
Assignment 2 – Language Models and

Embeddings

CS499 - Intro to NLP
Antonis Anastasopoulos

January 2021

Due Date: 2/19/2021 (eod)
Submission instructions: see at the end of the assignment.

Make sure to download the assignment materials from the class page.

1 Language Modeling (7 credits total)

Implement an n-gram count-based language model, and answer all questions
below.

It will be easier for the rest of this exercise if you implement a general class of
models that receives n as a parameter and computes the necessary probabilities
accordingly.

[2 credits] (a) Read in the Reuters train corpus, and report the following un-
smoothed unigram, bigram, and trigram probabilities:

n-gram probability value

free p(free)
market p(market)
language p(language)
free market p(market | free)
market shortage p(shortage | market)
president reagan p(reagan | president)
carter administration p(administration | carter)
net profit p(profit | net)
net loss p(loss | net)
programming language p(language | programming)
endangered language p(language | endangered)
the language of p(of | the language)
the paris accord p(accord | the paris)

1

[1 credit] (b) Add an option to do simple add-k smoothing, so that your
model can handle unknown n-grams. Report the updated probabilities when
using add-1 smoothing for the above n-grams.

[2 credit] (c) Add a function to compute the perplexity of your model over
an unseen dataset. Read in the Reuters test set, and report the perplexity of
n-gram models for n ∈ [2, 6] (using add-one smoothing).

[2 credits] (d) An adversary (named Eve) scrambled the original sentences in
the scrambled.7.txt file. For example, the first sentence in the file is “You
this why do even would ?”, although the original sentence was “Why would you
even do this ?” Use your best-performing language model to find the most likely
un-scrambling of the scrambled sentences.

Hint: a well-formed sentence should have higher probability than an ill-
formed (scrambled) sentence.

Your code should produce the unscrambled version of each sentence in the
scrambled.7.txt file, and write them out, one sentence per line, in the same
order, in a file named unscrambled.7.txt.

In your report, explain how you implemented the unscrambling,
and also report the accuracy you obtain in unscrambling these sen-
tences. The produced unscrambled.7.txt file should be part of your
assignment submission.

You can evaluate how good your model is by running the check unscrambling.py

script. Run as follows:

1 #python3 check_unscrambling.py [your_output] [gold file]

2 python3 check_unscrambling.py unscrambled .7. txt unscrambled -gold .7.

txt

Note: the evaluation script checks your output against the unscrambled-gold.7.txt
file (which has the correct answers). It simply compares each line and checks
whether they are identical or not – hence, it is important you write the sentences
in order. Ideally, you’ll never look at the gold unscrambled sentences.

2 Embeddings and Word Similarity (3 credits
total)

[1 credit] Download the English fasttext embeddings (1 million words, trained
on Wikipedia and other datasets) from here:
https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M-subword.vec.zip

You can simply run:

2

1 wget [above link] .

In Python3, you can read in the embeddings using this piece of code:

1 import io

2

3 def load_vectors(fname):

4 fin = io.open(fname , ’r’, encoding=’utf -8’, newline=’\n’,

errors=’ignore ’)

5 n, d = map(int , fin.readline ().split())

6 data = {}

7 for line in fin:

8 tokens = line.rstrip ().split(’ ’)

9 data[tokens [0]] = map(float , tokens [1:])

10 return data

Implement a function that computes the cosine distance between two vectors.
You may use packages like scipy or similar. Complete the following table with
the cosine similarity of the following word pairs:

word1 word2 cosine distance

horseradish spinach
lingonberry strawberries

pikachu charizard
charizard charmander

math algorithm

[2 credits] Also download the pretrained Glove embeddings from here:
http://nlp.stanford.edu/data/glove.6B.zip.
You can simply run:

1 wget http :// nlp.stanford.edu/data/glove.6B.zip .

After extracting the file, you will have 4 different embeddings, with 50, 100,
200, and 300 dimensions. The file format should be the same as the fasttext
embeddings.

You are given a file analogy.txt, with analogy data. Each line has four
tab-separated columns, each with a single word, as follows:

1 [word 1] [word 2] [word 3] [word 4]

2 pen ballpoint rodent nanosecond

3 bird robin appliance refrigerator

4 ...

The way to interpret this line is as follows: “word1 is to word2 as word3 is to
word4”. For example, “bird is to robin as appliance is to refrigerator”.

Unfortunately, Eve has intervened again and added noise to the file. She
maliciously substituted the fourth word in some lines, like in the example in
line 2 above. Your goal is to identify which lines represent true analogies and
which have been tampered with by Eve. Use your word embeddings (either
fasttext, or any of the glove, or any combination of these) to implement the
intuition behind the word analogy task, and try to identify which lines are
“Correct” and which lines are “Wrong”.

3

Submit a file named analogy-predictions.txt with a single word in each
line: your prediction of whether the corresponding line in the analogy.txt

file is “Correct” or “Wrong”. Your analogy-predictions.txt file should have
exactly 1000 lines. In your report, explain (a) how you modeled the
analogy task, and (b) how you decided on how to make the final pre-
diction. Submitting the file (1 credit) and answering the above two
questions (1 credit) will give you all credits. Additionally, we will
evaluate your outputs and the top-3 performing submissions will re-
ceive 2 extra credits.

Hint 1: You will probably have to decide on a threshold between correct and
wrong.
Hint 2: Creating some “development” examples by hand so that you can evaluate
different versions of your models is probably a good idea. Labeling all 1,000
examples by hand is, on the other hand, not a good use of your time. . .
Hint 3: Eve tampered with more than 20% of the lines, but less than 50% of
them.

[BONUS] Beam-search for unscrambling (3 cred-
its)

One way to do unscrambling for the last part of exercise 1 is to simply try all
possible combinations of words. For example, for the scrambled sentence “is
this suboptimal.” we will compute all five possible unscramblings: “suboptimal
this is.”, “suboptimal is this.”, “this suboptimal is.”, “this is suboptimal.”, “is
suboptimal this.”. Then we will use our LM to score each of these options, and
return the one with the highest probability as our answer.

However, this is clearly, ahem, suboptimal. For a sentence with length 3,
there are 3! = 3 × 2 × 1 options. For a sentence of length 10, there would be
3,628,800 options!

One less accurate but more efficient solution could use approximate search.
In this exercise we will implement two search functions: greedy search and
beam search.

For each of the two exercises below, report the

[1 credit] Greedy search Greedy search is quite simple. We will search for
the most likely unscrambling by generating the answer one word at a time. In
each step, we will pick from our pool of words the most likely one to be the
continuation of what we have generated so far.

Let’s say we have our initial bag of words: {is,this,suboptimal}, and that
(for simplicity) we have a bigram model. Before we start our search, the only
history we have is the beginning of sentence symbol h = 〈s〉. Our process will
be as follows:

1. pool: {is,this,suboptimal}, h = 〈s〉

4

Get the probabilities of all possible continuations, using the bigram prob-
abilities p(is|〈s〉), p(this|〈s〉), and p(suboptimal|〈s〉).
Pick the highest one (let’s say is the one with “this”) and update our pool
and history.

2. pool: {is,suboptimal}, h = 〈s〉 this
Get the probabilities of all possible continuations, using the bigram prob-
abilities p(is|this) and p(suboptimal|this).
Pick the highest one and update our pool and history.

3. Continue until the pool is empty, and return the history.

Beam search [2 credits] Greedy search is prone to errors, because it cannot
recover from any errors it might make in the beginning of the sentence. One
solution is to use beam-search, a search algorithm very commonly used in NLP.
The basic idea is that again we create the output one word at a time, but we
keep multiple possible “paths” that we will keep track of.1 The implementation
is based on the Viterbi algorithm that we will introduce in future classes, but
basically it works as follows.

Pseudocode:

1 Start: CURRENT.STATES := initial.state

2 while(not finished(CURRENT.STATES)) do

3 CANDIDATE.STATES := EXPAND(CURRENT.STATES)

4 SCORE(CANDIDATE.STATES)

5 CURRENT.STATES := PRUNE(CANDIDATE.STATES)

For simplicity, we will do beam search with k = 2 beams for the same
example as above:

• Beam step 0

– Again, the only history we have is the beginning of sentence symbol
h = 〈s〉. Our initial (and current) state will then be just CURRENT =
{〈s〉}. Note that our current state has length 1.

• Beam step 1

– Now, we will expand our current state to get all possible continua-
tions. Our candidate states will be:
CANDIDATES = {〈s〉is, 〈s〉this, 〈s〉suboptimal}.

– We score each of them,2 and keep track of the associated scores.
To do that, let’s turn our CANDIDATES set to be a set of tuples:
CANDIDATES = {(〈s〉 is, 0.6), (〈s〉 this, 0.3), (〈s〉 suboptimal, 0.1)}.

– Now we will prune the candidate states and keep only the top-k ones,
and set them to be our CURRENT states. So, our current states now
are: CURRENT = {(〈s〉 is, 0.6), (〈s〉 this, 0.3)}.

1Notice that greedy search is simply a special case of beam search, where we use only k = 1
beam – a single possible path.

2the example uses dummy scores

5

• Beam step 2

– Again, we will expand our current states (all of them!) to get all pos-
sible continuations. Instead of scoring each candidate from scratch,
we can simply multiply the score of the current state with the score
of the new bigram we add. Our new candidate states will be:
CANDIDATES = {(〈s〉 is this, 0.3), (〈s〉 is suboptimal, 0.1),
(〈s〉 this is, 0.35), (〈s〉 this suboptimal, 0.05)}.

– Again we prune the candidate states and keep only the top-k ones,
and set them to be our CURRENT states. So, our current states
now are: CURRENT = {(〈s〉 this is, 0.35), (〈s〉 is this, 0.3)}.

• Beam step 3

– Again, we will expand our current states (all of them!) to get all
possible continuations. We only have one word left in our pool of
words-to-use, so our job is simple. The candidates will be
CANDIDATES = {(〈s〉 this is suboptimal, 0.18), (〈s〉 is this suboptimal, 0.12)}.

• We have finished searching,3 so we now just return the candidate with the
highest score.

In your report, apply your unscrambling method to the sentences of the
scrambled.20.txt file, and compare against the correct unscrambled-gold.20.txt
files. Provide the outputs of your unscrambling method as well as your accu-
racy. Discuss the following: how does greedy search compare to beam search in
terms of accuracy? how about in terms of computation time?

[Bonus Bonus] The best performing submission for this exercise
will receive an additional +2 credits.

Submission Instructions

This assignment must be done individually. Discussing the assignment on the
class forum is absolutely ok – posting the solutions is not. If you use someone
else’s code (e.g. taken from a book or a website), make sure to properly cite it
in your report.

Please submit all of the following in a gzipped tar archive (.tgz or .tar.gz; not
.zip or .rar) via Blackboard. If you’re making a full submission, please name
your file gmuid-hw2.tgz (for example, the instructor’s submission would be
antonis-hw2.tgz). If you’re making a partial submission, please name your file
gmuid-hw2-part.tgz where part is the part (1, 2, or 3) that you’re submitting.
Make sure that your .tgz file expands into a self-contained folder with your
gmuid in it.

Your submission should contain:

3In normal unconstrained generation with beam search, we would iterate until all beam
candidates produce an end-of-sentence symbol ¡/s¿, but here we only care about using the
words that were scrambled.

6

• A PDF file (not .doc or .docx) with your responses to the instruction-
s/questions above. The report should include your name and gmuid, and
it should be self-sufficient (as in, we shouldn’t have to look elsewhere to
grade you). If your name or an answer does not appear in the report, you
will receive 0 credits for that part.

• All of the code that you wrote.

• A brief README file with instructions on how to build/run your code.
We will run the code and check whether it produces all required outputs
and if these outputs match the results in your report.

7

	Language Modeling (7 credits total)
	Embeddings and Word Similarity (3 credits total)

