ANTONIS ANASTASOPOULOS CS499 INTRODUCTION TO NLP

CONDITIONAL RANDOM

 FIELDS
https://cs.gmu.edu/~antonis/course/cs499-spring21/
With adapted slides by Graham Neubig

STRUCTURE OF THIS LECTURE

Structured
Prediction

Conditional
Random Fields

Viterbi

A PREDICTION PROBLEM

I hate this movie love this movie \longrightarrow| very good |
| :---: |
| good |
| neutral |
| bad |
| very bad |

TYPES OF PREDICTION

Two classes (binary classification)
I hate this movie \longrightarrow negative

- Multiple classes (multi-class classification)
very good
good
I hate this movie neutral
bad
very bad
- Exponential/infinite labels (structured prediction)

I hate this movie \longrightarrow PRP VBP DT NN
I hate this movie \longrightarrow kono eiga ga kirai

WHY CALL IT "STRUCTURED" PREDICTION?

Classes are too numerous to enumerate
Need some sort of method to exploit the problem structure to learn efficiently
Example of "structure", the following two outputs are similar:

PRP VBP DT NN

PRP VBP VBP NN

MANY VARIETIES OF STRUCTURED PREDICTION!

Models:
RNN-based decoders
Convolution/self attentional decoders
CRFs w/ local factors
Training algorithms:
Structured perceptron, structured large margin
Sampling corruptions of data
Exact enumeration with dynamic programs
Reinforcement learning/minimum risk training

SEQUENCE LABELING

One tag for one word
e.g. Part of speech tagging

| I | hate | this |
| :---: | :---: | :---: | :---: |
| PRP | VBP | |

- e.g. Named entity recognition

SEQUENCE LABELING AS INDEPENDENT CLASSIFICATION

SEQUENCE LABELING W/ BILSTM

Still not modeling output structure! Outputs are independent

WHY MODEL INTERACTIONS IN OUTPUT?

Consistency is important!

time	flies	like	an	arrow	
N	V	Prep	DT	N	(time moves similarly to an arrow)
N	NS	V	DT	N	("time flies" are fond of arrows) V
N	Prep	DT	N	(please measure the time of flies similarly to how an arrow would)	
N	NS	Prep	DT	Nax frequency	

A TAGGER CONSIDERING OUTPUT STRUCTURE

Tags are inter-dependent

TRAINING STRUCTURED MODELS

Simplest training method "teacher forcing"
Just feed in the correct previous tag

TEACHER FORCING AND EXPOSURE BIAS

Teacher forcing assumes feeding correct previous input, but at test time we may make mistakes that propagate

- Exposure bias: The model is not exposed to mistakes during training, and cannot deal with them at test

LOCAL NORMALIZATION VS. GLOBAL NORMALIZATION

Locally normalized models: each decision made by the model has a probability that adds to one

$$
P(Y \mid X)=\prod_{j=1}^{|Y|} \frac{e^{S\left(y_{j} \mid X, y_{1}, \ldots, y_{j-1}\right)}}{\sum_{\tilde{y}_{j} \in V} e^{S\left(\tilde{y}_{j} \mid X, y_{1}, \ldots, y_{j-1}\right)}}
$$

Globally normalized models (a.k.a. energy-based models): each sentence has a score, which is not normalized over a particular decision

$$
P(Y \mid X)=\frac{e^{\sum_{j=1}^{|Y|} S\left(y_{j} \mid X, y_{1}, \ldots, y_{j-1}\right)}}{\sum_{\tilde{Y} \in V *} e^{\sum_{j=1}^{|\tilde{Y}|} S\left(\tilde{y}_{j} \mid X, \tilde{y}_{1}, \ldots, \tilde{y}_{j-1}\right)}}
$$

PROBLEMS TRAINING GLOBALLY NORMALIZED MODELS

Problem: the denominator is too big to expand naively

We must do something tricky:

$$
P(Y \mid X)=\frac{e^{\sum_{j=1}^{|Y|} S\left(y_{j} \mid X, y_{1}, \ldots, y_{j-1}\right)}}{\left.\sum_{\tilde{Y} \in V *} e^{\mid \tilde{Y}=1}\left|\tilde{y}_{j}\right| X, \tilde{y}_{1}, \ldots, \tilde{y}_{j-1}\right)}
$$

Consider only a subset of hypotheses
Design the model so we can efficiently enumerate all hypotheses

STRUCTURED PERCEPTRON

THE STRUCTURED PERCEPTRON ALGORITHM

An extremely simple way of training (non-probabilistic) global models
Find the one-best, and if it's score is better than the correct answer, adjust parameters to fix this

$$
\begin{aligned}
& \hat{Y}=\operatorname{argmax}_{\tilde{Y} \neq Y} S(\tilde{Y} \mid X ; \theta) \\
& \begin{array}{ll}
\text { if } S(\hat{Y} \mid X ; \theta) \geq S(Y \mid X ; \theta) \text { then } \longleftarrow \begin{array}{l}
\text { If score better } \\
\text { than reference }
\end{array} \\
\qquad \theta \leftarrow \theta+\alpha\left(\frac{\partial S(Y \mid X ; \theta)}{\partial \theta}-\frac{\partial S(\hat{Y} \mid X ; \theta)}{\partial \theta}\right) \leftarrow \begin{array}{l}
\text { Increase score } \\
\text { of ref, decrease }
\end{array} \\
\text { end if } & \text { score of one-best } \\
& \text { (here, SGD update) }
\end{array}
\end{aligned}
$$

STRUCTURED PERCEPTRON LOSS

Structured perceptron can also be expressed as a loss function!

$$
\ell_{\text {percept }}(X, Y)=\max (0, S(\hat{Y} \mid X ; \theta)-S(Y \mid X ; \theta))
$$

- Resulting gradient looks like perceptron algorithm

$$
\frac{\partial \ell_{\mathrm{percept}}(X, Y ; \theta)}{\partial \theta}= \begin{cases}\frac{\partial S(Y \mid X ; \theta)}{\partial \theta}-\frac{\partial S(\hat{Y} \mid X ; \theta)}{\partial \theta} & \text { if } S(\hat{Y} \mid X ; \theta) \geq S(Y \mid X ; \theta) \\ 0 & \text { otherwise }\end{cases}
$$

- This is a normal loss function, can be used in NNs
- But! Requires finding the argmax in addition to the true candidate: must do prediction during training

HINGE LOSS AND COST-SENSITIVE TRAINING

PERCEPTRON AND UNCERTAINTY

Which is better, dotted or dashed?

Both have zero perceptron loss!

ADDING A "MARGIN" WITH HINGE LOSS

Penalize when incorrect answer is within margin m

$$
\ell_{\text {hinge }}(x, y ; \theta)=\max (0, m+S(\hat{y} \mid x ; \theta)-S(y \mid x ; \theta))
$$

HINGE LOSS FOR ANY CLASSIFIER!

We can swap cross-entropy for hinge loss anytime

LOCALLY-DEPENDENT MODELS

PROBLEMS

- Independent classification models
- Strong independent assumption

$$
P(Y \mid X)=\prod_{i=1}^{L} P\left(y_{i} \mid X\right)
$$

- No guarantee of valid (consistent) structured outputs
- BIO tagging scheme in NER
- Locally normalized models (e.g. history-based RNN, seq2seq)
- Prior order

$$
P(Y \mid X)=\prod_{i=1}^{L} P\left(y_{i} \mid X, y_{<i}\right)
$$

- Approximating decoding
- Greedy search
- Beam search
- Label bias

MODELS W/ LOCAL DEPENDENCIES

Some independence assumptions, but not entirely independent (local dependencies)
Exact and optimal decoding/training via dynamic programs

Conditional Random Fields!
 (CRFs)

LOCAL VS LOCALLY NORMALIZED

original
local classification local + smoothness

local classification

original

local + geometry

REMINDER: GLOBALLY NORMALIZED MODELS

- Each output sequence has a score, which is not normalized over a particular decision

$$
P(Y \mid X)=\frac{\exp (S(Y, X))}{\sum_{Y^{\prime}} \exp \left(S\left(Y^{\prime}, X\right)\right)}=\frac{\psi(Y, X)}{\sum_{Y^{\prime}} \psi\left(Y^{\prime}, X\right)}
$$

where $\psi(Y, X)$ are potential functions.

CONDITIONAL RANDOM FIELDS

POTENTIAL FUNCTIONS

$$
\psi_{i}\left(y_{i-1}, y_{i}, X\right)=\underbrace{t\left(y_{i-1}, y_{i}, X\right)}_{\text {"Transition" }} \times \underbrace{e\left(y_{i}, X\right)}_{\text {"Emision" }}
$$

Simpler Version

$$
\psi_{i}\left(y_{i-1}, y_{i}, X\right)=t\left(y_{i-1}, y_{i}\right) \times e\left(y_{i}, X\right)
$$

EXAMPLE

TRANSITION PARAMETERS

TRANSITION PARAMETERS

EMISSION PROBABILITIES

Equally likely?

EMISSION PROBABILITIES

EMISSION PROBABILITIES

EMISSION PROBABILITIES

EMISSION PROBABILITIES

TRAINING

We want to maximize the probability of the correct output sequence

- $P(Y \mid X)=\frac{\prod_{i=1}^{L} \psi_{i}\left(y_{i-1}, y_{i}, X\right)}{\sum_{Y^{\prime}} \Pi_{i=1}^{L} \psi_{i}\left(y_{i-1}^{\prime}, y^{\prime}, X\right)}=\frac{\prod_{i=1}^{L} \psi_{i}\left(y_{i-1}, y_{i}, X\right)}{Z(X)}$
- Training: computing the partition function $Z(X)$

$$
Z(X)=\sum_{Y} \prod_{i=1}^{L} \psi_{i}\left(y_{i-1}, y_{i}, X\right)
$$

- Decoding

$$
y^{*}=\operatorname{argmax}_{Y} P(Y \mid X)
$$

TRAINING

We want to maximize the probability of the correct output sequence

Traditionally:

1. Extract features from the input words/context/sentence
2. Train with features as input, target sequences as desired output
3. Use some optimization technique to weight the feature importance for each position

A bunch of algorithms are nicely implemented in scikit-learn:
https://sklearn-crfsuite.readthedocs.io/en/latest/

TRY IT!

DOWNLOAD THE NOTEBOOK FROM THE CLASS WEBSITE

Break-Out Room Exercise [around 20 minutes]:
https://docs.google.com/document/d/1ifTqeqmK6cG2Zk-f5kDMvU_baNh3x-nbxQXz1d549HY/edit?usp=sharing

TRAINING \& DECODING OF CRF: VITERBI/FORWARD BACKWARD ALGORITHM

INTERACTIONS

- each label depends on the input and nearby labels
- but, given adjacent labels, the others do not matter!
- If we knew the score of every sequence $y_{1}, y_{2}, \ldots y_{n-1}$ we could easily compute the score of every sequence $y_{1}, y_{2}, \ldots y_{n-1}, y_{n}$
- So, we only really need to know the score of all the sequences ending in each y_{n-1}
(Think of that as a "pre-calculation" that happens before we think about y_{n}

STEP 1: INITIAL

First, calculate transition from <S> and emission of the first word for every POS natural
$0:<S>1: \mathrm{NN}$ score["1 NN "] $=\mathrm{T}(\mathrm{NN} \mid\langle\mathrm{S}\rangle)+\mathrm{S}($ natural | NN$)$
1:JJ score["1 JJ"] = T(JJ|<S>) + S(natural | JJ)
1:VB score["1 VB"] = T(VB|<S>) + S(natural | VB)
1:LRB score["1 LRB"] = T(LRB|<S>) + S(natural | LRB)
1:RRB score["1 RRB"] = T(RRB|<S>) + S(natural | RRB)

STEPS: MIDDLE PARTS

For middle words, calculate the scores for all possible previous POS tags
natural language

		score["2 NN"] = log_sum_exp(
	2 N	$\text { score["1 NN"] }+T(N N \mid N N)+S(l a r$
1:JJ	2	
1:JJ	2:	$\begin{aligned} & \text { score ""1 LRB"] + T(NN\|LRB) + S(language \| NN), } \\ & \text { score["1 RRB"] }+\mathrm{T}(\text { NN\|RRB })+\text { S(language \| NN } \end{aligned}$
1:VB	2:VB	
		score["2 JJ"] = log_sum_exp(score["1 NN "] $+\mathrm{T}(\mathrm{JJ} \mid \mathrm{NN})+\mathrm{S}($ language \| JJ$)$, score["" $\left.\mathrm{J} \mathrm{J}^{\prime \prime}\right]+\mathrm{T}(\mathrm{J} \mid \mathrm{JJ})+\mathrm{S}$ (language \| JJ), score["" ${ }^{\text {VB" }}$] $+\mathrm{T}(\mathrm{JJ} \mid V \mathrm{VB})+\mathrm{S}$ (language $\left.\mid \mathrm{JJ}\right)$,
1:LRB	2:LRB	
	2:RRB	

STEPS: FINAL PART

Finish up the sentence with the sentence final symbol

science

1:NN $\quad 1+1:</ S>$

```
score["l+1 </S>"] = log_sum_exp(
    score["/ NN"] + T(</S> NNN),
    score["/ JJ"] + T(</S>|JJ),
    score["/ VB"] + T(</S>|VB),
    score["/ LRB"] + T(</S>|LRB),
    score["/ NN"] + T(</S>|RRB),
)
```

I:LRB
I:RRB

