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Are These Sentences OK?
• Jane went to the store. 

• store to Jane went the. 

• Jane went store. 

• Jane goed to the store. 

• The store went to Jane. 

• The food truck went to Jane.
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Calculating the Probability of 
a Sentence

P(X) =
n

∏
i=1

P(xi)

Jane went to the store .

Unigram

P(Jane went to the store) = P(Jane) × P(went) × P(to) ×
P(the) × P(store) × P( . ) .

But word order and context matters!
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Next Word Context
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Calculating the Probability of 
a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

P (xi | x1, . . . , xi�1)
The big problem: How do we predict

?!?!
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Count-based Language 
Models

• Count up the frequency and divide:

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

• Add smoothing to deal with zero counts:

P(xi |xi−n+1:i−1) =
c(xi−n+1:i) + α

c(xi−n+1:i−1) + α |V |

• Another way to smooth: skip some words
P (xi | xi�n+1, . . . , xi�1) =�PML(xi | xi�n+1, . . . , xi�1)

+ (1� �)P (xi | x1�n+2, . . . , xi�1)
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Evaluation
• Log-likelihood: 

• Per-word Log Likelihood: 

• Per-word (Cross) Entropy: 

• Perplexity: 

LL(Etest) =
X

E2Etest

logP (E)

WLL(Etest) =
1P

E2Etest
|E|

X

E2Etest

logP (E)

H(Etest) =
1P

E2Etest
|E|

X

E2Etest

� log2 P (E)

ppl(Etest) = 2H(Etest) = e�WLL(Etest)



Evaluation

https://sjmielke.com/comparing-perplexities.htm

What does “My LM achieves a perplexity of 23” mean?

https://sjmielke.com/comparing-perplexities.htm
https://sjmielke.com/comparing-perplexities.htm
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What Can we Do w/ LMs?
• Score sentences:

• Generate sentences:

while didn’t choose end-of-sentence symbol: 
   calculate probability 
   sample a new word from the probability distribution

Jane went to the store . → high 
store to Jane went the . → low

(same as calculating loss for training)
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Problems and Solutions?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ solution: class based language models

Dr. Jane Smith
• Cannot condition on context with intervening words

Dr. Gertrude Smith
→ solution: skip-gram language models

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

→ solution: cache, trigger, topic, syntactic models, etc.
for programming class he wanted to buy his own computer
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An Alternative: 
Featurized Models

• Calculate features of the context 

• Based on the features, calculate probabilities 

• Optimize feature weights using gradient descent, 
etc.
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Example:
Previous words: “giving a"

a 
the 
talk 
gift 
hat 
…

Words we’re 
predicting

3.0 
2.5 
-0.2 
0.1 
1.2 
…

b=

How likely 
are they?

-6.0 
-5.1 
0.2 
0.1 
0.5 
…

w1,a=

How likely 
are they 

given prev. 
word is “a”?

-0.2 
-0.3 
1.0 
2.0 
-1.2 
…

w2,giving=

How likely 
are they 

given 2nd prev. 
word is “giving”?

-3.2 
-2.9 
1.0 
2.2 
0.6 
…

s=

Total 
score
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Softmax
• Convert scores into probabilities by taking the 

exponent and normalizing (softmax)

P (xi | xi�1
i�n+1) =

es(xi|xi�1
i�n+1)

P
x̃i
es(x̃i|xi�1

i�n+1)

-3.2 
-2.9 
1.0 
2.2 
0.6 
…

s=

0.002 
0.003 
0.329 
0.444 
0.090 

…

p=
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A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

=

scores

softmax

probs

Each vector is size of output vocabulary
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A Note: “Lookup”
• Lookup can be viewed as “grabbing” a single 

vector from a big matrix of word embeddings

lookup(2)

num. words
vector 
size

• Similarly, can be viewed as multiplying by a “one-
hot” vector

num. words
vector 
size

0 
0 
1
0 
0 
…

*

• Former tends to be faster
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models is “negative log likelihood”



Training a Model
• Reminder: to train, we calculate a “loss 

function” (a measure of how bad our predictions 
are), and move the parameters to reduce the loss 

• The most common loss function for probabilistic 
models is “negative log likelihood”

0.002 
0.003 
0.329 
0.444 
0.090 

…

p=
If element 3  

(or zero-indexed, 2) 
is the correct answer:

-log 1.112
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derivative of the loss with respect to the parameters
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Parameter Update
• Back propagation allows us to calculate the 

derivative of the loss with respect to the parameters
@`

@✓

• Simple stochastic gradient descent optimizes 
parameters according to the following rule

✓  ✓ � ↵
@`

@✓
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Unknown Words
• Necessity for UNK words 

• We won’t have all the words in the world in training data 

• Larger vocabularies require more memory and 
computation time 

• Common ways: 

• Frequency threshold (usually UNK <= 1) 

• Rank threshold
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sentences and cryptic technical terms, using one font only, perhaps even without 
headings. Such style, or lack of style, might be the one you are strongly expected 
to follow when writing eg scientific or technical reports, legal documents, or 
administrative papers. It is natural to think that such documents would benefit 
from a few illustrative images. (However, just adding illustration might be rather 
useless, if the text remains obscure and unstructured.)
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Find rare words (e.g. with freq<2)



Unknown Words
a very large number of published documents contain text only . they often look 
boring , and they are often written in obscure language , using UNK sentences 
and cryptic technical terms , using one font only , perhaps even without headings 
. such style, or lack of style, might be the one you are strongly expected to follow 
when writing eg scientific or technical reports , legal documents , or UNK 
papers . it is natural to think that such documents would benefit from a few 
illustrative images . ( however , just adding UNK might be rather useless , if the 
text remains obscure and UNK . )

Substitute with UNK
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Evaluation and Vocabulary
• Important: the vocabulary must be the same over 

models you compare 

• Or more accurately, all models must be able to 
generate the test set (it’s OK if they can generate 
more than the test set, but not less) 

• e.g. Comparing a character-based model to a 
word-based model is fair, but not vice-versa
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Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer



What Problems are Handled?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ not solved yet 😞

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer



What Problems are Handled?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ not solved yet 😞

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

→ solved! 😀



What Problems are Handled?
• Cannot share strength among similar words
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→ not solved yet 😞



Break 
Beyond Linear Models
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Linear Models can’t Learn 
Feature Combinations

• These can’t be expressed by linear features 
• What can we do? 

• Remember combinations as features (individual 
scores for “farmers eat”, “cows eat”) 
→ Feature space explosion! 

• Neural nets

farmers eat steak → high
farmers eat hay → low

cows eat steak → low
cows eat hay → high
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Where is Strength Shared?
giving a

lookup lookup

probs

softmax

tanh( 
  W1*h + b1)

+

bias

=

scores

WWord embeddings: 
Similar input words 
get similar vectors

Similar output words 
get similar rows in 

in the softmax matrix

Similar contexts get 
similar hidden states



• Cannot share strength among similar words
she bought a car

she purchased a car
she bought a bicycle

she purchased a bicycle

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

→ solved! 😀

→ not solved yet 😞

→ solved, and similar contexts as well! 😀

What Problems are Handled?
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Tying Input/Output 
Embeddings

• We can share parameters 
between the input and output 
embeddings (Press et al. 
2016, inter alia)
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Tying Input/Output 
Embeddings

• We can share parameters 
between the input and output 
embeddings (Press et al. 
2016, inter alia)

giving a

pick row pick row

probs

softmax

tanh( 
  W1*h + b1)

+

bias

=

scores

W

Want to try? Delete the input embeddings, and 
instead pick a row from the softmax matrix.



Training Tricks
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Shuffling the Training Data
• Stochastic gradient methods update the 

parameters a little bit at a time 

• What if we have the sentence “I love this 
sentence so much!” at the end of the training 
data 50 times? 

• To train correctly, we should randomly shuffle the 
order at each time step



Other Optimization Options
• SGD with Momentum: Remember gradients from past 

time steps to prevent sudden changes 

• Adagrad: Adapt the learning rate to reduce learning 
rate for frequently updated parameters (as measured 
by the variance of the gradient) 

• Adam: Like Adagrad, but keeps a running average of 
momentum and gradient variance 

• Many others: RMSProp, Adadelta, etc. 
(See Ruder 2016 reference for more details)



Early Stopping, Learning 
Rate Decay

• Neural nets have tons of parameters: we want to 
prevent them from over-fitting 

• We can do this by monitoring our performance on 
held-out development data and stopping training 
when it starts to get worse 

• It also sometimes helps to reduce the learning rate 
and continue training



Which One to Use?
• Adam is usually fast to converge and stable 

• But simple SGD tends to do very will in terms of 
generalization (Wilson et al. 2017) 

• You should use learning rate decay, (e.g. on Machine 
translation results by Denkowski & Neubig 2017)
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Dropout 
(Srivastava+ 14)

• Neural nets have lots of parameters, and are prone 
to overfitting 

• Dropout: randomly zero-out nodes in the hidden 
layer with probability p at training time only

• Because the number of nodes at training/test is different, scaling is 
necessary: 
• Standard dropout: scale by p at test time 
• Inverted dropout: scale by 1/(1-p) at training time 

• An alternative: DropConnect (Wan+ 2013) instead zeros out 
weights in the NN

x

x
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Efficiency Tricks: 
Mini-batching

• On modern hardware 10 operations of size 1 is 
much slower than 1 operation of size 10 

• Minibatching combines together smaller operations 
into one big one



Minibatching
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Manual Mini-batching
• Group together similar operations (e.g. loss calculations for a 

single word) and execute them all together 
• In the case of a feed-forward language model, each word 

prediction in a sentence can be batched 
• For recurrent neural nets, etc., more complicated 

• How this works depends on toolkit 
• Most toolkits require you to add an extra dimension 

representing the batch size 
• DyNet has special minibatch operations for lookup and loss 

functions, everything else automatic 
• In PyTorch (almost) all operations already automatically 

support batches



Mini-batched Code Example



A Case Study: 
Regularizing and Optimizing LSTM 

Language Models (Merity et al. 2017)



Regularizing and Optimizing LSTM 
Language Models (Merity et al. 2017)
• Uses LSTMs as a backbone (discussed later) 
• A number of tricks to improve stability and prevent overfitting: 

• DropConnect regularization 
• SGD w/ averaging triggered when model is close to 

convergence 
• Dropout on recurrent connections and embeddings 
• Weight tying 
• Independently tuned embedding and hidden layer sizes 
• Regularization of activations of the network 

• Strong baseline for language modeling, SOTA at the time 
(without special model, just training methods)



Break 
Next: Recurrent Neural Networks



NLP and Sequential Data

• NLP is full of sequential data 

• Words in sentences 

• Characters in words 

• Sentences in discourse 

• …



Long-distance 
Dependencies in Language

• Agreement in number, gender, etc.
He does not have very much confidence in himself. 
She does not have very much confidence in herself.



Long-distance 
Dependencies in Language

• Agreement in number, gender, etc.

• Selectional preference

He does not have very much confidence in himself. 
She does not have very much confidence in herself.

The reign has lasted as long as the life of the queen. 
The rain has lasted as long as the life of the clouds.
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The trophy would not fit in the brown suitcase because it was too big.
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Can be Complicated!
• What is the referent of “it”?

The trophy would not fit in the brown suitcase because it was too big.

The trophy would not fit in the brown suitcase because it was too small.

(from Winograd Schema Challenge: 
http://commonsensereasoning.org/winograd.html)

Trophy

Suitcase

http://commonsensereasoning.org/winograd.html
http://commonsensereasoning.org/winograd.html


Recurrent Neural Networks 
(Elman 1990)

• Tools to “remember” information
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transform

predict

context

label

• Tools to “remember” information
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Training RNNs
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

loss 1 loss 2 loss 3 loss 4

sum total loss



RNN Training
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RNN Training
• The unrolled graph is a well-formed (DAG) 

computation graph—we can run backprop 
 
 
 

• Parameters are tied across time, derivatives are 
aggregated across all time steps  

• This is historically called “backpropagation through 
time” (BPTT)

sum

total loss



Parameter Tying
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

loss 1 loss 2 loss 3 loss 4

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

sum total loss



Parameter Tying
I hate this movie

RNN RNN RNN RNN

predict

prediction 1

predict predict predict

loss 1 loss 2 loss 3 loss 4

prediction 2 prediction 3 prediction 4

label 1 label 2 label 3 label 4

sum total loss

Parameters are shared! Derivatives are accumulated.



Applications of RNNs



What Can RNNs Do?

• Represent a sentence 

• Read whole sentence, make a prediction 

• Represent a context within a sentence 

• Read context up until that point



Representing Sentences
I hate this movie
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Representing Sentences
I hate this movie

RNN RNN RNN RNN

predict

prediction

• Sentence classification 

• Conditioned generation 

• Retrieval
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Representing Contexts
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Representing Contexts
I hate this movie

RNN RNN RNN RNN

predict

label

predict

label

predict

label

predict

label

• Tagging 

• Language Modeling 

• Calculating Representations for Parsing, etc.
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e.g. Language Modeling

RNN RNN RNN RNN

moviethishateI

predict

hate

predict

this

predict

movie

predict

</s>

RNN

<s>

predict

I

• Language modeling is like a tagging task, where 
each tag is the next word!
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Bi-RNNs
• A simple extension, run the RNN in both directions

I hate this movie

RNN RNN RNN RNN

RNN RNN RNN RNN

concat concat concat concat

softmax

PRN

softmax

VB

softmax

DET

softmax

NN



Vanishing Gradients
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Vanishing Gradient
• Gradients decrease as they get pushed back

• Why? “Squashed” by non-linearities or small 
weights in matrices.



A Solution: 
Long Short-term Memory 

(Hochreiter and Schmidhuber 1997)

• Basic idea: make additive connections between 
time steps 

• Addition does not modify the gradient, no vanishing 

• Gates to control the information flow



LSTM Structure
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LSTM Structure



What can LSTMs Learn? (1) 
(Karpathy et al. 2015)

• Additive connections make single nodes surprisingly interpretable



What can LSTMs Learn? (2) 
(Shi et al. 2016, Radford et al. 2017)

Count length of sentence Sentiment
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Handling Mini-batching
• Mini-batching makes things much faster! 

• But mini-batching in RNNs is harder than in feed-
forward networks 

• Each word depends on the previous word 

• Sequences are of various length
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Mini-batching Method
this     is   an          example  </s>
this     is   another  </s> </s>

Padding
Loss 
Calculation

Mask

1 
1� 1 

1� 1 
1� 1 

1� 1 
0�

Take Sum
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• If we use sentences of different lengths, too much 

padding and sorting can result in decreased 
performance



Bucketing/Sorting
• If we use sentences of different lengths, too much 

padding and sorting can result in decreased 
performance

• To remedy this: sort sentences so similarly-
lengthed sentences are in the same batch
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•

Additive or Non-linear

• Note: GRUs cannot do things like simply count
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(GRU; Cho et al 2014) 
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2015) 
 
 
 
 
 



RNN Variants 
(Greffen et al. 2015)

• Gated Recurrent Units 
(GRU; Cho et al 2014) 

• Many different types of 
architectures tested for 
LSTMs (Greffen et al. 
2015) 

• Conclusion: basic 
LSTM quite good, 
other variants (e.g. 
coupled input/forget 
gates) reasonable



Handling Long Sequences



Handling Long Sequences

• Sometimes we would like to capture long-term 
dependencies over long sequences 

• e.g. words in full documents 

• However, this may not fit on (GPU) memory



Truncated BPTT
• Backprop over shorter segments, initialize w/ the 

state from the previous segment
I hate this movie

RNN RNN RNN RNN

It is so bad

RNN RNN RNN RNN

state only, no backprop

1st Pass

2nd Pass



Questions? 
(see extra slides)



Simple Implementation of 
RNNs (in DyNet)

• Based on “*Builder” class (*=SimpleRNN/LSTM)

# LSTM (layers=1, input=64, hidden=128, model) 
RNN = dy.SimpleRNNBuilder(1, 64, 128, model)

• Add parameters to model (once):

• Add parameters to CG and get initial state (per sentence):
s = RNN.initial_state()

• Update state and access (per input word/character):
s = s.add_input(x_t) 
h_t = s.output()



RNNLM Example: 
Parameter Initialization

# Lookup parameters for word embeddings 
WORDS_LOOKUP = model.add_lookup_parameters((nwords, 64)) 

# Word-level RNN (layers=1, input=64, hidden=128, model) 
RNN = dy.SimpleRNNBuilder(1, 64, 128, model) 

# Softmax weights/biases on top of RNN outputs 
W_sm = model.add_parameters((nwords, 128)) 
b_sm = model.add_parameters(nwords) 



RNNLM Example: 
Sentence Initialization

# Build the language model graph 
def calc_lm_loss(wids): 
    dy.renew_cg() 

    # parameters -> expressions 
    W_exp = dy.parameter(W_sm) 
    b_exp = dy.parameter(b_sm) 

    # add parameters to CG and get state 
    f_init = RNN.initial_state() 

    # get the word vectors for each word ID 
    wembs = [WORDS_LOOKUP[wid] for wid in wids] 

    # Start the rnn by inputting "<s>" 
    s = f_init.add_input(wembs[-1]) 

…



RNNLM Example: 
Loss Calculation and State Update

    # process each word ID and embedding 
    losses = [] 
    for wid, we in zip(wids, wembs): 

        # calculate and save the softmax loss 
        score = W_exp * s.output() + b_exp 
        loss = dy.pickneglogsoftmax(score, wid) 
        losses.append(loss) 

        # update the RNN state with the input 
        s = s.add_input(we)  
     
    # return the sum of all losses 
    return dy.esum(losses)

…



Code Examples 
sentiment-rnn.py


