
PROBABILISTIC CFGS

ANTONIS ANASTASOPOULOS
CS499 INTRODUCTION TO NLP

https://cs.gmu.edu/~antonis/course/cs499-spring21/
With adapted slides by David Mortensen and Alan Black

https://cs.gmu.edu/~antonis/course/cs499-spring21/

STRUCTURE OF THIS LECTURE

2

1 2 3
Probabilistic
Parsing

Parsing
Algorithms

Chomsky
Normal Form 4

CKY
Algorithm

EXAMPLE AMBIGUOUS PARSE

3

PROBABILISTIC CFG

4

AMBIGUOUS PARSE WITH PROBABILITIES

5

p(left) = 2.2 × 10−6 p(right) = 6.1 × 10−7

THE PROBABILITY OF A PARSE TREE

The joint probability of a particular parse and a sentence , is
defined as the product of the probabilities of all the rules used
to expand each node in the parse tree:

T S
r

n

P(T, S) = Πn∈T p(r(n))

6

REVIEW: CONTEXT-FREE GRAMMARS

Vocabulary of terminal symbols:

Set of non-terminal symbols (aka variables):

Special start symbols:

Production rules of the form , where

 (in CNF:)

Σ

N

S ∈ N

X → α
X ∈ N
α ∈ (N ∪ Σ)* α ∈ N2 ∪ Σ

7

PROBABILISTIC CONTEXT-FREE GRAMMARS

Vocabulary of terminal symbols:

Set of non-terminal symbols (aka variables):

Special start symbols:

Production rules of the form , each with a politic weight , where

 (in CNF:)

Σ

N

S ∈ N

X → α p(X → α)
X ∈ N
α ∈ (N ∪ Σ)* α ∈ N2 ∪ Σ
∀X ∈ N, Σα p(X → α) = 1

8

WHERE TO THE PCFG PROBABILITIES COME FROM?

a) From a tree bank

b) From a corpus

- Parse the corpus with your CFG
- Count the rules for each parse
- Normalize
 - But wait, most sentences are ambiguous!
 - “Keep a separate count for each parse of a sentence and weight each
partial count by the probability of the parse it appears in”.

P(α → β ∣ α) =
Count(α → β)

ΣγCount(α → γ)
=

Count(α → β)
Count(α)

9

CKY ALGORITHM: REVIEW

For

For // width

For // left boundary

 // right boundary

For // midpoint

Return true if

i = [1 … n]

C[i − 1, i] = {V ∣ V → wi}

l = 2 … n :

i = 0 … n − l :

k = i + l

j = i + 1 … k − 1 :

C[i, k] = C[i, k] ∪ {V ∣ V → YZ, Y ∈ C[i, j], Z ∈ C[j, k]}

S ∈ C[0,n]

10

WEIGHTED CKY ALGORITHM

For

For // width of span

For // left boundary

 // right boundary

For // midpoint

For each binary rule :

Return true if

i = [1 … n]

C[V, i − 1, i] = p(V → wi)

l = 2 … n :

i = 0 … n − l :

k = i + l

j = i + 1 … k − 1 :

V → Y Z

C[V, i, k] = max{C[V, i, k], C[Y, i, j] × C[Z, j, k] × p(V → YZ)}

S ∈ C[⋅ , 0, n]

11

CKY EQUATIONS: REVIEW

12

WEIGHTED CKY EQUATIONS

13

P-CKY ALGORITHM FROM BOOK

14

CKY: CHART

15

For

For // width of span

For // left boundary

 // right boundary

For // midpoint

For each binary rule :

Return true if

i = [1 … n]

C[V, i − 1, i] = p(V → wi)

l = 2 … n :

i = 0 … n − l :

k = i + l

j = i + 1 … k − 1 :

V → Y Z

C[V, i, k] = max{C[V, i, k], C[Y, i, j] × C[Z, j, k] × p(V → YZ)}
S ∈ C[⋅ , 0, n]

[0,1] [0,2] [0,3] [0,4] [0,5]

The
[1,2] [1,3] [1,4] [1,5]

Cat
[2,3] [2,4] [2,5]

Sat
[3,4] [3,5]

…
[4,5]

…

CKY: CHART

16

For

For // width of span

For // left boundary

 // right boundary

For // midpoint

For each binary rule :

Return true if

i = [1 … n]

C[V, i − 1, i] = p(V → wi)

l = 2 … n :

i = 0 … n − l :

k = i + l

j = i + 1 … k − 1 :

V → Y Z

C[V, i, k] = max{C[V, i, k], C[Y, i, j] × C[Z, j, k] × p(V → YZ)}
S ∈ C[⋅ , 0, n]

[0,1] [0,2] [0,3] [0,4] [0,5]

The
[1,2] [1,3] [1,4] [1,5]

Cat
[2,3] [2,4] [2,5]

Sat
[3,4] [3,5]

…
[4,5]

…

Det: 0.4

N: 0.02

V: 0.05

CKY: CHART

17

For

For // width of span

For // left boundary

 // right boundary

For // midpoint

For each binary rule :

Return true if

i = [1 … n]

C[V, i − 1, i] = p(V → wi)

l = 2 … n :

i = 0 … n − l :

k = i + l

j = i + 1 … k − 1 :

V → Y Z

C[V, i, k] = max{C[V, i, k], C[Y, i, j] × C[Z, j, k] × p(V → YZ)}
S ∈ C[⋅ , 0, n]

[0,1] [0,2] [0,3] [0,4] [0,5]

The
[1,2] [1,3] [1,4] [1,5]

Cat
[2,3] [2,4] [2,5]

Sat
[3,4] [3,5]

…
[4,5]

…

Det: 0.4

N: 0.02

V: 0.05

NP: .3*.4*.02 = 0.0024

TREEBANKS

THE PENN TREEBANK (PTB)

The first big treebank, still widely used

Consists of the Brown Corpus, ATIS (Air Travel Information Service corpus),
Switchboard corpus, and a corpus drawn from the Wall Street Journal

Produced at University of Pennsylvania (thus the name)

About 1 million words

About 17,500 distinct rule types
 - PTB rules tend to be “flat” —lots of symbols on the RHS
 - Many of the rule types only occur in one tree

19

TREEBANK TREE EXAMPLE

20

TREEBANK TREE EXAMPLE

21

RULES IN THE TREEBANK

22

Rules in the training section:
32,728
(+52,257 lexicon)

Rules in the dev section:
4,021

3,128
(<78%)

RULE DISTRIBUTION (TRAINING SET)

23

OTHER TREEBANKS

PTB is just one, very important, treebank

There are many others, though they are often (a) smaller, (b) dependency treebanks.

However, there are plenty of constituency/phrase structure tree banks in addition to
PTB.

24

UNIVERSAL DEPENDENCIES

Universal dependencies (UD)

- internally consistent set of universal dependency relations
- used to construct a large body of treebanks in many languages
- useful for cross-lingual training (since the PoS and the dependency labels are the
same cross-linguistically)

Not immediately applicable to what we talked about, since it’s relatively hard to
learn constituency information from dependency trees

Very relevant to training dependency parsers

25

PARSING EVALUATION

PARSEVAL

27

Constituents in gold-standard trees

Constituents in parser
output trees

PARSEVAL

28

THE F-MEASURE

29

Fβ =
(β2 + 1)PR

β2P + R

F1 =
2PR

P + R

NEXT CLASS

Neural Models for Dependency Parsing

30

