ANTONIS ANASTASOPOULOS CS499 INTRODUCTION TO NLP

https://cs.gmu.edu/~antonis/course/cs499-spring21/

CONDITIONAL RANDOM FELDS

With adapted slides by Graham Neubig

STRUCTURE OF THIS LECTURE

Conditional Random Fields

Viterbi

A PREDICTION PROBLEM

I hate this movie

I love this movie

very good good neutral bad very bad

very good good neutral bad very bad

TYPES OF PREDICTION

Two classes (binary classification)

hate this movie _____

• Multiple classes (multi-class classification)

hate this movie -

Exponential/infinite labels (structured prediction)

I hate this movie — PRP VBP DT NN

I hate this movie — kono eiga ga kirai

WHY CALL IT "STRUCTURED" PREDICTION?

Classes are too numerous to enumerate Need some sort of method to exploit the *problem structure* to learn efficiently Example of "structure", the following two outputs are similar:

> PRP VBP DT NN PRP VBP VBP NN

MANY VARIETIES OF STRUCTURED PREDICTION!

Models:

RNN-based decoders Convolution/self attentional decoders CRFs w/ local factors **Training algorithms:** Structured perceptron, structured large margin Sampling corruptions of data Exact enumeration with dynamic programs Reinforcement learning/minimum risk training

6

SEQUENCE LABELING

One tag for one word e.g. Part of speech tagging

hate

PRP

VBP

e.g. Named entity recognition

7

SEQUENCE LABELING AS INDEPENDENT CLASSIFICATION

SEQUENCE LABELING W/ BILSTM

WHY MODEL INTERACTIONS IN OUTPUT?

Consistency is important!

time	flies	like	an
Ν	V	Prep	DT
Ν	NS	V	DT
V	Ν	Prep	DT
	↓ max fre		ax frec
Ν	NS	Prep	DT

arrow

Ν	(time moves similarly to an arrow)
Ν	("time flies" are fond of arrows)
N	(please measure the time of flies similarly to how an arrow would)

quency

N ("time flies" that are similar to an arrow)

A TAGGER CONSIDERING OUTPUT STRUCTURE

Tags are inter-dependent

TRAINING STRUCTURED MODELS

Simplest training method "teacher forcing" Just feed in the correct previous tag

TEACHER FORCING AND EXPOSURE BIAS

Teacher forcing assumes feeding correct previous input, but at test time we may make mistakes that propagate

• **Exposure bias:** The model is not exposed to mistakes during training, and cannot deal with them at test

LOCAL NORMALIZATION VS. GLOBAL NORMALIZATION

Locally normalized models: each decision made by the model has a probability that adds to one

$$P(Y \mid X) = \prod_{j=1}^{|Y|} \frac{e^{S(y_j \mid X, y_1, \dots, y_{j-1})}}{\sum_{\tilde{y}_j \in V} e^{S(\tilde{y}_j \mid X, y_1, \dots, y_{j-1})}}$$

Globally normalized models (a.k.a. energy-based models): each

$$P(Y \mid X) = \frac{e^{\sum_{i=1}^{N}}}{\sum_{i \in V}}$$

$$e^{S(y_j|X,y_1,...,y_{j-1})}$$

sentence has a score, which is not normalized over a particular decision

$$\sum_{j=1}^{|Y|} S(y_j | X, y_1, \dots, y_{j-1})$$

$$e^{\sum_{j=1}^{|Y|} S(\tilde{y}_j | X, \tilde{y}_1, \dots, \tilde{y}_{j-1})}$$

e

PROBLEMS TRAINING GLOBALLY NORMALIZED MODELS

Problem: the denominator is too big to expand naively

We must do something tricky:

Consider only a subset of hypotheses

Design the model so we can efficiently enumerate all hypotheses

$$P(Y \mid X) = \frac{e^{\sum_{j=1}^{|Y|} S(y_j \mid X, y_1, \dots, y_{j-1})}}{\sum_{\tilde{Y} \in V^*} e^{\sum_{j=1}^{|\tilde{Y}|} S(\tilde{y}_j \mid X, \tilde{y}_1, \dots, \tilde{y}_{j-1})}}$$

THE STRUCTURED PERCEPTRON ALGORITHM

An extremely simple way of training (non-probabilistic) global models

Find the one-best, and if it's score is better than the correct answer, adjust parameters to fix this

$$\hat{Y} = \operatorname{argmax}_{\tilde{Y} \neq Y} S(\tilde{Y} \mid X)$$

if $S(\hat{Y} \mid X; \theta) \ge S(Y \mid X)$
 $\theta \leftarrow \theta + \alpha(\frac{\partial S(Y \mid X; \theta)}{\partial \theta})$

end if

 $\begin{array}{c} X; \theta \end{pmatrix} & \longleftarrow & \mathsf{Find \ one \ best} \\ X; \theta \end{pmatrix} & \longleftarrow & \overset{\text{If score better}}{\overset{\text{than reference}}{\overset{\text{than refere$

STRUCTURED PERCEPTRON LOSS

Structured perceptron can also be expressed as a loss function!

$$\ell_{\text{percept}}(X,Y) = \max(0, S(\hat{Y} \mid X;\theta) - S(Y \mid X;\theta))$$

Resulting gradient looks like perceptron algorithm

$$\frac{\partial \ell_{\text{percept}}(X,Y;\theta)}{\partial \theta} = \begin{cases} \frac{\partial S(Y|X;\theta)}{\partial \theta} \\ 0 \end{cases}$$

- This is a normal loss function, can be used in NNs

 $\frac{\partial S(\hat{Y}|X;\theta)}{\partial \theta} \quad \text{if } S(\hat{Y} \mid X;\theta) \ge S(Y \mid X;\theta)$ otherwise

• But! Requires finding the argmax in addition to the true candidate: must do prediction during training

PERCEPTRON AND UNCERTAINTY

Which is better, dotted or dashed?

Both have zero perceptron loss!

X

X

ADDING A "MARGIN" WITH HINGE LOSS

Penalize when incorrect answer is within margin m

Perceptron

 $\ell_{\text{hinge}}(x, y; \theta) = \max(0, m + S(\hat{y} \mid x; \theta) - S(y \mid x; \theta))$

HINGE LOSS FOR ANY CLASSIFIER!

We can swap cross-entropy for hinge loss anytime

loss = dy.hinge(score, answer, m=1)

Independent classification models Strong independent assumption

P(Y|X) =

- No guarantee of valid (consistent) struct
 - BIO tagging scheme in NER
- Locally normalized models (e.g. history-based RNN, seq2seq)
 - Prior order

 $P(Y|X) = \int_{X}$

- Approximating decoding
 - Greedy search
 - Beam search
- Label bias

PROBLEMS

$$= \prod_{i=1}^{L} P(y_i|X)$$

tured outputs

$$\frac{1}{\sum_{i=1}^{L} P(y_i | X, y_{< i})}$$

Exact and optimal decoding/training via dynamic programs

Conditional Random Fields! (CRFs)

MODELS W/ LOCAL DEPENDENCIES

Some independence assumptions, but not entirely independent (local dependencies)

LOCAL VS LOCALLY NORMALIZED

original

local classification

original

local classification

local + smoothness

local + geometry

26

REMINDER: GLOBALLY NORMALIZED MODELS

- Each output sequence has a score, which is not normalized over a particular decision $P(Y|X) = \frac{\exp(S(Y,X))}{\sum_{Y'} \exp(S(Y',X))} = \frac{\psi(Y,X)}{\sum_{Y'} \psi(Y',X)}$ where $\psi(Y,Y)$ are not partial functions
- where $\psi(Y, X)$ are potential functions.

CONDITIONAL RANDOM FIELDS

First-order linear CRF

POTENTIAL FUNCTIONS

 $\psi_i(y_{i-1}, y_i, X) = t(y_{i-1}, y_i, X) \times e(y_i, X)$

"Transition"

Simpler Version

 $\psi_i(y_{i-1}, y_i, X) = t(y_{i-1}, y_i) \times e(y_i, X)$

"Emission"

Y

We want to maximize the probability of the correct output sequence

•
$$P(Y|X) = \frac{\prod_{i=1}^{L} \psi_i(y_{i-1}, y_i, X)}{\sum_{Y'} \prod_{i=1}^{L} \psi_i(y'_{i-1}, y'_i, X)}$$

- Training: computing the partitio Z(X) =
- Decoding

TRAINING

$$= \frac{\prod_{i=1}^{L} \psi_i(y_{i-1}, y_i, X)}{Z(X)}$$

on function Z(X)
$$\int_{=1}^{L} \psi_i(y_{i-1}, y_i, X)$$

 $y^* = argmax_Y P(Y|X)$

TRAINING

We want to maximize the probability of the correct output sequence

Traditionally:

Extract features from the input words/context/sentence
 Train with features as input, target sequences as desired output
 Use some entimization technique to weight the feature important

3. Use some optimization technique to weight the feature importance for each position

A bunch of algorithms are nicely implemented in scikit-learn:

https://sklearn-crfsuite.readthedocs.io/en/latest/

DOWNLOAD THE NOTEBOOK FROM THE CLASS WEBSITE

RA

Break-Out Room Exercise [around 20 minutes]: https://docs.google.com/document/d/1ifTqeqmK6cG2Zk-f5kDMvU_baNh3x-nbxQXz1d549HY/edit?usp=sharing

TRAINING & DECODING OF CRF: VITERBI/FORWARD BACKWARD ALGORITHM

INTERACTIONS

- each label depends on the input and nearby labels
- but, given adjacent labels, the others do not matter!
- If we knew the score of every sequence y_1, y_2, \dots, y_{n-1} we could easily compute the score of every sequence $y_1, y_2, \dots, y_{n-1}, y_n$
- So, we only really need to know the score of all the sequences ending in each y_{n-1}

(Think of that as a "pre-calculation" that happens before we think about y_n

. . .

STEP 1: INITIAL

STEPS: MIDDLE PARTS

For middle words, calculate the scores for all possible previous POS tags

. . .

. . .

score["2 NN"] = log_sum_exp(...)

 $score["2 JJ"] = log_sum_exp($

log sum exp(x, y) = log(exp(x) + exp(y))

```
score["1 NN"] + T(NN|NN) + S(language | NN),
score["1 JJ"] + T(NN|JJ) + S(language | NN),
score["1 VB"] + T(NN|VB) + S(language | NN),
score["1 LRB"] + T(NN|LRB) + S(language | NN),
score["1 RRB"] + T(NN|RRB) + S(language | NN),
```

```
score["1 NN"] + T(JJ|NN) + S(language | JJ),
score["1 JJ"] + T(JJ|JJ) + S(language | JJ),
score["1 VB"] + T(JJ|VB) + S(language | JJ),
```


Finish up the sentence with the sentence final symbol

...

STEPS: FINAL PART

```
score["/+1 "] = log_sum_exp(
 score["/ NN"] + T(|NN),
 score["/JJ"] + T(\langle S \rangle]JJ),
 score["/VB"] + T(|VB),
 score["/ LRB"] + T(|LRB),
 score["/ NN"] + T(|RRB),
```

