ANTONIS ANASTASOPOULOS CS499 INTRODUCTION TO NLP

PROBABILISTIC CFGS

https://cs.gmu.edu/~antonis/course/cs499-spring21/ With adapted slides by David Mortensen and Alan Black

STRUCTURE OF THIS LECTURE

Chomsky Normal Form

CKY Algorithm

EXAMPLE AMBIGUOUS PARSE

PROBABILISTIC CFG

Grammar	
$S \rightarrow NP VP$	[.80]
$S \rightarrow Aux NP VP$	[.15]
$S \rightarrow VP$	[.05]
$NP \rightarrow Pronoun$	[.35]
$NP \rightarrow Proper-Noun$	[.30]
$NP \rightarrow Det Nominal$	[.20]
$NP \rightarrow Nominal$	[.15]
Nominal \rightarrow Noun	[.75]
Nominal \rightarrow Nominal Noun	[.20]
Nominal \rightarrow Nominal PP	[.05]
$VP \rightarrow Verb$	[.35]
$VP \rightarrow Verb NP$	[.20]
$VP \rightarrow Verb NP PP$	[.10]
$VP \rightarrow Verb PP$	[.15]
$VP \rightarrow Verb NP NP$	[.05]
$VP \rightarrow VP PP$	[.15]
$PP \rightarrow Preposition NP$	[1.0]

Lexicon $Det \to that [.10] \mid a [.30] \mid the [.60]$ Noun \rightarrow book [.10] | flight [.30] *meal* [.15] | *money* [.05] flights [.40] | dinner [.10] *Verb* \rightarrow *book* [.30] | *include* [.30] | *prefer*; [.40] *Pronoun* \rightarrow *I*[.40] | *she*[.05] | *me* [.15] | *you* [.40] *Proper-Noun* \rightarrow *Houston* [.60] NWA [.40] $Aux \rightarrow does [.60] \mid can [40]$ *Preposition* \rightarrow *from* [.30] | *to* [.30] on [.20] | near [.15] through [.05]

4

AMBIGUOUS PARSE WITH PROBABILITIES

 $p(\text{left}) = 2.2 \times 10^{-6}$

 $p(right) = 6.1 \times 10^{-7}$

THE PROBABILITY OF A PARSE TREE

The joint probability of a particular parse T and a sentence S, is defined as the product of the probabilities of all the rules r used to expand each node *n* in the parse tree:

$P(T,S) = \prod_{n \in T} p(r(n))$

REVIEW: CONTEXT-FREE GRAMMARS

Vocabulary of terminal symbols: Σ

Set of non-terminal symbols (aka variables): N

Special start symbols: $S \in N$

Production rules of the form $X \to \alpha$, where $X \in N$ $\alpha \in (N \cup \Sigma)^*$ (in CNF: $\alpha \in N^2 \cup \Sigma$)

PROBABILISTIC CONTEXT-FREE GRAMMARS

- Vocabulary of terminal symbols: Σ
- Set of non-terminal symbols (aka variables): N
- Special start symbols: $S \in N$
- Production rules of the form $X \to \alpha$, each with a politic weight $p(X \to \alpha)$, where $X \in N$ $\alpha \in (N \cup \Sigma)^*$ (in CNF: $\alpha \in N^2 \cup \Sigma$) $\forall X \in N, \Sigma_{\alpha} p(X \to \alpha) = 1$

WHERE TO THE PCFG PROBABILITIES COME FROM?

a) From a tree bank

$$P(\alpha \to \beta \mid \alpha) = \frac{\text{Count}(\alpha \to \beta)}{\sum_{\gamma} \text{Count}(\alpha \to \gamma)}$$

b) From a corpus

- Parse the corpus with your CFG
- Count the rules for each parse
- Normalize
- But wait, most sentences are ambiguous! partial count by the probability of the parse it appears in".

 $Count(\alpha \rightarrow \beta)$ $Count(\alpha)$

- "Keep a separate count for each parse of a sentence and weight each

CKY ALGORITHM: REVIEW

For i = [1 ... n] $C[i-1, i] = \{V \mid V \to w_i\}$ For l = 2 ... n : // widthFor $i = 0 \dots n - l$: // left boundary k = i + l // right boundary For $j = i + 1 \dots k - 1$: // midpoint $C[i,k] = C[i,k] \cup \{V \mid V \rightarrow YZ, Y \in C[i,j], Z \in C[j,k]\}$ Return true if $S \in C[0,n]$

WEIGHTED CKY ALGORITHM

For i = [1 ... n] $C[V, i - 1, i] = p(V \rightarrow w_i)$ For $l = 2 \dots n$: // width of span For $i = 0 \dots n - l$: // left boundary k = i + l // right boundary For $j = i + 1 \dots k - 1$: // midpoint For each binary rule $V \rightarrow Y Z$: Return true if $S \in C[\cdot, 0, n]$

 $C[V, i, k] = \max\{C[V, i, k], C[Y, i, j] \times C[Z, j, k] \times p(V \rightarrow YZ)\}$

CKY EQUATIONS: REVIEW

$$\begin{split} C[i-1,i,w_i] &= \text{TRUE} \\ C[i-1,i,V] &= \begin{cases} \text{TRUE} & \text{if } V \to w_i \\ \text{FALSE} & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,Y,Z \\ V \to YZ \\ & \text{and } C[i,J] \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ V \to YZ \\ & \text{and } C[i,J] \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ V \to YZ \\ & \text{and } C[i,J] \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{if } \exists j,K,Z \\ & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{TRUE} & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{otherwise} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{otherwise} \end{cases} \\ C[i,j,V] &= \end{cases} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{otherwise} \end{cases} \\ C[i,j,V] &= \end{cases} \end{cases} \\ C[i,j,V] &= \end{cases} \end{cases} \\ C[i,j,V] &= \begin{cases} \text{TRUE} & \text{otherwise} \end{array} \\ C[i,j,V] &= \end{cases} \end{cases} \\ C[i$$

- such that [k,Y], j,Z]k < j

WEIGHTED CKY EQUATIONS

base case: $C[X, i-1, i] = p(X \to w_i)$ induction: goal: C[S, 0, n] where $n = |\boldsymbol{w}|$ $p(\tau^*, w_1, w_2, \dots, w_n) = C[S, 0, n]$

$C[X, i, k] = \max_{j, Y, Z} p(X \to Y \ Z) \times C[Y, i, j] \times C(Z, j, k)$

P-CKY ALGORITHM FROM BOOK

function PROBABILISTIC-CKY(words,grammar) returns most probable parse

for $j \leftarrow$ from 1 to LENGTH(words) do for all $\{A \mid A \rightarrow words[j] \in grammar\}$ $table[j-1, j, A] \leftarrow P(A \rightarrow words[j])$ for $i \leftarrow$ from j-2 downto 0 do for $k \leftarrow i+1$ to j-1 do for all $\{A \mid A \rightarrow BC \in grammar,$ and table[i,k,B] > 0 and $table[k, j, C] > 0 \}$ if $(table[i,j,A] < P(A \rightarrow BC) \times table[i,k,B] \times table[k,j,C])$ then $table[i,j,A] \leftarrow P(A \rightarrow BC) \times table[i,k,B] \times table[k,j,C]$ $back[i,j,A] \leftarrow \{k,B,C\}$ return BUILD_TREE(back[1, LENGTH(words), S]), table[1, LENGTH(words), S]

cammar) **returns** most probable parse and its probability

CKY: CHART

	[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
The		[1,2]	[1,3]	[1,4]	[1,5]
	Cat		[2,3]	[2,4]	[2,5]
		Sat		[3,4]	[3,5]
			• • •		[4,5]
				• • •	

,5]

CKY: CHART

	Det: 0.4				
	[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
The		N: 0.02			
me		[1,2]	[1,3]	[1,4]	[1,5]
	Cat		V: 0.05		
	Cat		[2,3]	[2,4]	[2,5]
		Sat		[2 4]	
				[3,4]	[3,5]
			• • •		
					[4,5]
				• • •	

,5]

CKY: CHART

	Det: 0.4	NP: .3*.4	4*.02 = 0.	0024	
	[0,1]	[0,2]	[0,3]	[0,4]	[0,5]
The		N: 0.02			
		[1,2]	[1,3]	[1,4]	[1,5]
	Cat		V: 0.05		
	Cat		[2,3]	[2,4]	[2,5]
		Sat		[3,4]	[3,5]
			• • •		[4,5]
				•••	

,5]

The first big treebank, still widely used

Consists of the Brown Corpus, ATIS (Air Travel Information Service corpus), Switchboard corpus, and a corpus drawn from the Wall Street Journal

Produced at University of Pennsylvania (thus the name)

About 1 million words

About 17,500 distinct rule types

- PTB rules tend to be "flat" —lots of symbols on the RHS
- Many of the rule types only occur in one tree

THE PENN TREEBANK (PTB)


```
( (S
(NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
  (, ,)
 (ADJP
  (NP (CD 61) (NNS years))
  (JJ old))
  (, ,) )
(VP (MD will)
 (VP (VB join)
  (NP (DT the) (NN board))
  (PP-CLR (IN as)
   (NP (DT a) (JJ nonexecutive) (NN director)))
  (NP-TMP (NNP Nov.) (CD 29))))
(..)))
```

TREEBANK TREE EXAMPLE

21877 NP \rightarrow NP PP 20740 NP \rightarrow DT NN 14153 S \rightarrow NP-SBJ VP . 12922 VP \rightarrow TO VP 11881 PP-LOC \rightarrow IN NP 11467 NP-SBJ \rightarrow PRP 11378 NP \rightarrow -NONE-11291 NP \rightarrow NN ... 989 VP \rightarrow VBG S 985 NP-SBJ \rightarrow NN 983 PP-MNR \rightarrow IN NP

983 NP-SBJ \rightarrow DT

969 VP \rightarrow VBN VP

•••

40717 PP \rightarrow IN NP

33803 S \rightarrow NP-SBJ VP

22513 NP-SBJ → -NONE-

100 VP \rightarrow VBD PP-PRD 100 PRN \rightarrow : NP : 100 NP \rightarrow DT JJS 100 NP-CLR \rightarrow NN 99 NP-SBJ-1 \rightarrow DT NNP 98 VP \rightarrow VBN NP PP-DIR 98 VP \rightarrow VBD PP-TMP 98 PP-TMP \rightarrow VBG NP 97 VP \rightarrow VBD ADVP-TMP VP 10 WHNP-1 \rightarrow WRB JJ 10 VP \rightarrow VP CC VP PP-TMP 10 VP \rightarrow VP CC VP ADVP-MNR 10 VP \rightarrow VBZ S , SBAR-ADV 10 VP \rightarrow VBZ S ADVP-TMP


```
( (S
(NP-SBJ
 (NP (NNP Pierre) (NNP Vinken))
  (, ,)
 (ADJP
  (NP (CD 61) (NNS years))
  (JJ old))
  (, ,) )
(VP (MD will)
 (VP (VB join)
  (NP (DT the) (NN board))
  (PP-CLR (IN as)
   (NP (DT a) (JJ nonexecutive) (NN director)))
  (NP-TMP (NNP Nov.) (CD 29))))
(..)))
```

TREEBANK TREE EXAMPLE

21877 NP \rightarrow NP PP 20740 NP \rightarrow DT NN 14153 S \rightarrow NP-SBJ VP . 12922 VP \rightarrow TO VP 11881 PP-LOC \rightarrow IN NP 11467 NP-SBJ \rightarrow PRP 11378 NP \rightarrow -NONE-11291 NP \rightarrow NN ... 989 VP \rightarrow VBG S 985 NP-SBJ \rightarrow NN 983 PP-MNR \rightarrow IN NP

983 NP-SBJ \rightarrow DT

969 VP \rightarrow VBN VP

•••

40717 PP \rightarrow IN NP

33803 S \rightarrow NP-SBJ VP

22513 NP-SBJ → -NONE-

100 VP \rightarrow VBD PP-PRD 100 PRN \rightarrow : NP : 100 NP \rightarrow DT JJS 100 NP-CLR \rightarrow NN 99 NP-SBJ-1 \rightarrow DT NNP 98 VP \rightarrow VBN NP PP-DIR 98 VP \rightarrow VBD PP-TMP 98 PP-TMP \rightarrow VBG NP 97 VP \rightarrow VBD ADVP-TMP VP 10 WHNP-1 \rightarrow WRB JJ 10 VP \rightarrow VP CC VP PP-TMP 10 VP \rightarrow VP CC VP ADVP-MNR 10 VP \rightarrow VBZ S , SBAR-ADV 10 VP \rightarrow VBZ S ADVP-TMP

Rules in the training section: 32,728 (+52,257 lexicon)

RULES IN THE TREEBANK

3,128 (<78%)

> Rules in the dev section: 4,021

RULE DISTRIBUTION (TRAINING SET)

PTB is just one, very important, treebank PTB.

OTHER TREEBANKS

There are many others, though they are often (a) smaller, (b) dependency treebanks. However, there are plenty of constituency/phrase structure tree banks in addition to

Universal dependencies (UD)

- internally consistent set of universal dependency relations - used to construct a large body of treebanks in many languages - useful for cross-lingual training (since the PoS and the dependency labels are the same cross-linguistically)

Not immediately applicable to what we talked about, since it's relatively hard to learn constituency information from dependency trees

Very relevant to training dependency parsers

UNIVERSAL DEPENDENCIES

Constituents in gold-standard trees

PARSEVAL

Constituents in parser output trees

labeled recall: = $\frac{\# \text{ of correct constituents in candidate parse of s}}{\# \text{ of correct constituents in treebank parse of s}}$ **labeled precision:** = $\frac{\# \text{ of correct constituents in candidate parse of }s}{\# \text{ of total constituents in candidate parse of }s}$ cross-brackets: the number of crossed brackets (e.g. the number of constituents for which the treebank has a bracketing such as ((A B) C) but the candidate parse has a bracketing such as (A (B C))).

PARSEVAL

THE F-MEASURE

 $F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$

 $F_1 = \frac{2PR}{P+R}$

NEXT CLASS

Neural Models for Dependency Parsing

