Proteins: Structure, Function, Bioinformatics

Syndicate content
Wiley Online Library : Proteins: Structure, Function, and Bioinformatics
Updated: 8 years 17 weeks ago

Stability strengths and weaknesses in protein structures detected by statistical potentials. Application to bovine seminal ribonuclease

Tue, 11/17/2015 - 02:01
Abstract

We present an in silico method to estimate the contribution of each residue in a protein to its overall stability using three database-derived statistical potentials that are based on inter-residue distances, backbone torsion angles and solvent accessibility, respectively. Residues that contribute very unfavorably to the folding free energy are defined as stability weaknesses, whereas residues that show a highly stabilizing contribution are called stability strengths. Strengths and/or weaknesses on residues that are in spatial contact are clustered into 3-dimensional (3D) stability patches. The identification and analysis of strength- and weakness-containing regions in a protein may reveal its structural or functional characteristics, and/or interesting spots to introduce mutations. To illustrate the power of our method, we apply it to bovine seminal ribonuclease. This enzyme catalyzes the degradation of RNA strands, and has the peculiarity of undergoing 3D domain swapping in physiological conditions. The weaknesses and strengths were compared among the monomeric, dimeric and swapped dimeric forms. We identified weaknesses among the catalytic residues and a mixture of weaknesses and strengths among the substrate-binding residues in the three forms. In the regions involved in 3D swapping, we observed an accumulation of weaknesses in the monomer, which disappear in the dimer and especially in the swapped dimer. Moreover, monomeric homologous proteins were found to exhibit less weaknesses in these regions, whereas mutants known to favor unswapped dimerization appear stabilized in this form. Our method has several perspectives for functional annotation, rational prediction of targeted mutations, and mapping of stability changes upon conformational rearrangements. This article is protected by copyright. All rights reserved.

Categories: Journal Articles

A composite approach towards a complete model of the myosin rod

Tue, 11/17/2015 - 01:43
Abstract

Sarcomeric myosins have the remarkable ability to form regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. This has been established for over fifty years and yet a molecular model for the thick filament has not been attained. In part this is due to the lack of a detailed molecular model for the coiled-coil that constitutes the myosin rod. The ability to self-assemble resides in the C-terminal of the section of myosin known as light meromyosin (LMM) which exhibits strong salt dependent aggregation that has inhibited structural studies. Here we evaluate the feasibility of generating a complete model for the myosin rod by combining overlapping structures of five sections of coiled-coil covering 164 amino acid residues which constitute 20% of LMM. Each section contains ∼7-9 heptads of myosin. The problem of aggregation was overcome by incorporating the globular folding domains, Gp7 and Xrcc4 which enhance crystallization. The effect of these domains on the stability and conformation of the myosin rod was examined through biophysical studies and overlapping structures. In addition, a computational approach was developed to combine the sections into a contiguous model. The structures were aligned, trimmed to form a contiguous model, and simulated for >700 ns to remove the discontinuities and achieve an equilibrated conformation that represents the native state. This experimental and computational strategy lays the foundation for building a model for the entire myosin rod. This article is protected by copyright. All rights reserved.

Categories: Journal Articles

Archeal lectins: An identification through a genomic search

Mon, 11/16/2015 - 05:18
ABSTRACT

Forty-six lectin domains which have homologues among well established eukaryotic and bacterial lectins of known three-dimensional structure, have been identified through a search of 165 archeal genomes using a multipronged approach involving domain recognition, sequence search and analysis of binding sites. Twenty-one of them have the 7-bladed β-propeller lectin fold while 16 have the β-trefoil fold and 7 the legume lectin fold. The remainder assumes the C-type lectin, the β-prism I and the tachylectin folds. Acceptable models of almost all of them could be generated using the appropriate lectins of known three-dimensional structure as templates, with binding sites at one or more expected locations. The work represents the first comprehensive bioinformatic study of archeal lectins. The presence of lectins with the same fold in all domains of life indicates their ancient origin well before the divergence of the three branches. Further work is necessary to identify archeal lectins which have no homologues among eukaryotic and bacterial species. Proteins 2015. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Anabaena sp. DyP-type peroxidase is a tetramer consisting of two asymmetric dimers

Mon, 11/16/2015 - 05:10
ABSTRACT

DyP-type peroxidases are a newly discovered family of heme peroxidases distributed from prokaryotes to eukaryotes. Recently, using a structure-based sequence alignment, we proposed the new classes, P, I and V, as substitutes for classes A, B, C, and D [Arch Biochem Biophys 2015;574:49–55]. Although many class V enzymes from eukaryotes have been characterized, only two from prokaryotes have been reported. Here, we show the crystal structure of one of these two enzymes, Anabaena sp. DyP-type peroxidase (AnaPX). AnaPX is tetramer formed from Cys224-Cys224 disulfide-linked dimers. The tetramer of wild-type AnaPX was stable at all salt concentrations tested. In contrast, the C224A mutant showed salt concentration-dependent oligomeric states: in 600 mM NaCl, it maintained a tetrameric structure, whereas in the absence of salt, it dissociated into monomers, leading to a reduction in thermostability. Although the tetramer exhibits non-crystallographic, 2-fold symmetry in the asymmetric unit, two subunits forming the Cys224-Cys224 disulfide-linked dimer are related by 165° rotation. This asymmetry creates an opening to cavities facing the inside of the tetramer, providing a pathway for hydrogen peroxide access. Finally, a phylogenetic analysis using structure-based sequence alignments showed that class V enzymes from prokaryotes, including AnaPX, are phylogenetically closely related to class V enzymes from eukaryotes. Proteins 2015. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Some of the most interesting CASP11 targets through the eyes of their authors

Mon, 11/16/2015 - 04:52
ABSTRACT

The Critical Assessment of protein Structure Prediction (CASP) experiment would not have been possible without the prediction targets provided by the experimental structural biology community. In this article, selected crystallographers providing targets for the CASP11 experiment discuss the functional and biological significance of the target proteins, highlight their most interesting structural features, and assess whether these features were correctly reproduced in the predictions submitted to CASP11. Proteins 2015. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.

Categories: Journal Articles

Predicting protein folding rate change upon point mutation using residue-level co-evolutionary information

Fri, 11/13/2015 - 23:29
Abstract

Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity and aggregations. Here we seek to address whether residue-level co-evolutionary information of globular proteins can be informative to folding rate changes upon point-mutations. Generating residue-level co-evolutionary networks of globular proteins, we analyze three parameters: relative co-evolution order (rCEO), network density (ND) and characteristic path length (CPL). A point-mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73 and −0.61 respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point-mutation with 0.031, 0.045 and 0.059 standard errors respectively. This article is protected by copyright. All rights reserved.

Categories: Journal Articles

Refining the treatment of membrane proteins by coarse-grained models

Wed, 11/04/2015 - 01:50
Abstract

Obtaining a quantitative description of the membrane proteins stability is crucial for understanding many biological processes. However the advance in this direction has remained a major challenge for both experimental studies and molecular modeling. One of the possible directions is the use of coarse-grained models but such models must be carefully calibrated and validated. Here we use a recent progress in benchmark studies on the energetics of amino acid residue and peptide membrane insertion and membrane protein stability in refining our previously developed coarse-grained model (Vicatos et al Proteins 2014; 82: 1168). Our refined model parameters were fitted and/or tested to reproduce water/membrane partitioning energetics of amino acid side chains and a couple of model peptides. This new model provides a reasonable agreement with experiment for absolute folding free energies of several β-barrel membrane proteins as well as effects of point mutations on a relative stability for one of those proteins, OmpLA. The consideration and ranking of different rotameric states for a mutated residue was found to be essential to achieve satisfactory agreement with the reference data. This article is protected by copyright. All rights reserved.

Categories: Journal Articles

Modeling conformational redox-switch modulation of human succinic semialdehyde dehydrogenase

Tue, 10/27/2015 - 08:37
ABSTRACT

Succinic semialdehyde dehydrogenase (SSADH) converts succinic semialdehyde (SSA) to succinic acid in the mitochondrial matrix and is involved in the metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA). The molecular structure of human SSADH revealed the intrinsic regulatory mechanism—redox-switch modulation—by which large conformational changes are brought about in the catalytic loop through disulfide bonding. The crystal structures revealed two SSADH conformations, and computational modeling of transformation between them can provide substantial insights into detailed dynamic redox modulation. On the basis of these two clear crystal structures, we modeled the conformational motion between these structures in silico. For that purpose, we proposed and used a geometry-based coarse-grained mathematical model of long-range protein motion and the related modeling algorithm. The algorithm is based on solving the special optimization problem, which is similar to the classical Monge–Kantorovich mass transportation problem. The modeled transformation was supported by another morphing method based on a completely different framework. The result of the modeling facilitates better interpretation and understanding of the SSADH biological role. Proteins 2015; 83:2217–2229. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Protein structure refinement with adaptively restrained homologous replicas

Tue, 10/27/2015 - 08:37
ABSTRACT

A novel protein refinement protocol is presented which utilizes molecular dynamics (MD) simulations of an ensemble of adaptively restrained homologous replicas. This approach adds evolutionary information to the force field and reduces random conformational fluctuations by coupling of several replicas. It is shown that this protocol refines the majority of models from the CASP11 refinement category and that larger conformational changes of the starting structure are possible than with current state of the art methods. The performance of this protocol in the CASP11 experiment is discussed. We found that the quality of the refined model is correlated with the structural variance of the coupled replicas, which therefore provides a good estimator of model quality. Furthermore, some remarkable refinement results are discussed in detail. Proteins 2015. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

R248Q mutation—Beyond p53-DNA binding

Tue, 10/27/2015 - 08:37
ABSTRACT

R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all-atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53-DBD conformation: (i) wild-type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side-chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge- and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc-binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants. Proteins 2015; 83:2240–2250. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Crystal structures of halohydrin hydrogen-halide-lyases from Corynebacterium sp. N-1074

Fri, 10/16/2015 - 07:48
ABSTRACT

Halohydrin hydrogen-halide-lyase (H-Lyase) is a bacterial enzyme that is involved in the degradation of halohydrins. This enzyme catalyzes the intramolecular nucleophilic displacement of a halogen by a vicinal hydroxyl group in halohydrins to produce the corresponding epoxides. The epoxide products are subsequently hydrolyzed by an epoxide hydrolase, yielding the corresponding 1, 2-diol. Until now, six different H-Lyases have been studied. These H-Lyases are grouped into three subtypes (A, B, and C) based on amino acid sequence similarities and exhibit different enantioselectivity. Corynebacterium sp. strain N-1074 has two different isozymes of H-Lyase, HheA (A-type) and HheB (B-type). We have determined their crystal structures to elucidate the differences in enantioselectivity among them. All three groups share a similar structure, including catalytic sites. The lack of enantioselectivity of HheA seems to be due to the relatively wide size of the substrate tunnel compared to that of other H-Lyases. Among the B-type H-Lyases, HheB shows relatively high enantioselectivity compared to that of HheBGP1. This difference seems to be due to amino acid replacements at the active site tunnel. The binding mode of 1, 3-dicyano-2-propanol at the catalytic site in the crystal structure of the HheB-DiCN complex suggests that the product should be (R)-epichlorohydrin, which agrees with the enantioselectivity of HheB. Comparison with the structure of HheC provides a clue for the difference in their enantioselectivity. Proteins 2015; 83:2230–2239. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

pKa predictions for proteins, RNAs, and DNAs with the Gaussian dielectric function using DelPhi pKa

Fri, 10/16/2015 - 07:36
ABSTRACT

We developed a Poisson-Boltzmann based approach to calculate the values of protein ionizable residues (Glu, Asp, His, Lys and Arg), nucleotides of RNA and single stranded DNA. Two novel features were utilized: the dielectric properties of the macromolecules and water phase were modeled via the smooth Gaussian-based dielectric function in DelPhi and the corresponding electrostatic energies were calculated without defining the molecular surface. We tested the algorithm by calculating values for more than 300 residues from 32 proteins from the PPD dataset and achieved an overall RMSD of 0.77. Particularly, the RMSD of 0.55 was achieved for surface residues, while the RMSD of 1.1 for buried residues. The approach was also found capable of capturing the large shifts of various single point mutations in staphylococcal nuclease (SNase) from -cooperative dataset, resulting in an overall RMSD of 1.6 for this set of pKa's. Investigations showed that predictions for most of buried mutant residues of SNase could be improved by using higher dielectric constant values. Furthermore, an option to generate different hydrogen positions also improves predictions for buried carboxyl residues. Finally, the calculations on two RNAs demonstrated the capability of this approach for other types of biomolecules. Proteins 2015; 83:2186–2197. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Pressure-induced structural transition of mature HIV-1 protease from a combined NMR/MD simulation approach

Fri, 10/16/2015 - 07:34
ABSTRACT

We investigate the pressure-induced structural changes in the mature human immunodeficiency virus type 1 protease dimer, using residual dipolar coupling (RDC) measurements in a weakly oriented solution. 1DNH RDCs were measured under high-pressure conditions for an inhibitor-free PR and an inhibitor-bound complex, as well as for an inhibitor-free multidrug resistant protease bearing 20 mutations (PR20). While PR20 and the inhibitor-bound PR were little affected by pressure, inhibitor-free PR showed significant differences in the RDCs measured at 600 bar compared with 1 bar. The structural basis of such changes was investigated by MD simulations using the experimental RDC restraints, revealing substantial conformational perturbations, specifically a partial opening of the flaps and the penetration of water molecules into the hydrophobic core of the subunits at high pressure. This study highlights the exquisite sensitivity of RDCs to pressure-induced conformational changes and illustrates how RDCs combined with MD simulations can be used to determine the structural properties of metastable intermediate states on the folding energy landscape. Proteins 2015; 83:2117–2123. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

Categories: Journal Articles

Extension of a protein docking algorithm to membranes and applications to amyloid precursor protein dimerization

Wed, 10/14/2015 - 00:08
ABSTRACT

Novel adjustments are introduced to the docking algorithm, DOCK/PIERR, for the purpose of predicting structures of transmembrane protein complexes. Incorporating knowledge about the membrane environment is shown to significantly improve docking accuracy. The extended version of DOCK/PIERR is shown to perform comparably to other leading docking packages. This membrane version of DOCK/PIERR is applied to the prediction of coiled-coil homodimer structures of the transmembrane region of the C-terminal peptide of amyloid precursor protein (C99). Results from MD simulation of the C99 homodimer in POPC bilayer and docking are compared. Docking results are found to capture key aspects of the homodimer ensemble, including the existence of three topologically distinct conformers. Furthermore, the extended version of DOCK/PIERR is successful in capturing the effects of solvation in membrane and micelle. Specifically, DOCK/PIERR reproduces essential differences in the homodimer ensembles simulated in POPC bilayer and DPC micelle, where configurational entropy and surface curvature effects bias the handedness and topology of the homodimer ensemble. Proteins 2015; 83:2170–2185. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Crystal structure of the Legionella pneumophila lem10 effector reveals a new member of the HD protein superfamily

Wed, 10/14/2015 - 00:07
ABSTRACT

Legionella pneumophila, the intracellular pathogen that can cause severe pneumonia known as Legionnaire's disease, translocates close to 300 effectors inside the host cell using Dot/Icm type IVB secretion system. The structure and function for the majority of these effector proteins remains unknown. Here, we present the crystal structure of the L. pneumophila effector Lem10. The structure reveals a multidomain organization with the largest C-terminal domain showing strong structural similarity to the HD protein superfamily representatives. However, Lem10 lacks the catalytic His-Asp residue pair and does not show any in vitro phosphohydrolase enzymatic activity, typical for HD proteins. While the biological function of Lem10 remains elusive, our analysis shows that similar distinct features are shared by a significant number of HD domains found in Legionella proteins, including the SidE family of effectors known to play an important role during infection. Taken together our data point to the presence of a specific group of non-catalytic Legionella HD domains, dubbed LHDs, which are involved in pathogenesis. Proteins 2015; 83:2319–2325. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Coiled-coil length: Size does matter

Sat, 10/10/2015 - 08:01
ABSTRACT

Protein evolution is governed by processes that alter primary sequence but also the length of proteins. Protein length may change in different ways, but insertions, deletions and duplications are the most common. An optimal protein size is a trade-off between sequence extension, which may change protein stability or lead to acquisition of a new function, and shrinkage that decreases metabolic cost of protein synthesis. Despite the general tendency for length conservation across orthologous proteins, the propensity to accept insertions and deletions is heterogeneous along the sequence. For example, protein regions rich in repetitive peptide motifs are well known to extensively vary their length across species. Here, we analyze length conservation of coiled-coils, domains formed by an ubiquitous, repetitive peptide motif present in all domains of life, that frequently plays a structural role in the cell. We observed that, despite the repetitive nature, the length of coiled-coil domains is generally highly conserved throughout the tree of life, even when the remaining parts of the protein change, including globular domains. Length conservation is independent of primary amino acid sequence variation, and represents a conservation of domain physical size. This suggests that the conservation of domain size is due to functional constraints. Proteins 2015; 83:2162–2169. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Structural genomics for drug design against the pathogen Coxiella burnetii

Tue, 10/06/2015 - 08:11
ABSTRACT

Coxiella burnetii is a highly infectious bacterium and potential agent of bioterrorism. However, it has not been studied as extensively as other biological agents, and very few of its proteins have been structurally characterized. To address this situation, we undertook a study of critical metabolic enzymes in C. burnetii that have great potential as drug targets. We used high-throughput techniques to produce novel crystal structures of 48 of these proteins. We selected one protein, C. burnetii dihydrofolate reductase (CbDHFR), for additional work to demonstrate the value of these structures for structure-based drug design. This enzyme's structure reveals a feature in the substrate binding groove that is different between CbDHFR and human dihydrofolate reductase (hDHFR). We then identified a compound by in silico screening that exploits this binding groove difference, and demonstrated that this compound inhibits CbDHFR with at least 25-fold greater potency than hDHFR. Since this binding groove feature is shared by many other prokaryotes, the compound identified could form the basis of a novel antibacterial agent effective against a broad spectrum of pathogenic bacteria. Proteins 2015; 83:2124–2136. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

An amino acid code for irregular and mixed protein packing

Mon, 10/05/2015 - 02:59
ABSTRACT

To advance our understanding of protein tertiary structure, the development of the knob-socket model is completed in an analysis of the packing in irregular coil and turn secondary structure packing as well as between mixed secondary structure. The knob-socket model simplifies packing based on repeated patterns of two motifs: a three-residue socket for packing within secondary (2°) structure and a four-residue knob-socket for tertiary (3°) packing. For coil and turn secondary structure, knob-sockets allow identification of a correlation between amino acid composition and tertiary arrangements in space. Coil contributes almost as much as α-helices to tertiary packing. In irregular sockets, Gly, Pro, Asp, and Ser are favored, while in irregular knobs, the preference order is Arg, Asp, Pro, Asn, Thr, Leu, and Gly. Cys, His,Met, and Trp are not favored in either. In mixed packing, the knob amino acid preferences are a function of the socket that they are packing into, whereas the amino acid composition of the sockets does not depend on the secondary structure of the knob. A unique motif of a coil knob with an XYZ β-sheet socket may potentially function to inhibit β-sheet extension. In addition, analysis of the preferred crossing angles for strands within a β-sheet and mixed α-helice/β-sheet identifies canonical packing patterns useful in protein design. Lastly, the knob-socket model abstracts the complexity of protein tertiary structure into an intuitive packing surface topology map. Proteins 2015; 83:2147–2161. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Thermodynamics of Aβ16–21 dissociation from a fibril: Enthalpy, entropy, and volumetric properties

Mon, 10/05/2015 - 02:59
ABSTRACT

Here, we provide insights into the thermodynamic properties of A dissociation from an amyloid fibril using all-atom molecular dynamics simulations in explicit water. An umbrella sampling protocol is used to compute potentials of mean force (PMF) as a function of the distance ξ between centers-of-mass of the A peptide and the preformed fibril at nine temperatures. Changes in the enthalpy and the entropic energy are determined from the temperature dependence of these PMF(s) and the average volume of the simulation box is computed as a function of ξ. We find that the PMF at 310 K is dominated by enthalpy while the entropic energy does not change significantly during dissociation. The volume of the system decreases during dissociation. Moreover, the magnitude of this volume change also decreases with increasing temperature. By defining dock and lock states using the solvent accessible surface area (SASA), we find that the behavior of the electrostatic energy is different in these two states. It increases (unfavorable) and decreases (favorable) during dissociation in lock and dock states, respectively, while the energy due to Lennard-Jones interactions increases continuously in these states. Our simulations also highlight the importance of hydrophobic interactions in accounting for the stability of A . Proteins 2015; 83:1963–1972. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles

Bridging of partially negative atoms by hydrogen bonds from main-chain NH groups in proteins: The crown motif

Thu, 10/01/2015 - 16:10
ABSTRACT

The backbone NH groups of proteins can form N1N3-bridges to δ-ve or anionic acceptor atoms when the tripeptide in which they occur orients them appropriately, as in the RL and LR nest motifs, which have dihedral angles 1,2-αRαL and 1,2-αLαR, respectively. We searched a protein database for structures with backbone N1N3-bridging to anionic atoms of the polypeptide chain and found that RL and LR nests together accounted for 92% of examples found (88% RL nests, 4% LR nests). Almost all the remaining 8% of N1N3-bridges were found within a third tripeptide motif which has not been described previously. We term this a “crown,” because of the disposition of the tripeptide CO groups relative to the three NH groups and the acceptor oxygen anion, and the crown together with its bridged anion we term a “crown bridge.” At position 2 of these structures the dihedral angles have a tight αR distribution, but at position 1 they have a wider distribution, with ϕ and ψ values generally being lower than those at position 1. Over half of crown bridges involve the backbone CO group three residues N-terminal to the tripeptide, the remainder being to other main-chain or side-chain carbonyl groups. As with nests, bridging of crowns to oxygen atoms within ligands was observed, as was bridging to the sulfur atom of an iron-sulfur cluster. This latter property may be of significance for protein evolution. Proteins 2015; 83:2067–2076. © 2015 Wiley Periodicals, Inc.

Categories: Journal Articles