
CS695-002 Special Topics in NLP

Language Modeling,
Smoothing, and Recurrent

Neural Networks
Antonis Anastasopoulos

https://cs.gmu.edu/~antonis/course/cs695-fall20/

Slides are taken from Graham Neubig’s CMU NN4NLP course

https://cs.gmu.edu/~antonis/course/cs695-fall20/
https://cs.gmu.edu/~antonis/course/cs695-fall20/
http://www.phontron.com/class/nn4nlp2020/
http://www.phontron.com/class/nn4nlp2020/

Are These Sentences OK?
• Jane went to the store.

• store to Jane went the.

• Jane went store.

• Jane goed to the store.

• The store went to Jane.

• The food truck went to Jane.

Calculating the Probability of
a Sentence

P(X) =
n

∏
i=1

P(xi)

Jane went to the store .

Calculating the Probability of
a Sentence

P(X) =
n

∏
i=1

P(xi)

Jane went to the store .

Unigram

Calculating the Probability of
a Sentence

P(X) =
n

∏
i=1

P(xi)

Jane went to the store .

Unigram

P(Jane went to the store) = P(Jane) × P(went) × P(to) ×
P(the) × P(store) × P(.) .

Calculating the Probability of
a Sentence

P(X) =
n

∏
i=1

P(xi)

Jane went to the store .

Unigram

P(Jane went to the store) = P(Jane) × P(went) × P(to) ×
P(the) × P(store) × P(.) .

But word order and context matters!

Calculating the Probability of
a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

Calculating the Probability of
a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

P(Jane went to the store) = P(Jane | < s >) × P(went |Jane) ×
P(to |went) × P(the | to) ×
P(store | the) × P(. |store)
P(< /s > | .)

Calculating the Probability of
a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

P (xi | x1, . . . , xi�1)
The big problem: How do we predict

?!?!

Count-based Language
Models

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

A mouse ate some cheese .
The mouse ran under a mat .

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

p(chased |dog) = ? p(cat | the) = ? p(the | < s >) = ?

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

A mouse ate some cheese .
The mouse ran under a mat .

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

p(chased |dog) =
1
1

= 1 p(cat | the) =
1
4

= 0.25 p(the |<s>) = 0.5

A mouse ate some cheese .
The mouse ran under a mat .

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

p(A cat chased the mouse .) = ?

A mouse ate some cheese .
The mouse ran under a mat .

Count-based Language
Models

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

p(A cat chased the mouse .) =
p(<s> |A) ×
p(cat |a) ×
p(chased |cat) ×
p(the |chased) ×
p(mouse | the) ×
p(. |mouse)

A mouse ate some cheese .
The mouse ran under a mat .

Count-based Language
Models

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

p(A cat chased the mouse .) =
p(<s> |A) ×
p(cat |a) ×
p(chased |cat) ×
p(the |chased) ×
p(mouse | the) ×
p(. |mouse)

A mouse ate some cheese .
The mouse ran under a mat .

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

• Add smoothing to deal with zero counts:

p(xi |xi−n+1:i−1) =
c(xi−n+1:i) + α

c(xi−n+1:i−1) + α |V |

Count-based Language
Models

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

A mouse ate some cheese .
The mouse ran under a mat .

|V | = |{the, a, cat, sat, . . . } | = 15 α = 1

Count-based Language
Models

Corpus:
 The cat sat on the mat .
 A dog chased the cat .

A mouse ate some cheese .
The mouse ran under a mat .

p(A cat chased the mouse .) =
p(<s> ||A) ×
p(cat |a) ×
p(chased |cat) ×
p(the |chased) ×
p(mouse | the) ×
p(. |mouse)

|V | = |{the, a, cat, sat, . . . } | = 15 α = 1

Count-based Language
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

• Add smoothing to deal with zero counts:

P(xi |xi−n+1:i−1) =
c(xi−n+1:i) + α

c(xi−n+1:i−1) + α |V |

• Another way to smooth: skip some words
P (xi | xi�n+1, . . . , xi�1) =�PML(xi | xi�n+1, . . . , xi�1)

+ (1� �)P (xi | x1�n+2, . . . , xi�1)

Evaluation
• Log-likelihood: 

LL(Etest) =
X

E2Etest

logP (E)

• Log-likelihood: 

• Per-word Log Likelihood: 

Evaluation
LL(Etest) =

X

E2Etest

logP (E)

WLL(Etest) =
1P

E2Etest
|E|

X

E2Etest

logP (E)

• Log-likelihood: 

• Per-word Log Likelihood: 

• Per-word (Cross) Entropy: 

Evaluation
LL(Etest) =

X

E2Etest

logP (E)

WLL(Etest) =
1P

E2Etest
|E|

X

E2Etest

logP (E)

H(Etest) =
1P

E2Etest
|E|

X

E2Etest

� log2 P (E)

Evaluation
• Log-likelihood: 

• Per-word Log Likelihood: 

• Per-word (Cross) Entropy: 

• Perplexity: 

LL(Etest) =
X

E2Etest

logP (E)

WLL(Etest) =
1P

E2Etest
|E|

X

E2Etest

logP (E)

H(Etest) =
1P

E2Etest
|E|

X

E2Etest

� log2 P (E)

ppl(Etest) = 2H(Etest) = e�WLL(Etest)

Evaluation

https://sjmielke.com/comparing-perplexities.htm

What does “My LM achieves a perplexity of 23” mean?

https://sjmielke.com/comparing-perplexities.htm
https://sjmielke.com/comparing-perplexities.htm

What Can we Do w/ LMs?
• Score sentences:

Jane went to the store . → high
store to Jane went the . → low

(same as calculating loss for training)

What Can we Do w/ LMs?
• Score sentences:

• Generate sentences:

while didn’t choose end-of-sentence symbol:
 calculate probability
 sample a new word from the probability distribution

Jane went to the store . → high
store to Jane went the . → low

(same as calculating loss for training)

Problems and Solutions?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ solution: class based language models

Problems and Solutions?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ solution: class based language models

Dr. Jane Smith
• Cannot condition on context with intervening words

Dr. Gertrude Smith
→ solution: skip-gram language models

Problems and Solutions?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ solution: class based language models

Dr. Jane Smith
• Cannot condition on context with intervening words

Dr. Gertrude Smith
→ solution: skip-gram language models

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

→ solution: cache, trigger, topic, syntactic models, etc.
for programming class he wanted to buy his own computer

An Alternative:
Featurized Log-Linear Models

An Alternative:
Featurized Models

• Calculate features of the context

• Based on the features, calculate probabilities

• Optimize feature weights using gradient descent,
etc.

Example:
Previous words: “giving a"

Example:
Previous words: “giving a"

a
the
talk
gift
hat
…

Words we’re
predicting

Example:
Previous words: “giving a"

a
the
talk
gift
hat
…

Words we’re
predicting

3.0
2.5
-0.2
0.1
1.2
…

b=

How likely
are they?

Example:
Previous words: “giving a"

a
the
talk
gift
hat
…

Words we’re
predicting

3.0
2.5
-0.2
0.1
1.2
…

b=

How likely
are they?

-6.0
-5.1
0.2
0.1
0.5
…

w1,a=

How likely
are they

given prev.
word is “a”?

Example:
Previous words: “giving a"

a
the
talk
gift
hat
…

Words we’re
predicting

3.0
2.5
-0.2
0.1
1.2
…

b=

How likely
are they?

-6.0
-5.1
0.2
0.1
0.5
…

w1,a=

How likely
are they

given prev.
word is “a”?

-0.2
-0.3
1.0
2.0
-1.2
…

w2,giving=

How likely
are they

given 2nd prev.
word is “giving”?

Example:
Previous words: “giving a"

a
the
talk
gift
hat
…

Words we’re
predicting

3.0
2.5
-0.2
0.1
1.2
…

b=

How likely
are they?

-6.0
-5.1
0.2
0.1
0.5
…

w1,a=

How likely
are they

given prev.
word is “a”?

-0.2
-0.3
1.0
2.0
-1.2
…

w2,giving=

How likely
are they

given 2nd prev.
word is “giving”?

-3.2
-2.9
1.0
2.2
0.6
…

s=

Total
score

Softmax
• Convert scores into probabilities by taking the

exponent and normalizing (softmax)

Softmax
• Convert scores into probabilities by taking the

exponent and normalizing (softmax)

P (xi | xi�1
i�n+1) =

es(xi|xi�1
i�n+1)

P
x̃i
es(x̃i|xi�1

i�n+1)

Softmax
• Convert scores into probabilities by taking the

exponent and normalizing (softmax)

P (xi | xi�1
i�n+1) =

es(xi|xi�1
i�n+1)

P
x̃i
es(x̃i|xi�1

i�n+1)

-3.2
-2.9
1.0
2.2
0.6
…

s=

0.002
0.003
0.329
0.444
0.090

…

p=

A Computation Graph View
giving a

Each vector is size of output vocabulary

A Computation Graph View
giving a

lookup2

A Computation Graph View
giving a

lookup2 lookup1

A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

=

scores

A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

=

scores

softmax

probs

A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

=

scores

softmax

probs

Each vector is size of output vocabulary

A Note: “Lookup”
• Lookup can be viewed as “grabbing” a single

vector from a big matrix of word embeddings

lookup(2)

num. words
vector
size

A Note: “Lookup”
• Lookup can be viewed as “grabbing” a single

vector from a big matrix of word embeddings

lookup(2)

num. words
vector
size

• Similarly, can be viewed as multiplying by a “one-
hot” vector

num. words
vector
size

0
0
1
0
0
…

*

A Note: “Lookup”
• Lookup can be viewed as “grabbing” a single

vector from a big matrix of word embeddings

lookup(2)

num. words
vector
size

• Similarly, can be viewed as multiplying by a “one-
hot” vector

num. words
vector
size

0
0
1
0
0
…

*

• Former tends to be faster

Training a Model
• Reminder: to train, we calculate a “loss

function” (a measure of how bad our predictions
are), and move the parameters to reduce the loss

• The most common loss function for probabilistic
models is “negative log likelihood”

Training a Model
• Reminder: to train, we calculate a “loss

function” (a measure of how bad our predictions
are), and move the parameters to reduce the loss

• The most common loss function for probabilistic
models is “negative log likelihood”

0.002
0.003
0.329
0.444
0.090

…

p=
If element 3

(or zero-indexed, 2)
is the correct answer:

-log 1.112

Parameter Update
• Back propagation allows us to calculate the

derivative of the loss with respect to the parameters
@`

@✓

Parameter Update
• Back propagation allows us to calculate the

derivative of the loss with respect to the parameters
@`

@✓

• Simple stochastic gradient descent optimizes
parameters according to the following rule

✓ ✓ � ↵
@`

@✓

Choosing a Vocabulary

Unknown Words

Unknown Words
• Necessity for UNK words

Unknown Words
• Necessity for UNK words

• We won’t have all the words in the world in training data

Unknown Words
• Necessity for UNK words

• We won’t have all the words in the world in training data

• Larger vocabularies require more memory and
computation time

Unknown Words
• Necessity for UNK words

• We won’t have all the words in the world in training data

• Larger vocabularies require more memory and
computation time

• Common ways:

• Frequency threshold (usually UNK <= 1)

Unknown Words
• Necessity for UNK words

• We won’t have all the words in the world in training data

• Larger vocabularies require more memory and
computation time

• Common ways:

• Frequency threshold (usually UNK <= 1)

• Rank threshold

Unknown Words
A very large number of published documents contain text only. They often look
boring, and they are often written in obscure language, using mile-long
sentences and cryptic technical terms, using one font only, perhaps even without
headings. Such style, or lack of style, might be the one you are strongly expected
to follow when writing eg scientific or technical reports, legal documents, or
administrative papers. It is natural to think that such documents would benefit
from a few illustrative images. (However, just adding illustration might be rather
useless, if the text remains obscure and unstructured.)

Unknown Words
a very large number of published documents contain text only . they often look
boring , and they are often written in obscure language , using mile-long
sentences and cryptic technical terms , using one font only , perhaps even
without headings . such style, or lack of style, might be the one you are strongly
expected to follow when writing eg scientific or technical reports , legal
documents , or administrative papers . it is natural to think that such documents
would benefit from a few illustrative images . (however , just adding illustration
might be rather useless , if the text remains obscure and unstructured .)

truecase + tokenize

Unknown Words
a very large number of published documents contain text only . they often look
boring , and they are often written in obscure language , using mile-long
sentences and cryptic technical terms , using one font only , perhaps even
without headings . such style, or lack of style, might be the one you are strongly
expected to follow when writing eg scientific or technical reports , legal
documents , or administrative papers . it is natural to think that such documents
would benefit from a few illustrative images . (however , just adding illustration
might be rather useless , if the text remains obscure and unstructured .)

Find rare words (e.g. with freq<2)

Unknown Words
a very large number of published documents contain text only . they often look
boring , and they are often written in obscure language , using UNK sentences
and cryptic technical terms , using one font only , perhaps even without headings
. such style, or lack of style, might be the one you are strongly expected to follow
when writing eg scientific or technical reports , legal documents , or UNK
papers . it is natural to think that such documents would benefit from a few
illustrative images . (however , just adding UNK might be rather useless , if the
text remains obscure and UNK .)

Substitute with UNK

Evaluation and Vocabulary
• Important: the vocabulary must be the same over

models you compare

Evaluation and Vocabulary
• Important: the vocabulary must be the same over

models you compare

• Or more accurately, all models must be able to
generate the test set (it’s OK if they can generate
more than the test set, but not less)

• e.g. Comparing a character-based model to a
word-based model is fair, but not vice-versa

What Problems are Handled?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

What Problems are Handled?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ not solved yet 😞

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

What Problems are Handled?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ not solved yet 😞

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

→ solved! 😀

What Problems are Handled?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ not solved yet 😞

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

→ solved! 😀

→ not solved yet 😞

Break
Beyond Linear Models

Linear Models can’t Learn
Feature Combinations

Linear Models can’t Learn
Feature Combinations

farmers eat steak → high

Linear Models can’t Learn
Feature Combinations

farmers eat steak → high
farmers eat hay → low

Linear Models can’t Learn
Feature Combinations

farmers eat steak → high
farmers eat hay → low

cows eat steak → low

Linear Models can’t Learn
Feature Combinations

farmers eat steak → high
farmers eat hay → low

cows eat steak → low
cows eat hay → high

Linear Models can’t Learn
Feature Combinations

• These can’t be expressed by linear features

farmers eat steak → high
farmers eat hay → low

cows eat steak → low
cows eat hay → high

Linear Models can’t Learn
Feature Combinations

• These can’t be expressed by linear features
• What can we do?

• Remember combinations as features (individual
scores for “farmers eat”, “cows eat”)

farmers eat steak → high
farmers eat hay → low

cows eat steak → low
cows eat hay → high

Linear Models can’t Learn
Feature Combinations

• These can’t be expressed by linear features
• What can we do?

• Remember combinations as features (individual
scores for “farmers eat”, “cows eat”)
→ Feature space explosion!

farmers eat steak → high
farmers eat hay → low

cows eat steak → low
cows eat hay → high

Linear Models can’t Learn
Feature Combinations

• These can’t be expressed by linear features
• What can we do?

• Remember combinations as features (individual
scores for “farmers eat”, “cows eat”)
→ Feature space explosion!

• Neural nets

farmers eat steak → high
farmers eat hay → low

cows eat steak → low
cows eat hay → high

Neural Language Models
• (See Bengio et al. 2004)

Neural Language Models
• (See Bengio et al. 2004) giving a

lookup

Neural Language Models
• (See Bengio et al. 2004) giving a

lookup lookup

Neural Language Models
• (See Bengio et al. 2004) giving a

lookup lookup

tanh(
 W1*h + b1)

Neural Language Models
• (See Bengio et al. 2004) giving a

lookup lookup

+

bias

=

scores

W

tanh(
 W1*h + b1)

Neural Language Models
• (See Bengio et al. 2004) giving a

lookup lookup

probs

softmax+

bias

=

scores

W

tanh(
 W1*h + b1)

Where is Strength Shared?
giving a

lookup lookup

probs

softmax

tanh(
 W1*h + b1)

+

bias

=

scores

WWord embeddings:
Similar input words
get similar vectors

Where is Strength Shared?
giving a

lookup lookup

probs

softmax

tanh(
 W1*h + b1)

+

bias

=

scores

WWord embeddings:
Similar input words
get similar vectors

Similar output words
get similar rows in

in the softmax matrix

Where is Strength Shared?
giving a

lookup lookup

probs

softmax

tanh(
 W1*h + b1)

+

bias

=

scores

WWord embeddings:
Similar input words
get similar vectors

Similar output words
get similar rows in

in the softmax matrix

Similar contexts get
similar hidden states

• Cannot share strength among similar words
she bought a car

she purchased a car
she bought a bicycle

she purchased a bicycle

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

→ solved! 😀

→ not solved yet 😞

→ solved, and similar contexts as well! 😀

What Problems are Handled?

Tying Input/Output
Embeddings

giving a

pick row pick row

probs

softmax

tanh(
 W1*h + b1)

+

bias

=

scores

W

Tying Input/Output
Embeddings

• We can share parameters
between the input and output
embeddings (Press et al.
2016, inter alia)

giving a

pick row pick row

probs

softmax

tanh(
 W1*h + b1)

+

bias

=

scores

W

Tying Input/Output
Embeddings

• We can share parameters
between the input and output
embeddings (Press et al.
2016, inter alia)

giving a

pick row pick row

probs

softmax

tanh(
 W1*h + b1)

+

bias

=

scores

W

Want to try? Delete the input embeddings, and
instead pick a row from the softmax matrix.

Training Tricks

Shuffling the Training Data
• Stochastic gradient methods update the

parameters a little bit at a time

Shuffling the Training Data
• Stochastic gradient methods update the

parameters a little bit at a time

• What if we have the sentence “I love this
sentence so much!” at the end of the training
data 50 times?

Shuffling the Training Data
• Stochastic gradient methods update the

parameters a little bit at a time

• What if we have the sentence “I love this
sentence so much!” at the end of the training
data 50 times?

• To train correctly, we should randomly shuffle the
order at each time step

Other Optimization Options
• SGD with Momentum: Remember gradients from past

time steps to prevent sudden changes

• Adagrad: Adapt the learning rate to reduce learning
rate for frequently updated parameters (as measured
by the variance of the gradient)

• Adam: Like Adagrad, but keeps a running average of
momentum and gradient variance

• Many others: RMSProp, Adadelta, etc.
(See Ruder 2016 reference for more details)

Early Stopping, Learning
Rate Decay

• Neural nets have tons of parameters: we want to
prevent them from over-fitting

• We can do this by monitoring our performance on
held-out development data and stopping training
when it starts to get worse

• It also sometimes helps to reduce the learning rate
and continue training

Which One to Use?
• Adam is usually fast to converge and stable

• But simple SGD tends to do very will in terms of
generalization (Wilson et al. 2017)

• You should use learning rate decay, (e.g. on Machine
translation results by Denkowski & Neubig 2017)

Dropout
(Srivastava+ 14)

Dropout
(Srivastava+ 14)

• Neural nets have lots of parameters, and are prone
to overfitting

Dropout
(Srivastava+ 14)

• Neural nets have lots of parameters, and are prone
to overfitting

• Dropout: randomly zero-out nodes in the hidden
layer with probability p at training time only

Dropout
(Srivastava+ 14)

• Neural nets have lots of parameters, and are prone
to overfitting

• Dropout: randomly zero-out nodes in the hidden
layer with probability p at training time only

x

x

Dropout
(Srivastava+ 14)

• Neural nets have lots of parameters, and are prone
to overfitting

• Dropout: randomly zero-out nodes in the hidden
layer with probability p at training time only

• Because the number of nodes at training/test is different, scaling is
necessary:
• Standard dropout: scale by p at test time
• Inverted dropout: scale by 1/(1-p) at training time

• An alternative: DropConnect (Wan+ 2013) instead zeros out
weights in the NN

x

x

Efficiency Tricks:
Operation Batching

Efficiency Tricks:
Mini-batching

• On modern hardware 10 operations of size 1 is
much slower than 1 operation of size 10

• Minibatching combines together smaller operations
into one big one

Minibatching

Manual Mini-batching

Manual Mini-batching
• Group together similar operations (e.g. loss calculations for a

single word) and execute them all together

Manual Mini-batching
• Group together similar operations (e.g. loss calculations for a

single word) and execute them all together
• In the case of a feed-forward language model, each word

prediction in a sentence can be batched

Manual Mini-batching
• Group together similar operations (e.g. loss calculations for a single

word) and execute them all together
• In the case of a feed-forward language model, each word

prediction in a sentence can be batched
• For recurrent neural nets, etc., more complicated

Manual Mini-batching
• Group together similar operations (e.g. loss calculations for a

single word) and execute them all together
• In the case of a feed-forward language model, each word

prediction in a sentence can be batched
• For recurrent neural nets, etc., more complicated

• How this works depends on toolkit
• Most toolkits require you to add an extra dimension

representing the batch size

Manual Mini-batching
• Group together similar operations (e.g. loss calculations for a

single word) and execute them all together
• In the case of a feed-forward language model, each word

prediction in a sentence can be batched
• For recurrent neural nets, etc., more complicated

• How this works depends on toolkit
• Most toolkits require you to add an extra dimension

representing the batch size
• DyNet has special minibatch operations for lookup and loss

functions, everything else automatic
• In PyTorch (almost) all operations already automatically

support batches

Mini-batched Code Example

A Case Study:
Regularizing and Optimizing LSTM

Language Models (Merity et al. 2017)

Regularizing and Optimizing LSTM
Language Models (Merity et al. 2017)
• Uses LSTMs as a backbone (discussed later)
• A number of tricks to improve stability and prevent overfitting:

• DropConnect regularization
• SGD w/ averaging triggered when model is close to

convergence
• Dropout on recurrent connections and embeddings
• Weight tying
• Independently tuned embedding and hidden layer sizes
• Regularization of activations of the network

• Strong baseline for language modeling, SOTA at the time
(without special model, just training methods)

Break
Next: Recurrent Neural Networks

NLP and Sequential Data

• NLP is full of sequential data

• Words in sentences

• Characters in words

• Sentences in discourse

• …

Long-distance
Dependencies in Language

• Agreement in number, gender, etc.
He does not have very much confidence in himself.
She does not have very much confidence in herself.

Long-distance
Dependencies in Language

• Agreement in number, gender, etc.

• Selectional preference

He does not have very much confidence in himself.
She does not have very much confidence in herself.

The reign has lasted as long as the life of the queen.
The rain has lasted as long as the life of the clouds.

Can be Complicated!
• What is the referent of “it”?

The trophy would not fit in the brown suitcase because it was too big.

Can be Complicated!
• What is the referent of “it”?

The trophy would not fit in the brown suitcase because it was too big.

Trophy

Can be Complicated!
• What is the referent of “it”?

The trophy would not fit in the brown suitcase because it was too big.

The trophy would not fit in the brown suitcase because it was too small.

Trophy

Can be Complicated!
• What is the referent of “it”?

The trophy would not fit in the brown suitcase because it was too big.

The trophy would not fit in the brown suitcase because it was too small.

(from Winograd Schema Challenge:
http://commonsensereasoning.org/winograd.html)

Trophy

Suitcase

http://commonsensereasoning.org/winograd.html
http://commonsensereasoning.org/winograd.html

Recurrent Neural Networks
(Elman 1990)

• Tools to “remember” information

Recurrent Neural Networks
(Elman 1990)

Feed-forward NN

lookup

transform

predict

context

label

• Tools to “remember” information

Recurrent Neural Networks
(Elman 1990)

Feed-forward NN

lookup

transform

predict

context

label

Recurrent NN

lookup

transform

predict

context

label

• Tools to “remember” information

Unrolling in Time
• What does processing a sequence look like?

I hate this movie

Unrolling in Time
• What does processing a sequence look like?

I hate this movie

Unrolling in Time
• What does processing a sequence look like?

I hate this movie

RNN

Unrolling in Time
• What does processing a sequence look like?

I hate this movie

RNN

predict

label

Unrolling in Time
• What does processing a sequence look like?

I hate this movie

RNN RNN

predict

label

Unrolling in Time
• What does processing a sequence look like?

I hate this movie

RNN RNN

predict

label

predict

label

Unrolling in Time
• What does processing a sequence look like?

I hate this movie

RNN RNN RNN

predict

label

predict

label

predict

label

Unrolling in Time
• What does processing a sequence look like?

I hate this movie

RNN RNN RNN RNN

predict

label

predict

label

predict

label

predict

label

Training RNNs
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

prediction 2 prediction 3 prediction 4

Training RNNs
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

Training RNNs
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

loss 1

Training RNNs
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

loss 1 loss 2

Training RNNs
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

loss 1 loss 2 loss 3 loss 4

Training RNNs
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

loss 1 loss 2 loss 3 loss 4

sum

Training RNNs
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

loss 1 loss 2 loss 3 loss 4

sum total loss

RNN Training
• The unrolled graph is a well-formed (DAG)

computation graph—we can run backprop

RNN Training
• The unrolled graph is a well-formed (DAG)

computation graph—we can run backprop

sum

total loss

RNN Training
• The unrolled graph is a well-formed (DAG)

computation graph—we can run backprop

sum

total loss

RNN Training
• The unrolled graph is a well-formed (DAG)

computation graph—we can run backprop

• Parameters are tied across time, derivatives are
aggregated across all time steps

sum

total loss

RNN Training
• The unrolled graph is a well-formed (DAG)

computation graph—we can run backprop

• Parameters are tied across time, derivatives are
aggregated across all time steps

• This is historically called “backpropagation through
time” (BPTT)

sum

total loss

Parameter Tying
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

loss 1 loss 2 loss 3 loss 4

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

sum total loss

Parameter Tying
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

loss 1 loss 2 loss 3 loss 4

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

sum total loss

Parameters are shared! Derivatives are accumulated.

Applications of RNNs

What Can RNNs Do?

• Represent a sentence

• Read whole sentence, make a prediction

• Represent a context within a sentence

• Read context up until that point

Representing Sentences
I hate this movie

RNN RNN RNN RNN

Representing Sentences
I hate this movie

RNN RNN RNN RNN

predict

prediction

Representing Sentences
I hate this movie

RNN RNN RNN RNN

predict

prediction

• Sentence classification

• Conditioned generation

• Retrieval

Representing Contexts
I hate this movie

RNN RNN RNN RNN

Representing Contexts
I hate this movie

RNN RNN RNN RNN

predict

label

predict

label

predict

label

predict

label

Representing Contexts
I hate this movie

RNN RNN RNN RNN

predict

label

predict

label

predict

label

predict

label

• Tagging

• Language Modeling

• Calculating Representations for Parsing, etc.

e.g. Language Modeling

e.g. Language Modeling
<s>

e.g. Language Modeling

RNN

<s>

predict

I

e.g. Language Modeling
I

RNN

<s>

predict

I

e.g. Language Modeling

RNN

I

RNN

<s>

predict

I

e.g. Language Modeling

RNN

I

predict

hate

RNN

<s>

predict

I

e.g. Language Modeling

RNN

hateI

predict

hate

RNN

<s>

predict

I

e.g. Language Modeling

RNN RNN

hateI

predict

hate

RNN

<s>

predict

I

e.g. Language Modeling

RNN RNN

hateI

predict

hate

predict

this

RNN

<s>

predict

I

e.g. Language Modeling

RNN RNN

thishateI

predict

hate

predict

this

RNN

<s>

predict

I

e.g. Language Modeling

RNN RNN RNN

thishateI

predict

hate

predict

this

RNN

<s>

predict

I

e.g. Language Modeling

RNN RNN RNN

thishateI

predict

hate

predict

this

predict

movie

RNN

<s>

predict

I

e.g. Language Modeling

RNN RNN RNN

moviethishateI

predict

hate

predict

this

predict

movie

RNN

<s>

predict

I

e.g. Language Modeling

RNN RNN RNN RNN

moviethishateI

predict

hate

predict

this

predict

movie

RNN

<s>

predict

I

e.g. Language Modeling

RNN RNN RNN RNN

moviethishateI

predict

hate

predict

this

predict

movie

predict

</s>

RNN

<s>

predict

I

e.g. Language Modeling

RNN RNN RNN RNN

moviethishateI

predict

hate

predict

this

predict

movie

predict

</s>

RNN

<s>

predict

I

• Language modeling is like a tagging task, where
each tag is the next word!

Bi-RNNs
• A simple extension, run the RNN in both directions

I hate this movie

RNN RNN RNN RNN

RNN RNN RNN RNN

Bi-RNNs
• A simple extension, run the RNN in both directions

I hate this movie

RNN RNN RNN RNN

RNN RNN RNN RNN

concat

Bi-RNNs
• A simple extension, run the RNN in both directions

I hate this movie

RNN RNN RNN RNN

RNN RNN RNN RNN

concat

softmax

PRN

Bi-RNNs
• A simple extension, run the RNN in both directions

I hate this movie

RNN RNN RNN RNN

RNN RNN RNN RNN

concat concat

softmax

PRN

softmax

VB

Bi-RNNs
• A simple extension, run the RNN in both directions

I hate this movie

RNN RNN RNN RNN

RNN RNN RNN RNN

concat concat concat

softmax

PRN

softmax

VB

softmax

DET

Bi-RNNs
• A simple extension, run the RNN in both directions

I hate this movie

RNN RNN RNN RNN

RNN RNN RNN RNN

concat concat concat concat

softmax

PRN

softmax

VB

softmax

DET

softmax

NN

Vanishing Gradients

Vanishing Gradient
• Gradients decrease as they get pushed back

Vanishing Gradient
• Gradients decrease as they get pushed back

• Why? “Squashed” by non-linearities or small
weights in matrices.

A Solution:
Long Short-term Memory

(Hochreiter and Schmidhuber 1997)

• Basic idea: make additive connections between
time steps

• Addition does not modify the gradient, no vanishing

• Gates to control the information flow

LSTM Structure

LSTM Structure

LSTM Structure

LSTM Structure

LSTM Structure

LSTM Structure

What can LSTMs Learn? (1)
(Karpathy et al. 2015)

• Additive connections make single nodes surprisingly interpretable

What can LSTMs Learn? (2)
(Shi et al. 2016, Radford et al. 2017)

Count length of sentence Sentiment

Efficiency Tricks

Handling Mini-batching
• Mini-batching makes things much faster!

Handling Mini-batching
• Mini-batching makes things much faster!

• But mini-batching in RNNs is harder than in feed-
forward networks

Handling Mini-batching
• Mini-batching makes things much faster!

• But mini-batching in RNNs is harder than in feed-
forward networks

• Each word depends on the previous word

• Sequences are of various length

Mini-batching Method
this is an example </s>
this is another </s>

Mini-batching Method
this is an example </s>
this is another </s> </s>

Padding

Mini-batching Method
this is an example </s>
this is another </s> </s>

Padding
Loss
Calculation

Mini-batching Method
this is an example </s>
this is another </s> </s>

Padding
Loss
Calculation

Mask

1
1� 1

1� 1
1� 1

1� 1
0�

Mini-batching Method
this is an example </s>
this is another </s> </s>

Padding
Loss
Calculation

Mask

1
1� 1

1� 1
1� 1

1� 1
0�

Mini-batching Method
this is an example </s>
this is another </s> </s>

Padding
Loss
Calculation

Mask

1
1� 1

1� 1
1� 1

1� 1
0�

Take Sum

Bucketing/Sorting
• If we use sentences of different lengths, too much

padding and sorting can result in decreased
performance

Bucketing/Sorting
• If we use sentences of different lengths, too much

padding and sorting can result in decreased
performance

• To remedy this: sort sentences so similarly-
lengthed sentences are in the same batch

RNN Variants

RNN Variants
(Greffen et al. 2015)

• Gated Recurrent Units
(GRU; Cho et al 2014)

RNN Variants
(Greffen et al. 2015)

• Gated Recurrent Units
(GRU; Cho et al 2014)

•

Additive or Non-linear

RNN Variants
(Greffen et al. 2015)

• Gated Recurrent Units
(GRU; Cho et al 2014)

•

Additive or Non-linear

• Note: GRUs cannot do things like simply count

RNN Variants
(Greffen et al. 2015)

• Gated Recurrent Units
(GRU; Cho et al 2014)

• Many different types of
architectures tested for
LSTMs (Greffen et al.
2015)

RNN Variants
(Greffen et al. 2015)

• Gated Recurrent Units
(GRU; Cho et al 2014)

• Many different types of
architectures tested for
LSTMs (Greffen et al.
2015)

• Conclusion: basic
LSTM quite good,
other variants (e.g.
coupled input/forget
gates) reasonable

Handling Long Sequences

Handling Long Sequences

• Sometimes we would like to capture long-term
dependencies over long sequences

• e.g. words in full documents

• However, this may not fit on (GPU) memory

Truncated BPTT
• Backprop over shorter segments, initialize w/ the

state from the previous segment
I hate this movie

RNN RNN RNN RNN

It is so bad

RNN RNN RNN RNN

state only, no backprop

1st Pass

2nd Pass

Questions?
(see extra slides)

Simple Implementation of
RNNs (in DyNet)

• Based on “*Builder” class (*=SimpleRNN/LSTM)

LSTM (layers=1, input=64, hidden=128, model)
RNN = dy.SimpleRNNBuilder(1, 64, 128, model)

• Add parameters to model (once):

• Add parameters to CG and get initial state (per sentence):
s = RNN.initial_state()

• Update state and access (per input word/character):
s = s.add_input(x_t)
h_t = s.output()

RNNLM Example:
Parameter Initialization

Lookup parameters for word embeddings
WORDS_LOOKUP = model.add_lookup_parameters((nwords, 64))

Word-level RNN (layers=1, input=64, hidden=128, model)
RNN = dy.SimpleRNNBuilder(1, 64, 128, model)

Softmax weights/biases on top of RNN outputs
W_sm = model.add_parameters((nwords, 128))
b_sm = model.add_parameters(nwords)

RNNLM Example:
Sentence Initialization

Build the language model graph
def calc_lm_loss(wids):
 dy.renew_cg()

 # parameters -> expressions
 W_exp = dy.parameter(W_sm)
 b_exp = dy.parameter(b_sm)

 # add parameters to CG and get state
 f_init = RNN.initial_state()

 # get the word vectors for each word ID
 wembs = [WORDS_LOOKUP[wid] for wid in wids]

 # Start the rnn by inputting "<s>"
 s = f_init.add_input(wembs[-1])

…

RNNLM Example:
Loss Calculation and State Update

 # process each word ID and embedding
 losses = []
 for wid, we in zip(wids, wembs):

 # calculate and save the softmax loss
 score = W_exp * s.output() + b_exp
 loss = dy.pickneglogsoftmax(score, wid)
 losses.append(loss)

 # update the RNN state with the input
 s = s.add_input(we)

 # return the sum of all losses
 return dy.esum(losses)

…

Code Examples
sentiment-rnn.py

