
Assignment 4 – Parsing with PCFGs

CS499 - Intro to NLP
Antonis Anastasopoulos

February 2021

Due Date: 4/2/2021 (eod)
Submission instructions: see at the end of the assignment.

Make sure to download the assignment materials from the class page.

Intro

In this assignment you will build and improve a simple parser trained from the
ATIS portion of the Penn Treebank. ATIS (Air Traffic Information System)
portion consists of short queries and commands spoken by users of a fake robot
travel agent.

Setup Download the assignment materials from the class page. It contains
the following files:

• train.trees: training data
• dev.trees: development data (trees)
• dev.strings: development data (strings)
• test.trees: test data (trees): don’t peak!
• test.strings: test data (strings): don’t peak!
• preprocess.py: preprocessor
• unknown.py: replaces one-count words with 〈unk〉
• postprocess.py: postprocessor
• evalb.py: compute label precision/recall

Try the following:

1. Run train.trees through preprocess.py and save the output to train.trees.pre.
This script makes the trees strictly binary branching. When it binarizes,
it inserts nodes with labels of the form X*, and when it removes unary
nodes, it fuses labels so they look like X Y.

2. Run train.trees.pre through postprocess.py and verify that the out-
put is identical to the original train.trees. This script reverses all the
modifications made by preprocess.py.

1



3. Run train.trees.pre through unknown.py and save the output to train.trees.pre.unk.
This script replaces all words that occurred only once with the special
symbol 〈unk〉.

You may write code in any language you choose. You are free to use any
of the Python code provided when you program your own solutions to this
assignment. (In particular, the module tree.py has useful code for handling
trees.)

1 Training (3 credits total)

First, we will learn a probabilistic CFG from trees, and store it in the following
format:

1 NP -> DT NN # 0.5

2 NP -> DT NNS # 0.5

3 DT -> the # 1.0

4 NN -> boy # 0.5

5 NN -> girl # 0.5

6 NNS -> boys # 0.5

7 NNS -> girls # 0.5

[1 credit] (a) Write code to read in trees and to count all the rules used in
each tree. Run your code on train.trees.pre.unk. How many unique rules
are there? What are the top five most frequent rules, and how many times did
each occur?

[2 credits] (b) Write code to compute the conditional probability of each rule
and print the grammar out in the above format. What are the top five highest-
probability rules, and what are their probabilities?

To submit: Code that implements the above two items under a directory
named “part1”. Make sure to answer all questions in your PDF report.

2 Parsing (7 credits total)

[3 credits] (a) Now write a CKY parser that takes your grammar and a sen-
tence as input, and outputs the highest-probability parse. If you can’t find any
parse, output a blank line. Don’t forget to replace unknown words with 〈unk〉.
Don’t forget to use log-probabilities to avoid underflow.

[1 credit] (b) Run your parser on all sentences in dev.strings and save the
output to dev.parses. In your report, show the output of your parser on the
first five lines of dev.strings, along with their log-probabilities (base 10).

[1 credit] (c) Show a plot of parsing time (y axis) versus sentence length
(x axis). Use a log-log scale. Estimate the value of k for which y ≈ cxk (you

2



can do a least-squares fit or just eyeball it). Is it close to 3, and why or why not?

[1 credit] (d) Run your parser output through postprocess.py and save the
output to dev.parses.post. Evaluate your parser output against the correct
trees in dev.trees using the command:

1 python evalb.py dev.parses.post dev.trees

In your report, show the output of this script, including your F1 score, which
should be at least 88%.

[1 credit] (e) Run your parser on test.strings and save the output to
text.parses. In your report, show the output of your parser on the first 3
lines of test.strings, along with their log-probabilities (base 10). Then, run
the output through postprocess.py and save the output to test.parses.post.
Include this file (with the correct name), as part of your submission. We will
evaluate the output of your model on the test file. The best-performing models
will receive one (1) bonus credit.

To submit: Code that implements the above items under a directory named
“part2”. Make sure to answer all questions in your PDF report, and include the
dev.parses, dev.parses.post, test.parses, and test.parses.post output
files.

Submission Instructions

This assignment must be done individually. Discussing the assignment on the
class forum is absolutely ok – posting the solutions is not. If you use someone
else’s code (e.g. taken from a book or a website), make sure to properly cite it
in your report.

Please submit all of the following in a gzipped tar archive (.tgz or .tar.gz;
not .zip or .rar) via Blackboard. If you’re making a full submission, please
name your file gmuid-hw4.tgz (for example, the instructor’s submission would
be antonis-hw4.tgz). If you’re making a partial submission, please name your
file gmuid-hw4-part.tgz where part is the part (1, 2, 3, or 4) that you’re
submitting. Make sure that your .tgz file expands into a self-contained
folder with your gmuid in it, e.g. to antonis-hw4 or something like
that.

Your submission should contain:

• A PDF file (not .doc or .docx) with your responses to the instruction-
s/questions above. The report should include your name and gmuid, and
it should be self-sufficient (as in, we shouldn’t have to look elsewhere to
grade you). If your name or an answer does not appear in the report, you
will receive 0 credits for that part.

• All of the code that you wrote.

3



• A brief README file with instructions on how to build/run your code.
We will run the code and check whether it produces all required outputs
and if these outputs match the results in your report.

4


	Training (3 credits total)
	Parsing (7 credits total)

