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LOGISTICS

Today: in-class exercise 

Friday: Project Baseline Due 
 
 

Coming up: Project Presentations
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https://cs.gmu.edu/~antonis/course/cs499-spring21/project/

https://cs.gmu.edu/~antonis/course/cs499-spring21/project/


STRUCTURE OF THIS LECTURE
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TWO TYPES OF LINGUISTIC STRUCTURE
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Dependency: focus on relations between words

Phrase Structure: focus on the structure of the sentence

I saw a girl with a telescope

ROOT

I saw a girl with a telescope

PRP VBD DT NN IN DT NN

NP NP
PP

VP
S



WHY DEPENDENCIES?

1. Demonstrate the relationships between words in a straightforward way 
 
 
 
 
 

2. Particularly good for multilinguality, because phrase structure can be hard to define 
in languages with free word order
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det

dobj

det

I saw a girl with a telescope

prep

nsubj

pobj



UNIVERSAL DEPENDENCIES TREEBANK
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Standard format for parse trees in many languages

https://universaldependencies.org/



SEMANTIC AND SYNTACTIC DEPENDENCIES
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Semantic (UD)

Flatter, semantically related words closer, 
more content word heads

Deeper, reflect phrase structure, 
more function word heads

https://surfacesyntacticud.github.io/

Syntactic (SUD)



CROSS-LINGUAL DIFFERENCES IN STRUCTURE
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English: SVO

Hindi: Verb Final

Arabic: Verb Initial



USE CASES OF DEPENDENCIES?

Previously, used for feature engineering in systems (and still useful in some cases) 

Now: more useful for human-facing applications

9

https://twitter.com/gneubig/status/1268238606101032962?lang=en

http://www.apple.com
https://twitter.com/gneubig/status/1268238606101032962?lang=en


EXAMPLE 1: ADDING INDUCTIVE BIAS TO NEURAL MODELS

Bias self attention to follow syntax
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Strubell, Emma, et al. "Linguistically-informed self-attention for semantic role labeling." arXiv preprint 
arXiv:1804.08199 (2018).



EXAMPLE 2: UNDERSTANDING LANGUAGE STRUCTURE

Example of extracting morphological agreement rules using dependency relations
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Chaudhary, Aditi, et al. "Automatic Extraction of Rules Governing Morphological Agreement." EMNLP 2020.



EXAMPLE 3: SEARCHING OVER PARSED CORPORA

Search using "syntactic regex"
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Shlain, Micah, et al. "Syntactic Search by Example." arXiv preprint arXiv:2006.03010 (2020).



EXAMPLE 4: ANALYSIS OF OTHER LINGUISTIC PHENOMENA

Examining power and agency in film scripts
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Sap, Maarten, et al. "Connotation frames of power and agency in modern films." EMNLP 2017.



EXERCISE



DEPENDENCY 
PARSING



PARSING

Predicting linguistic structure from input sentence 

Transition-based models 

step through actions one-by-one until we have output  

like history-based model for POS tagging 

Graph-based models 

calculate probability of each edge/constituent, and perform some sort of dynamic 
programming 

like linear CRF model for POS
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SHIFT-REDUCE 
PARSING



ARC STANDARD SHIFT-REDUCE PARSING (YAMADA & MATSUMOTO 2003, NIVRE 2003)

Process words one-by-one left-to-right 

Two data structures 

Queue: of unprocessed words 

Stack: of partially processed words 

At each point choose 

shift: move one word from queue to stack 

reduce left: top word on stack is head of second word 

reduce right: second word on stack is head of top word 

Learn how to choose each action with a classifier

18



SHIFT REDUCE EXAMPLE
Stack Buffer

I saw a girlROOT

I saw a girlROOT
shift

I saw a girlROOT
shift

I saw a girlROOT

shift

I saw a girlROOT

left

Stack Buffer

I saw a girlROOT

shift

∅

I saw a girlROOT

left

∅

I saw a girlROOT

right

∅

I saw a girlROOT

right

∅



CLASSIFICATION FOR SHIFT-REDUCE
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Given a configuration

I saw a girlROOT

Stack Buffer

Which action do we choose?

shift

I saw a girlROOT ∅
left

I saw a girlROOT

right

I saw a girlROOT



ENCODING STACK CONFIGURATIONS WITH RNNS
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(Slide credits: Chris Dyer)



TRANSITION-BASED PARSING

We can embed words, and can embed tree fragments using syntactic compositon 

The contents of the buffer are just a sequence of embedded words 

which we periodically “shift” from 

The contents of the stack is just a sequence of embedded trees 

which we periodically pop from and push to 

Sequences -> use RNNs to get an encoding!
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State embeddings

(Slide credits: Chris Dyer)



GRAPH-BASED 
PARSING



(FIRST ORDER) GRAPH-BASED DEPENDENCY PARSING

Express sentence as fully connected directed graph 

Score each edge independently 

Find maximal spanning tree
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GRAPH-BASED VS. TRANSITION BASED

Transition-based 

+ Easily condition on infinite tree context (structured prediction) 

- Greedy search algorithm causes short-term mistakes 

Graph-based 

+ Can find exact best global solution via DP algorithm 

- Have to make local independence assumptions
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CHU-LIU-EDMONDS (CHU AND LIU 1965, EDMONDS 1967)

We have a graph and want to find its spanning tree 

Greedily select the best incoming edge to each node (and subtract its score from all 
incoming edges) 

If there are cycles, select a cycle and contract it into a single node 

Recursively call the algorithm on the graph with the contracted node 

Expand the contracted node, deleting an edge appropriately
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CHU-LIU-EDMONDS (1): FIND THE BEST INCOMING
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(Figure Credit: Jurafsky and Martin)



CHU-LIU-EDMONDS (2): SUBTRACT THE MAX FOR EACH
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(Figure Credit: Jurafsky and Martin)



CHU-LIU-EDMONDS (3): CONTRACT A NODE
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(Figure Credit: Jurafsky and Martin)



CHU-LIU-EDMONDS (4): RECURSIVELY CALL ALGORITHM
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(Figure Credit: Jurafsky and Martin)



CHU-LIU-EDMONDS (5): EXPAND NODES AND DELETE EDGE
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(Figure Credit: Jurafsky and Martin)



SEQUENCE MODEL FEATURE EXTRACTORS (KIPPERWASSER AND GOLDBERG 2016)
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BIAFFINE CLASSIFIER (DOZAT AND MANNING 2017)

 
 
 
 
 
 
 
 
Just optimize the likelihood of the parent, no structured training 

This is a local model, with global decoding using MST at the end 

Best results (with careful parameter tuning) on universal dependencies parsing task
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Learn specific representations 
for head/dependent for each word

Calculate score of each arc



MULTILINGUAL 
DEPENDENCY PARSING



DIFFICULTY IN MULTILINGUAL DEPENDENCY PARSING

Syntactic analysis is a particularly hard multilingual task 

It is on the global level, not just word-by-word level 

Syntax varies widely across different languages
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EXAMPLE IMPROVEMENT 1: ORDER-INSENSITIVE ENCODERS

Standard cross-lingual transfer can fail with large word order differences between 
source and target 

Change model structure to be order-insensitive to avoid over-fitting to source
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Ahmad, Wasi Uddin, et al. "On difficulties of cross-lingual transfer with order differences: A case study on dependency parsing." NAACL 2019.



EXAMPLE IMPROVEMENT 2: LINGUISTICALLY INFORMED CONSTRAINTS

Add constraints based on a-priori knowledge of the language structure
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Meng, Tao, Nanyun Peng, and Kai-Wei Chang. "Target language-aware constrained inference for cross-lingual 
dependency parsing." EMNLP 2019.



NEXT CLASS

Also, check this cool pytorch library: PyTorch-Struct 
http://nlp.seas.harvard.edu/pytorch-struct/index.html 

Next class: Lexical Semantics
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http://nlp.seas.harvard.edu/pytorch-struct/index.html

