJ),

1:NN| {ZZNN} score[“1 NN’ + T(NN|NN) + S(language | NN),
score["1 JJ7] + T(NN|JJ) + S(language | NN),
[1-JJ] 2-] score[“1 VB”] + T(NN|VB) + S(language | NN),
: score["1 LRB"] + T(NN|LRB) + S(language | NN),
score["1 RRB”] + T(NN|RRB) + S(language | NN),
1:VB

240
2:VB| -
2LRB

2:LRB

log sum exp(x,y) = log(exp(x) + exp(y))

STEPS: FINAL PART

Finish up the sentence with the sentence final symbol

sclence

S ANI : score[“/+1 </S>"] = log_sum_exp(
LNND [+12</S> score[“/ NN”] + T(</S>|NN),

score[’] JJ7] + T(</S>|JJ),

[JJ) score[*/ VB”] + T(</S>|VB),

score[‘/ LRB”] + T(</S>|LRB),
'VB) score['/ NN”] + T(</S>|RRB),
I.LRB))

'RRB)

4 2
40

