Journal of Structural Biology

Syndicate content ScienceDirect Publication: Journal of Structural Biology
ScienceDirect RSS
Updated: 8 years 20 weeks ago

Austromegabalanus psittacus barnacle shell structure and proteoglycan localization and functionality

Sun, 10/11/2015 - 00:04
Publication date: September 2015
Source:Journal of Structural Biology, Volume 191, Issue 3

Author(s): M.S. Fernández, J.I. Arias, A. Neira-Carrillo, J.L. Arias

Comparative analyzes of biomineralization models have being crucial for the understanding of the functional properties of biominerals and the elucidation of the processes through which biomacromolecules control the synthesis and structural organization of inorganic mineral-based biomaterials. Among calcium carbonate-containing bioceramics, egg, mollusk and echinoderm shells, and crustacean carapaces, have being fairly well characterized. However, Thoraceca barnacles, although being crustacea, showing molting cycle, build a quite stable and heavily mineralized shell that completely surround the animal, which is for life firmly cemented to the substratum. This makes barnacles an interesting model for studying processes of biomineralization. Here we studied the main microstructural and ultrastructural features of Austromegabalanus psittacus barnacle shell, characterize the occurrence of specific proteoglycans (keratan-, dermatan- and chondroitin-6-sulfate proteoglycans) in different soluble and insoluble organic fractions extracted from the shell, and tested them for their ability to crystallize calcium carbonate in vitro. Our results indicate that, in the barnacle model, proteoglycans are good candidates for the modification of the calcite crystal morphology, although the cooperative effect of some additional proteins in the shell could not be excluded.





Categories: Journal Articles

Exploring the ‘aggregation-prone’ core of human Cystatin C: A structural study

Sun, 10/11/2015 - 00:04
Publication date: September 2015
Source:Journal of Structural Biology, Volume 191, Issue 3

Author(s): Paraskevi L. Tsiolaki, Nikolaos N. Louros, Stavros J. Hamodrakas, Vassiliki A. Iconomidou

Amyloidogenic proteins like human Cystatin C (hCC) have been shown to form dimers and oligomers by exchange of subdomains of the monomeric proteins. Normally, the hCC monomer, a low molecular type 2 Cystatin, consists of 120 amino acid residues and functions as an inhibitor of cysteine proteases. The oligomerization of hCC is involved in the pathophysiology of a rare form of amyloidosis namely Icelandic hereditary cerebral amyloid angiopathy, in which an L68Q mutant is deposited as amyloid in brain arteries of young adults. In order to find the shortest stretch responsible to drive the fibril formation of hCC, we have previously demonstrated that the LQVVR peptide forms amyloid fibrils, in vitro (Tsiolaki et al., 2015). Predictions by AMYLPRED, an amyloidogenic determinant prediction algorithm developed in our lab, led us to synthesize and experimentally study two additional predicted peptides derived from hCC. Along with our previous findings, in this work, we reveal that these peptides self-assemble, in a similar way, into amyloid-like fibrils in vitro, as electron microscopy, X-ray fiber diffraction, ATR FT-IR spectroscopy and Congo red staining studies have shown. Further to our experimental results, all three peptides seem to have a fundamental contribution in forming the “aggregation-prone” core of human Cystatin C.





Categories: Journal Articles

The Ku–Mar zinc finger: A segment-swapped zinc ribbon in MarR-like transcription regulators related to the Ku bridge

Sun, 10/11/2015 - 00:04
Publication date: September 2015
Source:Journal of Structural Biology, Volume 191, Issue 3

Author(s): Gurmeet Kaur, Srikrishna Subramanian

Two putative oxidative-stress sensor proteins from Pseudomonas aeruginosa, PA1607 and PA1374, belong to the MarR family of transcription regulators and possess a unique mode of dimerization. In these proteins, in addition to the α-helices involved in dimerization, inter-subunit contacts are strengthened by additional C-terminal β-strands. Using sequence and structure analysis we show that these β-strands constitute a novel segment-swapped zinc ribbon domain. We detect the presence of the zinc ribbon domain in MarR proteins from many bacterial homologs. While the metal-chelating residues of the zinc ribbons are absent in most members of this family, we could however identify several species of Proteobacteria, Actinobacteria and Firmicutes that possess intact zinc-chelating sites. Conservation pattern of metal-chelating residues together with the extensive structural resemblance to zinc ribbons, in particular to the bridge-region of the dsDNA break repair protein Ku, suggests that the C-terminal β-rich region of these proteins is a zinc ribbon. Sequence analysis also supports a distant evolutionary connection between the zinc ribbons of the MarR and Ku families. However, unlike Ku where the segment-swapped zinc ribbons play a role in DNA-binding and obligate dimerization, their primary role in MarR appears to be in dimerization and strengthening of inter-subunit contacts.





Categories: Journal Articles

The crystal structure of Erwinia amylovora levansucrase provides a snapshot of the products of sucrose hydrolysis trapped into the active site

Sun, 10/11/2015 - 00:04
Publication date: September 2015
Source:Journal of Structural Biology, Volume 191, Issue 3

Author(s): Jochen Wuerges, Lorenzo Caputi, Michele Cianci, Stephane Boivin, Rob Meijers, Stefano Benini

Levansucrases are members of the glycoside hydrolase family and catalyse both the hydrolysis of the substrate sucrose and the transfer of fructosyl units to acceptor molecules. In the presence of sufficient sucrose, this may either lead to the production of fructooligosaccharides or fructose polymers. Aim of this study is to rationalise the differences in the polymerisation properties of bacterial levansucrases and in particular to identify structural features that determine different product spectrum in the levansucrase of the Gram-negative bacterium Erwinia amylovora (Ea Lsc, EC 2.4.1.10) as compared to Gram-positive bacteria such as Bacillus subtilis levansucrase. Ea is an enterobacterial pathogen responsible for the Fire Blight disease in rosaceous plants (e.g., apple and pear) with considerable interest for the agricultural industry. The crystal structure of Ea Lsc was solved at 2.77Å resolution and compared to those of other fructosyltransferases from Gram-positive and Gram-negative bacteria. We propose the structural features, determining the different reaction products, to reside in just a few loops at the rim of the active site funnel. Moreover we propose that loop 8 may have a role in product length determination in Gluconacetobacter diazotrophicus LsdA and Microbacterium saccharophilum FFase. The Ea Lsc structure shows for the first time the products of sucrose hydrolysis still bound in the active site.





Categories: Journal Articles

Effect of fringe-artifact correction on sub-tomogram averaging from Zernike phase-plate cryo-TEM

Sun, 10/11/2015 - 00:04
Publication date: September 2015
Source:Journal of Structural Biology, Volume 191, Issue 3

Author(s): Gregory P. Kishchenko, Radostin Danev, Rebecca Fisher, Jie He, Chyongere Hsieh, Michael Marko, Haixin Sui

Zernike phase-plate (ZPP) imaging greatly increases contrast in cryo-electron microscopy, however fringe artifacts appear in the images. A computational de-fringing method has been proposed, but it has not been widely employed, perhaps because the importance of de-fringing has not been clearly demonstrated. For testing purposes, we employed Zernike phase-plate imaging in a cryo-electron tomographic study of radial-spoke complexes attached to microtubule doublets. We found that the contrast enhancement by ZPP imaging made nonlinear denoising insensitive to the filtering parameters, such that simple low-frequency band-pass filtering made the same improvement in map quality. We employed sub-tomogram averaging, which compensates for the effect of the “missing wedge” and considerably improves map quality. We found that fringes (caused by the abrupt cut-on of the central hole in the phase plate) can lead to incorrect representation of a structure that is well-known from the literature. The expected structure was restored by amplitude scaling, as proposed in the literature. Our results show that de-fringing is an important part of image-processing for cryo-electron tomography of macromolecular complexes with ZPP imaging.





Categories: Journal Articles

Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics

Sun, 10/11/2015 - 00:04
Publication date: September 2015
Source:Journal of Structural Biology, Volume 191, Issue 3

Author(s): Beat Vögeli, Simon Olsson, Roland Riek, Peter Güntert

The study of the spatial sampling of biomolecules is essential to understanding the structure–dynamics–function relationship. We have established a protocol for the determination of multiple-state ensembles based on exact measurements of the nuclear Overhauser effect (eNOE). The protocol is practical since it does not require any additional data, while all other NMR data sets must be supplemented by NOE restraints. The question arises as to how much structural and dynamics information is shared between the eNOEs and other NMR probes. We compile one of the largest and most diverse NMR data sets of a protein to date consisting of eNOEs, RDCs and J couplings for GB3. We show that the eNOEs improve the back-prediction of RDCs and J couplings, either upon use of more than one state, or in comparison to conventional NOEs. Our findings indicate that the eNOE data is self-consistent, consistent with other data, and that the structural representation with multiple states is warranted.





Categories: Journal Articles

A Bayesian approach for suppression of limited angular sampling artifacts in single particle 3D reconstruction

Sun, 10/11/2015 - 00:04
Publication date: September 2015
Source:Journal of Structural Biology, Volume 191, Issue 3

Author(s): Toshio Moriya, Erman Acar, R. Holland Cheng, Ulla Ruotsalainen

In the single particle reconstruction, the initial 3D structure often suffers from the limited angular sampling artifact. Selecting 2D class averages of particle images generally improves the accuracy and efficiency of the reference-free 3D angle estimation, but causes an insufficient angular sampling to fill the information of the target object in the 3D frequency space. Similarly, the initial 3D structure by the random-conical tilt reconstruction has the well-known “missing cone” artifact. Here, we attempted to solve the limited angular sampling problem by sequentially applying maximum a posteriori estimate with expectation maximization algorithm (sMAP-EM). Using both simulated and experimental cryo-electron microscope images, the sMAP-EM was compared to the direct Fourier method on the basis of reconstruction error and resolution. To establish selection criteria of the final regularization weight for the sMAP-EM, the effects of noise level and sampling sparseness on the reconstructions were examined with evenly distributed sampling simulations. The frequency information filled in the missing cone of the conical tilt sampling simulations was assessed by developing new quantitative measurements. All the results of visual and numerical evaluations showed the sMAP-EM performed better than the direct Fourier method, regardless of the sampling method, noise level, and sampling sparseness. Furthermore, the frequency domain analysis demonstrated that the sMAP-EM can fill the meaningful information in the unmeasured angular space without detailed a priori knowledge of the objects. The current research demonstrated that the sMAP-EM has a high potential to facilitate the determination of 3D protein structures at near atomic-resolution.





Categories: Journal Articles

Different binding and recognition modes of GL479, a dual agonist of Peroxisome Proliferator-Activated Receptor α/γ

Sun, 10/11/2015 - 00:04
Publication date: September 2015
Source:Journal of Structural Biology, Volume 191, Issue 3

Author(s): Jademilson Celestino dos Santos, Amanda Bernardes, Letizia Giampietro, Alessandra Ammazzalorso, Barbara De Filippis, Rosa Amoroso, Igor Polikarpov

Peroxisome Proliferator-Activated Receptors (PPARs) are ligand-dependent transcription factors that control various functions in human organism, including the control of glucose and lipid metabolism. PPARγ is a target of TZD agonists, clinically used to improve insulin sensitivity whereas fibrates, PPARα ligands, lower serum triglyceride levels. We report here the structural studies of GL479, a synthetic dual PPARα/γ agonist, designed by a combination of clofibric acid skeleton and a phenyldiazenyl moiety, as bioisosteric replacement of stilbene group, in complex with both PPARα and PPARγ receptors. GL479 was previously reported as a partial agonist of PPARγ and a full agonist of PPARα with high affinity for both PPARs. Our structural studies reveal different binding modes of GL479 to PPARα and PPARγ, which may explain the distinct activation behaviors observed for each receptor. In both cases the ligand interacts with a Tyr located at helix 12 (H12), resulting in the receptor active conformation. In the complex with PPARα, GL479 occupies the same region of the ligand-binding pocket (LBP) observed for other full agonists, whereas GL479 bound to PPARγ displays a new binding mode. Our results indicate a novel region of PPARs LBP that may be explored for the design of partial agonists as well dual PPARα/γ agonists that combine, simultaneously, the therapeutic effects of the treatment of insulin resistance and dyslipidemia.





Categories: Journal Articles

The proteomics of wool fibre morphogenesis

Sun, 10/11/2015 - 00:04
Publication date: September 2015
Source:Journal of Structural Biology, Volume 191, Issue 3

Author(s): Jeffrey E. Plowman, Duane P. Harland, Sivasangary Ganeshan, Joy L. Woods, Bede van Shaijik, Santanu Deb-Choudhury, Ancy Thomas, Stefan Clerens, David R. Scobie

Gel and gel-free proteomic techniques have been used for the first time to directly study the proteins present in whole wool follicles and dissected portions of follicles that correlated with morphological changes in the developing fibre as determined by transmission electron microscopy. Individual wool follicles were dissected into four portions designated as the bulb, elongation, keratogenous and keratinisation portions. Gel-free proteomic analysis of dissected portions from 30 follicles showed that the first keratins to appear were K31, K35 and K85, in the bulb portion. The first epithelial KAP, trichohyalin, was detected in the bulb portion and the first cortical KAP, KAP11.1 was found in the elongation portion. Other major trichocyte keratins and cortical KAPs began to appear further up the follicle in the keratogenous and keratinisation zones. These results were consistent with what has been observed from gene expression studies and correlated well with the morphological changes observed in the follicle. Other proteins detected by this approach included the keratin anchor protein desmoplakin, as well as vimentin and epithelial keratins, histones, ribosomal proteins and collagens. Two-dimensional electrophoretic (2DE) analysis of dissected portions of 50 follicles revealed substantial changes in the position, number and intensity of the spots of the trichocyte keratins as they progressed through the follicle zones, suggesting that they are subject to modification as a result of the keratinisation process. Also present in the 2DE maps were a number of epithelial keratins, presumably from the inner and outer root sheaths, and the dermal components.





Categories: Journal Articles

Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study

Sun, 10/11/2015 - 00:04
Publication date: September 2015
Source:Journal of Structural Biology, Volume 191, Issue 3

Author(s): David F. Flannelly, Thalia G. Aoki, Ludmilla Aristilde

The complete degradation of cellulose to glucose is essential to carbon turnover in terrestrial ecosystems and to engineered biofuel production. A rate-limiting step in this pathway is catalyzed by beta-glucosidase (BG) enzymes, which convert cellulobiose into two glucose molecules. The activity of these enzymes has been shown to vary with solution pH. However, it is not well understood how pH influences the enzyme conformation required for catalytic action on the substrate. A structural understanding of this pH effect is important for predicting shifts in BG activity in bioreactors and environmental matrices, in addition to informing targeted protein engineering. Here we applied molecular dynamics simulations to explore conformational and substrate binding dynamics in two well-characterized BGs of bacterial (Clostridium cellulovorans) and fungal (Trichoderma reesei) origins as a function of pH. The enzymes were simulated in an explicit solvated environment, with NaCl as electrolytes, at their prominent ionization states obtained at pH 5, 6, 7, and 7.5. Our findings indicated that pH-dependent changes in the ionization states of non-catalytic residues localized outside of the immediate active site led to pH-dependent disruption of the active site conformation. This disruption interferes with favorable H-bonding interactions with catalytic residues required to initiate catalysis on the substrate. We also identified specific non-catalytic residues that are involved in stabilizing the substrate at the optimal pH for enzyme activity. The simulations further revealed the dynamics of water-bridging interactions both outside and inside the substrate binding cleft during structural changes in the enzyme-substrate complex. These findings provide new structural insights into the pH-dependent substrate binding specificity in BGs.





Categories: Journal Articles

FEI’s direct electron detector developments: Embarking on a revolution in cryo-TEM

Sun, 10/11/2015 - 00:04
Publication date: Available online 9 October 2015
Source:Journal of Structural Biology

Author(s): Maarten Kuijper, Gerald van Hoften, Bart Janssen, Rudolf Geurink, Sacha De Carlo, Matthijn Vos, Gijs van Duinen, Bart van Haeringen, Marc Storms

In early 2011 FEI Company launched the “Falcon”, its first commercial direct electron detector product intended for application in 3-D electron microscopy in the life sciences. In this paper we discuss the principle of direct electron detection and its implementation in Falcon cameras. We describe the signal formation in the sensor and its impact on the detection quantum efficiency (DQE) of the sensor. Insights into the signal formation led us to improved camera designs. Three significant improvements are discussed. (1) Back thinning of the sensor. This is implemented in the second-generation Falcon (Falcon 2), where the sensor thickness is reduced to 50μm, and in the latest generation Falcon 3 detector with further back-thinning down to 30μm. (2) The introduction of electron counting, a signal processing technology implemented in Falcon 3. (3) Dose fractionation mode, which allows the user to access intermediate results during the illumination of the sample.





Categories: Journal Articles

Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer–Lambert law

Sun, 10/11/2015 - 00:04
Publication date: Available online 9 October 2015
Source:Journal of Structural Biology

Author(s): Rui Yan, Thomas J. Edwards, Logan M. Pankratz, Richard J. Kuhn, Jason K. Lanman, Jun Liu, Wen Jiang

Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer–Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples.





Categories: Journal Articles

A fast cross-validation method for alignment of electron tomography images based on Beer–Lambert law

Sun, 10/11/2015 - 00:04
Publication date: Available online 9 October 2015
Source:Journal of Structural Biology

Author(s): Rui Yan, Thomas J. Edwards, Logan M. Pankratz, Richard J. Kuhn, Jason K. Lanman, Jun Liu, Wen Jiang

In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer–Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography.





Categories: Journal Articles

Automated batch fiducial-less tilt-series alignment in Appion using Protomo

Sun, 10/11/2015 - 00:04
Publication date: Available online 9 October 2015
Source:Journal of Structural Biology

Author(s): Alex J. Noble, Scott M. Stagg

The field of electron tomography has benefited greatly from manual and semi-automated approaches to marker-based tilt-series alignment that have allowed for the structural determination of multitudes of in situ cellular structures as well as macromolecular structures of individual protein complexes. The emergence of complementary metal-oxide semiconductor detectors capable of detecting individual electrons has enabled the collection of low dose, high contrast images, opening the door for reliable correlation-based tilt-series alignment. Here we present a set of automated, correlation-based tilt-series alignment, contrast transfer function (CTF) correction, and reconstruction workflows for use in conjunction with the Appion/Leginon package that are primarily targeted at automating structure determination with cryogenic electron microscopy.





Categories: Journal Articles

Mineral-bearing vesicle transport in sea urchin embryos

Sun, 10/11/2015 - 00:04
Publication date: Available online 9 October 2015
Source:Journal of Structural Biology

Author(s): Netta Vidavsky, Admir Masic, Andreas Schertel, Steve Weiner, Lia Addadi

Sea urchin embryos sequester calcium from the sea water. This calcium is deposited in a concentrated form in granule bearing vesicles both in the epithelium and in mesenchymal cells. Here we use in vivo calcein labeling and confocal Raman spectroscopy, as well as cryo-FIB-SEM 3D structural reconstructions, to investigate the processes occurring in the internal cavity of the embryo, the blastocoel. We demonstrate that calcein stained granules are also present in the filopodial network within the blastocoel. Simultaneous fluorescence imaging and Raman spectroscopy show that these granules do contain a calcium mineral. By tracking the movements of these granules, we show that the granules in the epithelium and primary mesenchymal cells barely move, but those in the filopodial network move long distances. We could however not detect any unidirectional movement of the filopodial granules. We also show the presence of mineral containing multivesicular vesicles that also move in the filopodial network. We conclude that the filopodial network is an integral part of the mineral transport process, and possibly also for sequestering calcium and other ions. Although much of the sequestered calcium is deposited in the mineralized skeleton, a significant amount is used for other purposes, and this may be temporarily stored in these membrane-delineated intracellular deposits.





Categories: Journal Articles

Reassessment of MxiH subunit orientation and fold within native Shigella T3SS needles using surface labelling and solid-state NMR

Sun, 10/11/2015 - 00:04
Publication date: Available online 6 October 2015
Source:Journal of Structural Biology

Author(s): Joeri Verasdonck, Da-Kang Shen, Alexander Treadgold, Christopher Arthur, Anja Böckmann, Beat H. Meier, Ariel J. Blocker

T3SSs are essential virulence determinants of many Gram-negative bacteria, used to inject bacterial effectors of virulence into eukaryotic host cells. Their major extracellular portion, a ∼50nm hollow, needle-like structure, is essential to host cell sensing and the conduit for effector secretion. It is formed of a small, conserved subunit arranged as a helical polymer. The structure of the subunit has been studied by electron cryomicroscopy within native polymers and by solid-state NMR in recombinant polymers, yielding two incompatible atomic models. To resolve this controversy, we re-examined the native polymer used for electron cryomicroscopy via surface labelling and solid-state NMR. Our data show the orientation and overall fold of the subunit within this polymer is as established by solid-state NMR for recombinant polymers.





Categories: Journal Articles

Analysis of distinct molecular assembly complexes of keratin K8 and K18 by hydrogen–deuterium exchange

Sun, 10/11/2015 - 00:04
Publication date: Available online 3 October 2015
Source:Journal of Structural Biology

Author(s): Aiswarya Premchandar, Anna Kupniewska, Krzysztof Tarnowski, Norbert Mücke, Monika Mauermann, Magdalena Kaus-Drobek, Aleksander Edelman, Harald Herrmann, Michał Dadlez

Keratins are intermediate filament (IF) proteins that form complex filament systems in epithelial cells, thus serving as scaffolding elements and mechanical stress absorbers. The building blocks of keratin IFs are parallel coiled-coil dimers of two distinct sequence-related proteins distinguished as type I and type II keratins. To gain more insight into their structural dynamics, we resorted to hydrogen–deuterium exchange mass spectrometry of keratins K8 and K18, which are characteristic for simple epithelial cells. Using this powerful technique not employed with IFs before, we mapped patterns of protected versus unprotected regions in keratin complexes at various assembly levels. In particular, we localized protein segments exhibiting different hydrogen exchange patterns in tetramers versus filaments. We observed a general pattern of precisely positioned regions of stability intertwining with flexible regions, mostly represented by the non-α-helical segments. Notably, some regions within the coiled-coil domains are significantly more dynamic than others, while the IF-consensus motifs at the end domains of the central α-helical “rod” segment, which mediate the “head-to-tail” dimer–dimer interaction in the filament elongation process, become distinctly more protected upon formation of filaments. Moreover, to gain more insight into the dynamics of the individual keratins, we investigated the properties of homomeric preparations of K8 and K18. The physiological importance of keratins without a partner is encountered in both pathological and experimental situations when one of the two species is present in robust excess or completely absent, such as in gene-targeted mice.





Categories: Journal Articles

Structural and biochemical insights into the DNA-binding mode of MjSpt4p:Spt5 complex at the exit tunnel of RNAPII

Sun, 10/11/2015 - 00:04
Publication date: Available online 2 October 2015
Source:Journal of Structural Biology

Author(s): Gongrui Guo, Yongxiang Gao, Zhongliang Zhu, Debiao Zhao, Zhihong Liu, Huihao Zhou, Liwen Niu, Maikun Teng

Spt5 (NusG in bacteria) is the only RNA polymerase-associated factor known to be conserved in all three domains of life. In archaea and eukaryotes, Spt5 associates with Spt4, an elongation factor that is absent in bacteria, to form a functional heterodimeric complex. Previous studies suggest that the Spt4:Spt5 complex interacts directly with DNA at the double-stranded DNA exit tunnel of RNA polymerase to regulate gene transcription. In this study, the DNA-binding ability of Spt4:Spt5 from the archaeon Methanocaldococcus jannaschii was confirmed via nuclear magnetic resonance chemical shift perturbation and fluorescence polarization assays. Crystallographic analysis of the full-length MjSpt4:Spt5 revealed two distinct conformations of the C-terminal KOW domain of Spt5. A similar alkaline region was found on the Spt4:Spt5 surface in both crystal forms, and identified as double-stranded DNA binding patch through mutagenesis-fluorescence polarization assays. Based on these structural and biochemical data, the Spt4:Spt5-DNA binding model was built for the first time.





Categories: Journal Articles

The giant keyhole limpet radular teeth: a naturally-grown harvest machine

Sun, 10/11/2015 - 00:04
Publication date: Available online 2 October 2015
Source:Journal of Structural Biology

Author(s): Tina Ukmar-Godec, Gregor Kapun, Paul Zaslansky, Damien Faivre

The limpet radula is a feeding organ, which contains more than 100 rows of teeth. During their growth the teeth mature and advance in position along the radula. The simpler doccoglossan radulae operate by grinding rocky substrates, extracting the algae by rasping and scraping with the teeth functioning as shovels. Less is known about the rhipidoglossan radulae, used as rakes or brooms that brush and collect loose marine debris. This type of radula is found in the giant keyhole limpet (Megathura crenulata). The large size of this organism suggests that the rhipidoglossan radula entails a technological superiority for Megathura crenulata in its habitat. The structure and function of the radulae teeth have however not been reported in detail. Using a combination of 2D and 3D microscopy techniques coupled with amino acid analysis and X-ray scattering, we reveal the working components of Megathura crenulata’s radula. It is characterized by numerous marginal teeth surrounding a pair of major hook-like lateral teeth, two pairs of minor lateral teeth and a large central tooth. The mature major lateral teeth show pronounced signs of wear, which gradually increase towards the very front end of the radula and are evidence for scraping. An abrupt change in the amino acid composition in the major lateral teeth and the concurrent formation of a chitinous fiber-network mark the onset of tooth maturation. In comparison to the simpler rock-scraping doccoglossate limpets, the radula of Megathura crenulata forms an elaborate feeding apparatus, which can be seen as a natural harvest machine.





Categories: Journal Articles

Molecular events during the early stages of aggregation of GNNQQNY: An all atom MD simulation study of randomly dispersed peptides

Sun, 10/11/2015 - 00:04
Publication date: Available online 2 October 2015
Source:Journal of Structural Biology

Author(s): Alka Srivastava, Petety V. Balaji

This study probes the early events during lag phase of aggregation of GNNQQNY using all atom MD simulations in explicit solvent. Simulations were performed by varying system size, temperature and starting configuration. Peptides dispersed randomly in the simulation box come together early on in the simulation and form aggregates. These aggregates are dynamic implying the absence of stabilizing interactions. This facilitates the exploration of alternate arrangements. The constituent peptides sample a variety of conformations, frequently re-orient and re-arrange with respect to each other and dissociate from/re-associate with the aggregate. The size and lifetime of aggregates vary depending upon the number of inter-peptide backbone H-bonds. Most of the aggregates formed are amorphous but crystalline aggregates of smaller size (mainly 2-mers) do appear and sustain for varying durations of time. The peptides in crystalline 2-mers are mostly anti-parallel. The largest crystalline aggregate that appears is a 4-mer in a single sheet and a 4-, 5-, or 6-mer in double layered arrangement. Crystalline aggregates grow either by the sequential addition of peptides, or by the head-on or lateral collision-adhesion of 2-mers. The formation of various smaller aggregates suggests the polymorphic nature of oligomers and heterogeneity in the lag phase.





Categories: Journal Articles