
PROBABILISTIC CFGS

ANTONIS ANASTASOPOULOS 
CS499 INTRODUCTION TO NLP

https://cs.gmu.edu/~antonis/course/cs499-spring21/
With adapted slides by David Mortensen and Alan Black

https://cs.gmu.edu/~antonis/course/cs499-spring21/


STRUCTURE OF THIS LECTURE

2

1 2 3
Probabilistic 
Parsing

Parsing 
Algorithms

Chomsky 
Normal Form 4

CKY 
Algorithm



EXAMPLE AMBIGUOUS PARSE
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PROBABILISTIC CFG
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AMBIGUOUS PARSE WITH PROBABILITIES
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p(left) = 2.2 × 10−6 p(right) = 6.1 × 10−7



THE PROBABILITY OF A PARSE TREE

The joint probability of a particular parse  and a sentence , is 
defined as the product of the probabilities of all the rules  used 
to expand each node  in the parse tree: 

 

T S
r

n

P(T, S) = Πn∈T p(r(n))
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REVIEW: CONTEXT-FREE GRAMMARS

Vocabulary of terminal symbols:  

Set of non-terminal symbols (aka variables):  

Special start symbols:  

Production rules of the form , where 
         
                (in CNF:  )

Σ

N

S ∈ N

X → α
X ∈ N
α ∈ (N ∪ Σ)* α ∈ N2 ∪ Σ
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PROBABILISTIC CONTEXT-FREE GRAMMARS

Vocabulary of terminal symbols:  

Set of non-terminal symbols (aka variables):  

Special start symbols:  

Production rules of the form , each with a politic weight , where 
         
                (in CNF:  ) 
        

Σ

N

S ∈ N

X → α p(X → α)
X ∈ N
α ∈ (N ∪ Σ)* α ∈ N2 ∪ Σ
∀X ∈ N, Σα p(X → α) = 1
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WHERE TO THE PCFG PROBABILITIES COME FROM?

a) From a tree bank 

 

b) From a corpus  

- Parse the corpus with your CFG 
- Count the rules for each parse 
- Normalize 
 - But wait, most sentences are ambiguous! 
        - “Keep a separate count for each parse of a sentence and weight each 
partial count by the probability of the parse it appears in”.

P(α → β ∣ α) =
Count(α → β)

ΣγCount(α → γ)
=

Count(α → β)
Count(α)
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CKY ALGORITHM: REVIEW

For  

 

For  // width 

For  // left boundary 

   // right boundary 

For   //  midpoint 

 

Return true if 

i = [1 … n]

C[i − 1, i] = {V ∣ V → wi}

l = 2 … n :

i = 0 … n − l :

k = i + l

j = i + 1 … k − 1 :

C[i, k] = C[i, k] ∪ {V ∣ V → YZ, Y ∈ C[i, j], Z ∈ C[ j, k]}

S ∈ C[0,n]
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WEIGHTED CKY ALGORITHM

For  

 

For  // width of span 

For  // left boundary 

   // right boundary 

For   //  midpoint 

For each binary rule  : 

     

Return true if 

i = [1 … n]

C[V, i − 1, i] = p(V → wi)

l = 2 … n :

i = 0 … n − l :

k = i + l

j = i + 1 … k − 1 :

V → Y Z

C[V, i, k] = max{C[V, i, k], C[Y, i, j] × C[Z, j, k] × p(V → YZ)}

S ∈ C[ ⋅ , 0, n]
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CKY EQUATIONS: REVIEW
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WEIGHTED CKY EQUATIONS
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P-CKY ALGORITHM FROM BOOK

14



CKY: CHART
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For  

 

For  // width of span 

For  // left boundary 

   // right boundary 

For   //  midpoint 

For each binary rule  : 

     
Return true if 

i = [1 … n]

C[V, i − 1, i] = p(V → wi)

l = 2 … n :

i = 0 … n − l :

k = i + l

j = i + 1 … k − 1 :

V → Y Z

C[V, i, k] = max{C[V, i, k], C[Y, i, j] × C[Z, j, k] × p(V → YZ )}
S ∈ C[ ⋅ , 0, n]

[0,1] [0,2] [0,3] [0,4] [0,5]

The
[1,2] [1,3] [1,4] [1,5]

Cat
[2,3] [2,4] [2,5]

Sat
[3,4] [3,5]

…
[4,5]

…



CKY: CHART
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For  

 

For  // width of span 

For  // left boundary 

   // right boundary 

For   //  midpoint 

For each binary rule  : 

     
Return true if 

i = [1 … n]

C[V, i − 1, i] = p(V → wi)

l = 2 … n :

i = 0 … n − l :

k = i + l

j = i + 1 … k − 1 :

V → Y Z

C[V, i, k] = max{C[V, i, k], C[Y, i, j] × C[Z, j, k] × p(V → YZ )}
S ∈ C[ ⋅ , 0, n]

[0,1] [0,2] [0,3] [0,4] [0,5]

The
[1,2] [1,3] [1,4] [1,5]

Cat
[2,3] [2,4] [2,5]

Sat
[3,4] [3,5]

…
[4,5]

…

Det: 0.4

N: 0.02

V: 0.05



CKY: CHART
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For  

 

For  // width of span 

For  // left boundary 

   // right boundary 

For   //  midpoint 

For each binary rule  : 

     
Return true if 

i = [1 … n]

C[V, i − 1, i] = p(V → wi)

l = 2 … n :

i = 0 … n − l :

k = i + l

j = i + 1 … k − 1 :

V → Y Z

C[V, i, k] = max{C[V, i, k], C[Y, i, j] × C[Z, j, k] × p(V → YZ )}
S ∈ C[ ⋅ , 0, n]

[0,1] [0,2] [0,3] [0,4] [0,5]

The
[1,2] [1,3] [1,4] [1,5]

Cat
[2,3] [2,4] [2,5]

Sat
[3,4] [3,5]

…
[4,5]

…

Det: 0.4

N: 0.02

V: 0.05

NP: .3*.4*.02 = 0.0024



TREEBANKS



THE PENN TREEBANK (PTB)

The first big treebank, still widely used 

Consists of the Brown Corpus, ATIS (Air Travel Information Service corpus), 
Switchboard corpus, and a corpus drawn from the Wall Street Journal 

Produced at University of Pennsylvania (thus the name) 

About 1 million words 

About 17,500 distinct rule types 
    - PTB rules tend to be “flat” —lots of symbols on the RHS 
    - Many of the rule types only occur in one tree
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TREEBANK TREE EXAMPLE
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TREEBANK TREE EXAMPLE
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RULES IN THE TREEBANK
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Rules in the training section: 
32,728 
(+52,257 lexicon)

Rules in the dev section: 
4,021

3,128 
(<78%)



RULE DISTRIBUTION (TRAINING SET)
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OTHER TREEBANKS

PTB is just one, very important, treebank 

There are many others, though they are often (a) smaller, (b) dependency treebanks. 

However, there are plenty of constituency/phrase structure tree banks in addition to 
PTB.
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UNIVERSAL DEPENDENCIES

Universal dependencies (UD) 

- internally consistent set of universal dependency relations 
- used to construct a large body of treebanks in many languages 
- useful for cross-lingual training (since the PoS and the dependency labels are the 
same cross-linguistically) 

Not immediately applicable to what we talked about, since it’s relatively hard to 
learn constituency information from dependency trees 

Very relevant to training dependency parsers
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PARSING EVALUATION



PARSEVAL
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Constituents in gold-standard trees

Constituents in parser 
output trees



PARSEVAL
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THE F-MEASURE
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Fβ =
(β2 + 1)PR

β2P + R

F1 =
2PR

P + R



NEXT CLASS

Neural Models for Dependency Parsing
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