ANTONIS ANASTASOPOULOS CS499 INTRODUCTION TO NLP

PROBABILISTIC CFGS

https://cs.gmu.edu/~antonis/course/cs499-spring21/
With adapted slides by David Mortensen and Alan Black

STRUCTURE OF THIS LECTURE

Probabilistic
Parsing

EXAMPLE AMBIGUOUS PARSE

PROBABILISTIC CFG

Grammar		Lexicon	
$S \rightarrow N P V P$	[.80]	Det \rightarrow that [.10]\|a[.30]	the [.60]
$S \rightarrow$ Aux $N P V P$	[.15]	Noun \rightarrow book [.10] \| flight [.30]	
$S \rightarrow V P$	[.05]	\| meal [.15]	money [.05]
$N P \rightarrow$ Pronoun	[.35]	\| flights [.40]	dinner [.10]
$N P \rightarrow$ Proper-Noun	[.30]	Verb \rightarrow book [.30] \| include [.30]	
$N P \rightarrow$ Det Nominal	[.20]	\| prefer; [.40]	
$N P \rightarrow$ Nominal	[.15]	Pronoun $\rightarrow I[.40] \mid$ she [.05]	
Nominal \rightarrow Noun	[.75]	\| me [.15]	you [.40]
Nominal \rightarrow Nominal Noun	[.20]	Proper-Noun \rightarrow Houston [.60]	
Nominal \rightarrow Nominal PP	[.05]	\| NWA [.40]	
$V P \rightarrow$ Verb	[.35]	Aux \rightarrow does [.60] \| can [40]	
$V P \rightarrow$ Verb $N P$	[.20]	Preposition \rightarrow from [.30]\| to [.30]	
$V P \rightarrow V$ Verb NP PP	[.10]	\| on [.20]	near [.15]
$V P \rightarrow$ Verb $P P$	[.15]	\| through [.05]	
$V P \rightarrow V$ Verb NP NP	[.05]		
$V P \rightarrow V P P P$	[.15]		
$P P \rightarrow$ Preposition $N P$	[1.0]		

AMBIGUOUS PARSE WITH PROBABILITIES

$$
p(\text { left })=2.2 \times 10^{-6}
$$

$$
p(\text { right })=6.1 \times 10^{-7}
$$

THE PROBABILITY OF A PARSE TREE

The joint probability of a particular parse T and a sentence S, is defined as the product of the probabilities of all the rules r used to expand each node n in the parse tree:

$$
P(T, S)=\Pi_{n \in T} p(r(n))
$$

REVIEW: CONTEXT-FREE GRAMMARS

Vocabulary of terminal symbols: Σ
Set of non-terminal symbols (aka variables): N

Special start symbols: $S \in N$
Production rules of the form $X \rightarrow \alpha$, where

$$
X \in N
$$

$$
\alpha \in(N \cup \Sigma)^{*} \quad\left(\text { in CNF: } \alpha \in N^{2} \cup \Sigma\right)
$$

PROBABILISTIC CONTEXT-FREE GRAMMARS

Vocabulary of terminal symbols: Σ
Set of non-terminal symbols (aka variables): N
Special start symbols: $S \in N$
Production rules of the form $X \rightarrow \alpha$, each with a politic weight $p(X \rightarrow \alpha)$, where

$$
\begin{aligned}
& X \in N \\
& \left.\alpha \in(N \cup \Sigma)^{*} \quad \text { (in CNF: } \alpha \in N^{2} \cup \Sigma\right) \\
& \forall X \in N, \Sigma_{\alpha} p(X \rightarrow \alpha)=1
\end{aligned}
$$

WHERE TO THE PCFG PROBABILITIES COME FROM?

a) From a tree bank

$$
P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\Sigma_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)}=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

b) From a corpus

- Parse the corpus with your CFG
- Count the rules for each parse
- Normalize
- But wait, most sentences are ambiguous!
- "Keep a separate count for each parse of a sentence and weight each partial count by the probability of the parse it appears in".

CKY ALGORITHM: REVIEW

For $i=\left[\begin{array}{lll}1 & \ldots & n\end{array}\right]$

$$
C[i-1, i]=\left\{V \mid V \rightarrow w_{i}\right\}
$$

For $l=2 \ldots n: / /$ width

$$
\begin{aligned}
& \text { For } i=0 \ldots n-l: / / \text { left boundary } \\
& \qquad k=i+l \text { // right boundary }
\end{aligned}
$$

$$
\text { For } j=i+1 \ldots k-1: / / \text { midpoint }
$$

$$
C[i, k]=C[i, k] \cup\{V \mid V \rightarrow Y Z, Y \in C[i, j], Z \in C[j, k]\}
$$

Return true if $S \in C[0, n]$

WEIGHTED CKY ALGORITHM

$$
\begin{aligned}
& \text { For } i=\left[\begin{array}{lll}
1 & \ldots & n
\end{array}\right] \\
& \qquad C[V, i-1, i]=p\left(V \rightarrow w_{i}\right)
\end{aligned}
$$

For $l=2 \ldots n: / /$ width of span

$$
\text { For } i=0 \ldots n-l: / / \text { left boundary }
$$

$$
k=i+l / / \text { right boundary }
$$

$$
\text { For } j=i+1 \ldots k-1: / / \text { midpoint }
$$

For each binary rule $V \rightarrow Y Z$:

$$
C[V, i, k]=\max \{C[V, i, k], C[Y, i, j] \times C[Z, j, k] \times p(V \rightarrow Y Z)\}
$$

Return true if $S \in C[\cdot, 0, n]$

CKY EQUATIONS: REVIEW

$$
\begin{aligned}
& C\left[i-1, i, w_{i}\right]=\text { TRUE } \\
& C[i-1, i, V]= \begin{cases}\text { TRUE } & \text { if } V \rightarrow w_{i} \\
\text { FALSE } & \text { otherwise }\end{cases} \\
& C[i, j, V]= \begin{cases}\text { TRUE } & \text { if } \exists j, Y, Z \text { such that } \\
& V \rightarrow Y Z \\
& \text { and } C[i, k, Y] \\
& \text { and } C[k, j, Z] \\
& \text { and } i<k<j \\
\text { FALSE } & \text { otherwise }\end{cases} \\
& \text { goal }=C[0, n, S]
\end{aligned}
$$

WEIGHTED CKY EQUATIONS

$$
\begin{aligned}
& \text { base case: } \\
& C[X, i-1, i]=p\left(X \rightarrow w_{i}\right) \\
& \text { induction: } \\
& C[X, i, k]=\max _{j, Y, Z} p(X \rightarrow Y Z) \times C[Y, i, j] \times C(Z, j, k) \\
& \text { goal: } \\
& C[S, 0, n] \text { where } n=|\boldsymbol{w}| \\
& p\left(\tau^{*}, w_{1}, w_{2}, \ldots, w_{n}\right)=C[S, 0, n]
\end{aligned}
$$

P-CKY ALGORITHM FROM BOOK

```
function PROBABILISTIC-CKY(words,grammar) returns most probable parse and its probability
for \(j \leftarrow\) from 1 to LENGTH(words) do
    for all \(\{A \mid A \rightarrow\) words \([j] \in\) grammar \(\}\)
        table \([j-1, j, A] \leftarrow P(A \rightarrow\) words \([j])\)
    for \(i \leftarrow\) from \(j-2\) downto 0 do
        for \(k \leftarrow i+1\) to \(j-1\) do
            for all \(\{A \mid A \rightarrow B C \in\) grammar,
                        and table \([i, k, B]>0\) and table \([k, j, C]>0\}\)
            if \((\) table \([i, j, A]<P(A \rightarrow B C) \times\) table \([i, k, B] \times\) table \([k, j, C])\) then
                    table \([i, j, A] \leftarrow P(A \rightarrow B C) \times\) table \([i, k, B] \times\) table \([k, j, C]\)
                back \([i, j, A] \leftarrow\{k, B, C\}\)
    return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]
```


CKY: CHART

```
For i=[\begin{array}{llll}{1}&{\ldots}&{n}\end{array}]
    C[V,i-1,i]=p(V-> w i}
Forl=2 \ldots.n:// width of span
    For }i=0\ldotsn-l:// left boundary
        k=i+l // right boundary
        For j=i+1 ...k-1: // midpoint
        For each binary rule V }->Y
\begin{tabular}{|c|c|c|c|c|c|}
\hline & {\([0,1]\)} & {\([0,2]\)} & {\([0,3]\)} & {\([0,4]\)} & {\([0,5]\)} \\
\hline The & & & & & \\
\hline & & {\([1,2]\)} & {\([1,3]\)} & {\([1,4]\)} & {\([1,5]\)} \\
\hline & Cat & & & & \\
\hline & & & {\([2,3]\)} & {\([2,4]\)} & {\([2,5]\)} \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{CKY: CHART}
```

For }i=[$$
\begin{array}{lll}{1}&{\ldots}&{n}\end{array}
$$
C[V,i-1,i]=p(V-> w i}
Forl=2 ···.n:// width of span
For }i=0···n-l:// left boundary
k=i+l // right boundary
For j=i+1 ...k-1: // midpoint

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { Det: } 0.4 \\
& {[0,1]}
\end{aligned}
\] & \[
[0,2]
\] & [0,3] & [0,4] & [0,5] \\
\hline The & & \[
\begin{aligned}
& \mathrm{N}: 0.02 \\
& {[1,2]}
\end{aligned}
\] & [1,3] & [1,4] & [1,5] \\
\hline & Cat & & \[
\begin{aligned}
& \text { V: } 0.05 \\
& {[2,3]}
\end{aligned}
\] & [2,4] & [2,5] \\
\hline & & Sat & & [3,4] & [3,5] \\
\hline & & & \(\ldots\) & & [4,5] \\
\hline & & & & ... & \\
\hline
\end{tabular}

For each binary rule \(V \rightarrow Y Z\) :
\(C[V, i, k]=\max \{C[V, i, k], C[Y, i, j] \times C[Z, j, k] \times p(V \rightarrow Y Z)\}\)
Return true if \(S \in C[\cdot, 0, n]\)

\section*{CKY: CHART}
```

For }i=[$$
\begin{array}{lll}{1}&{\ldots}&{n}\end{array}
$$
C[V,i-1,i]=p(V-> wi}
For l=2 ...n:// width of span
For }i=0···n-l:// left boundary
k=i+l // right boundary
For j=i+1 ...k-1: // midpoint

```
        For each binary rule \(V \rightarrow Y Z\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { Det: } 0.4 \\
& {[0,1]}
\end{aligned}
\] & \[
\begin{aligned}
& \text { NP: .3*. } \\
& {[0,2]}
\end{aligned}
\] & \[
\begin{gathered}
4^{\star} .02=0 \\
{[0,3]}
\end{gathered}
\] & \[
\begin{gathered}
.0024 \\
{[0,4]}
\end{gathered}
\] & [0,5] \\
\hline The & & \[
\begin{aligned}
& \mathrm{N}: 0.02 \\
& {[1,2]}
\end{aligned}
\] & [1,3] & [1,4] & [1,5] \\
\hline & Cat & & \[
\begin{aligned}
& \mathrm{V}: 0.05 \\
& {[2,3]}
\end{aligned}
\] & [2,4] & [2,5] \\
\hline & & Sat & & [3,4] & [3,5] \\
\hline & & & ... & & [4,5] \\
\hline & & & & ... & \\
\hline
\end{tabular}

TREEBANKS

\section*{THE PENN TREEBANK (PTB)}

The first big treebank, still widely used
Consists of the Brown Corpus, ATIS (Air Travel Information Service corpus), Switchboard corpus, and a corpus drawn from the Wall Street Journal

Produced at University of Pennsylvania (thus the name)
About 1 million words
About 17,500 distinct rule types
- PTB rules tend to be "flat" -lots of symbols on the RHS
- Many of the rule types only occur in one tree

\section*{TREEBANK TREE EXAMPLE}
```

((S
(NP-SBJ
(NP (NNP Pierre) (NNP Vinken))
(,,)
(ADJP
(NP (CD 61) (NNS years))
(JJ old))
(, ,)
(VP (MD will)
(VP (VB join)
(NP (DT the) (NN board))
(PP-CLR (IN as)
(NP (DT a) (JJ nonexecutive) (NN director)))
(NP-TMP (NNP Nov.) (CD 29))))
(..)))

```

\(100 \mathrm{VP} \rightarrow\) VBD PP-PRD 100 PRN \(\rightarrow\) : NP : 100 NP \(\rightarrow\) DT JJS 100 NP-CLR \(\rightarrow\) NN 99 NP-SBJ-1 \(\rightarrow\) DT NNP 98 VP \(\rightarrow\) VBN NP PP-DIR 98 VP \(\rightarrow\) VBD PP-TMP 98 PP-TMP \(\rightarrow\) VBG NP 97 VP \(\rightarrow\) VBD ADVP-TMP VP ...
10 WHNP-1 \(\rightarrow\) WRB JJ 10 VP \(\rightarrow\) VP CC VP PP-TMP 10 VP \(\rightarrow\) VP CC VP ADVP-MNR 10 VP \(\rightarrow\) VBZ S , SBAR-ADV 10 VP \(\rightarrow\) VBZ S ADVP-TMP

\section*{TREEBANK TREE EXAMPLE}
```

((S
(NP-SBJ
(NP (NNP Pierre) (NNP Vinken))
(,,)
(ADJP
(NP (CD 61) (NNS years))
(JJ old))
(, ,)
(VP (MD will)
(VP (VB join)
(NP (DT the) (NN board))
(PP-CLR (IN as)
(NP (DT a) (JJ nonexecutive) (NN director)))
(NP-TMP (NNP Nov.) (CD 29))))
(..)))

```

\(100 \mathrm{VP} \rightarrow\) VBD PP-PRD 100 PRN \(\rightarrow\) : NP : 100 NP \(\rightarrow\) DT JJS 100 NP-CLR \(\rightarrow\) NN 99 NP-SBJ-1 \(\rightarrow\) DT NNP 98 VP \(\rightarrow\) VBN NP PP-DIR 98 VP \(\rightarrow\) VBD PP-TMP 98 PP-TMP \(\rightarrow\) VBG NP 97 VP \(\rightarrow\) VBD ADVP-TMP VP ...
10 WHNP-1 \(\rightarrow\) WRB JJ 10 VP \(\rightarrow\) VP CC VP PP-TMP 10 VP \(\rightarrow\) VP CC VP ADVP-MNR 10 VP \(\rightarrow\) VBZ S , SBAR-ADV 10 VP \(\rightarrow\) VBZ S ADVP-TMP

\section*{RULES IN THE TREEBANK}


\section*{RULE DISTRIBUTION (TRAINING SET)}



\section*{OTHER TREEBANKS}

PTB is just one, very important, treebank
There are many others, though they are often (a) smaller, (b) dependency treebanks.
However, there are plenty of constituency/phrase structure tree banks in addition to PTB.

\section*{UNIVERSAL DEPENDENCIES}

Universal dependencies (UD)
- internally consistent set of universal dependency relations
- used to construct a large body of treebanks in many languages
- useful for cross-lingual training (since the PoS and the dependency labels are the same cross-linguistically)

Not immediately applicable to what we talked about, since it's relatively hard to learn constituency information from dependency trees

Very relevant to training dependency parsers

PARSING EVALUATION

\section*{PARSEVAL}


\section*{PARSEVAL}
labeled recall: \(=\frac{\# \text { of correct constituents in candidate parse of } s}{\# \text { of correct constituents in treebank parse of } s}\)
labeled precision \(:=\frac{\# \text { of correct constituents in candidate parse of } s}{\# \text { of total constituents in candidate parse of } s}\)
cross-brackets: the number of crossed brackets (e.g. the number of constituents for which the treebank has a bracketing such as \(((\mathrm{A} \mathrm{B}) \mathrm{C})\) but the candidate parse has a bracketing such as (A (B C))).

\section*{THE F-MEASURE}
\[
\begin{gathered}
F_{\beta}=\frac{\left(\beta^{2}+1\right) P R}{\beta^{2} P+R} \\
F_{1}=\frac{2 P R}{P+R}
\end{gathered}
\]

\section*{NEXT CLASS}

Neural Models for Dependency Parsing```

