PLOS One

Syndicate content
Publishing science
Updated: 8 years 21 weeks ago

Gene Expression Profiles in Rice Developing Ovules Provided Evidence for the Role of Sporophytic Tissue in Female Gametophyte Development

Tue, 10/27/2015 - 16:00

by Ya Wu, Liyu Yang, Aqin Cao, Jianbo Wang

The development of ovule in rice (Oryza sativa) is vital during its life cycle. To gain more understanding of the molecular events associated with the ovule development, we used RNA sequencing approach to perform transcriptome-profiling analysis of the leaf and ovules at four developmental stages. In total, 25,401, 23,343, 23,647 and 23,806 genes were identified from the four developmental stages of the ovule, respectively. We identified a number of differently expressed genes (DEGs) from three adjacent stage comparisons, which may play crucial roles in ovule development. The DEGs were then conducted functional annotations and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Genes related to cellular component biogenesis, membrane-bounded organelles and reproductive regulation were identified to be highly expressed during the ovule development. Different expression levels of auxin-related and cytokinin-related genes were also identified at various stages, providing evidence for the role of sporophytic ovule tissue in female gametophyte development from the aspect of gene expression. Generally, an overall transcriptome analysis for rice ovule development has been conducted. These results increased our knowledge of the complex molecular and cellular events that occur during the development of rice ovule and provided foundation for further studies on rice ovule development.

Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing

Tue, 10/27/2015 - 16:00

by Sarah M. Hykin, Ke Bi, Jimmy A. McGuire

For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles), attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens—particularly for use in phylogenetic analyses—has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp). We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens available for genetic analysis.

Transcriptional Profile of Bacillus subtilis sigF-Mutant during Vegetative Growth

Tue, 10/27/2015 - 16:00

by Wout Overkamp, Oscar P. Kuipers

Sigma factor F is the first forespore specific transcription factor in Bacillus subtilis and controls genes required for the early stages of prespore development. The role of sigF is well studied under conditions that induce sporulation. Here, the impact of sigF disruption on the transcriptome of exponentially growing cultures is studied by micro-array analysis. Under these conditions that typically don’t induce sporulation, the transcriptome showed minor signs of sporulation initiation. The number of genes differentially expressed and the magnitude of expression were, as expected, quite small in comparison with sporulation conditions. The genes mildly down-regulated were mostly involved in anabolism and the genes mildly up-regulated, in particular fatty acid degradation genes, were mostly involved in catabolism. This is probably related to the arrest at sporulation stage II occurring in the sigF mutant, because continuation of growth from the formed disporic sporangia may require additional energy. The obtained knowledge is relevant for various experiments, such as industrial fermentation, prolonged experimental evolution or zero-growth studies, where sporulation is an undesirable trait that should be avoided, e.g by a sigF mutation.

Handling Permutation in Sequence Comparison: Genome-Wide Enhancer Prediction in Vertebrates by a Novel Non-Linear Alignment Scoring Principle

Tue, 10/27/2015 - 16:00

by Dirk Dolle, Juan L. Mateo, Michael P. Eichenlaub, Rebecca Sinn, Robert Reinhardt, Burkhard Höckendorf, Daigo Inoue, Lazaro Centanin, Laurence Ettwiller, Joachim Wittbrodt

Enhancers have been described to evolve by permutation without changing function. This has posed the problem of how to predict enhancer elements that are hidden from alignment-based approaches due to the loss of co-linearity. Alignment-free algorithms have been proposed as one possible solution. However, this approach is hampered by several problems inherent to its underlying working principle. Here we present a new approach, which combines the power of alignment and alignment-free techniques into one algorithm. It allows the prediction of enhancers based on the query and target sequence only, no matter whether the regulatory logic is co-linear or reshuffled. To test our novel approach, we employ it for the prediction of enhancers across the evolutionary distance of ~450Myr between human and medaka. We demonstrate its efficacy by subsequent in vivo validation resulting in 82% (9/11) of the predicted medaka regions showing reporter activity. These include five candidates with partially co-linear and four with reshuffled motif patterns. Orthology in flanking genes and conservation of the detected co-linear motifs indicates that those candidates are likely functionally equivalent enhancers. In sum, our results demonstrate that the proposed principle successfully predicts mutated as well as permuted enhancer regions at an encouragingly high rate.

The TrxG Complex Mediates Cytokine Induced De Novo Enhancer Formation in Islets

Tue, 10/27/2015 - 16:00

by Bryan R. Tennant, Peter Hurley, Jasmine Dhillon, Amol Gill, Cheryl Whiting, Brad G. Hoffman

To better understand how β-cells respond to proinflammatory cytokines we mapped the locations of histone 3 lysine 4 monomethylation (H3K4me1), a post-translational histone modification enriched at active and poised cis-regulatory regions, in IFNγ, Il-1β, and TNFα treated pancreatic islets. We identified 96,721 putative cis-regulatory loci, of which 3,590 were generated de novo, 3,204 had increased H3K4me1, and 5,354 had decreased H3K4me1 in IFNγ, Il-1β, and TNFα exposed islets. Roughly 10% of the de novo and increased regions were enriched for the repressive histone modification histone 3 lysine 27 trimethylation (H3K27me3) in untreated cells, and these were frequently associated with chemokine genes. We show that IFNγ, Il-1β, and TNFα exposure overcomes this repression and induces chemokine gene activation in as little as three hours, and that this expression persists for days in absence of continued IFNγ, Il-1β, and TNFα exposure. We implicate trithorax group (TrxG) complexes as likely players in the conversion of these repressed loci to an active state. To block the activity of these complexes, we suppressed Wdr5, a core component of the TrxG complexes, and used the H3K27me3 demethylase inhibitor GSK-J4. We show that GSK-J4 is particularly effective in blunting IFNγ, Il-1β, and TNFα-induced chemokine gene expression in β-cells; however, it induced significant islet-cell apoptosis and β-cell dysfunction. Wdr5 suppression also reduced IFNγ, Il-1β, and TNFα induced chemokine gene expression in β-cells without affecting islet-cell survival or β-cell function after 48hrs, but did begin to increase islet-cell apoptosis and β-cell dysfunction after four days of treatment. Taken together these data suggest that the TrxG complex is potentially a viable target for preventing cytokine induced chemokine gene expression in β-cells.

Whole-Genome Sequencing and Comparative Genome Analysis of Bacillus subtilis Strains Isolated from Non-Salted Fermented Soybean Foods

Tue, 10/27/2015 - 16:00

by Mayumi Kamada, Sumitaka Hase, Kazushi Fujii, Masato Miyake, Kengo Sato, Keitarou Kimura, Yasubumi Sakakibara

Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA), we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food) starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from “Tua Nao” of Thailand traces a different evolutionary process from other strains.

Identification of Genes Related to Growth and Lipid Deposition from Transcriptome Profiles of Pig Muscle Tissue

Tue, 10/27/2015 - 16:00

by Zhixiu Wang, Qinggang Li, Yangzom Chamba, Bo Zhang, Peng Shang, Hao Zhang, Changxin Wu

Transcriptome profiles established using high-throughput sequencing can be effectively used for screening genome-wide differentially expressed genes (DEGs). RNA sequences (from RNA-seq) and microRNA sequences (from miRNA-seq) from the tissues of longissimus dorsi muscle of two indigenous Chinese pig breeds (Diannan Small-ear pig [DSP] and Tibetan pig [TP]) and two introduced pig breeds (Landrace [LL] and Yorkshire [YY]) were examined using HiSeq 2000 to identify and compare the differential expression of functional genes related to muscle growth and lipid deposition. We obtained 27.18 G clean data through the RNA-seq and detected that 18,208 genes were positively expressed and 14,633 of them were co-expressed in the muscle tissues of the four samples. In all, 315 DEGs were found between the Chinese pig group and the introduced pig group, 240 of which were enriched with functional annotations from the David database and significantly enriched in 27 Gene Ontology (GO) terms that were mainly associated with muscle fiber contraction, cadmium ion binding, response to organic substance and contractile fiber part. Based on functional annotation, we identified 85 DEGs related to growth traits that were mainly involved in muscle tissue development, muscle system process, regulation of cell development, and growth factor binding, and 27 DEGs related to lipid deposition that were mainly involved in lipid metabolic process and fatty acid biosynthetic process. With miRNA-seq, we obtained 23.78 M reads and 320 positively expressed miRNAs from muscle tissues, including 271 known pig miRNAs and 49 novel miRNAs. In those 271 known miRNAs, 20 were higher and 10 lower expressed in DSP-TP than in LL-YY. The target genes of the 30 miRNAs were mainly participated in MAPK, GnRH, insulin and Calcium signaling pathway and others involved cell development, growth and proliferation, etc. Combining the DEGs and the differentially expressed (DE) miRNAs, we drafted a network of 46 genes and 18 miRNAs for regulating muscle growth and a network of 15 genes and 16 miRNAs for regulating lipid deposition. We identified that CAV2, MYOZ2, FRZB, miR-29b, miR-122, miR-145-5p and miR-let-7c, etc, were key genes or miRNAs regulating muscle growth, and FASN, SCD, ADORA1, miR-4332, miR-182, miR-92b-3p, miR-let-7a and miR-let-7e, etc, were key genes or miRNAs regulating lipid deposition. The quantitative expressions of eight DEGs and seven DE miRNAs measured with real-time PCR certified that the results of differential expression genes or miRNAs were reliable. Thus, 18,208 genes and 320 miRNAs were positively expressed in porcine longissimus dorsi muscle. We obtained 85 genes and 18 miRNAs related to muscle growth and 27 genes and 16 miRNAs related to lipid deposition, which provided new insights into molecular mechanism of the economical traits in pig.

Identification of Novel and Conserved miRNAs from Extreme Halophyte, Oryza coarctata, a Wild Relative of Rice

Tue, 10/27/2015 - 16:00

by Tapan Kumar Mondal, Showkat Ahmad Ganie, Ananda Bhusan Debnath

Oryza coarctata, a halophyte and wild relative of rice, is grown normally in saline water. MicroRNAs (miRNAs) are non-coding RNAs that play pivotal roles in every domain of life including stress response. There are very few reports on the discovery of salt-responsive miRNAs from halophytes. In this study, two small RNA libraries, one each from the control and salt-treated (450 mM NaCl for 24 h) leaves of O. coarctata were sequenced, which yielded 338 known and 95 novel miRNAs. Additionally, we used publicly available transcriptomics data of O. coarctata which led to the discovery of additional 48 conserved miRNAs along with their pre-miRNA sequences through in silico analysis. In total, 36 known and 7 novel miRNAs were up-regulated whereas, 12 known and 7 novel miRNAs were down-regulated under salinity stress. Further, 233 and 154 target genes were predicted for 48 known and 14 novel differentially regulated miRNAs respectively. These targets with the help of gene ontology analysis were found to be involved in several important biological processes that could be involved in salinity tolerance. Relative expression trends of majority of the miRNAs as detected by real time-PCR as well as predicted by Illumina sequencing were found to be coherent. Additionally, expression of most of the target genes was negatively correlated with their corresponding miRNAs. Thus, the present study provides an account of miRNA-target networking that is involved in salinity adaption of O. coarctata.

De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster

Tue, 10/27/2015 - 16:00

by Abhishek Kumar, Bernard Henrissat, Mikko Arvas, Muhammad Fahad Syed, Nils Thieme, J. Philipp Benz, Jens Laurids Sørensen, Eric Record, Stefanie Pöggeler, Frank Kempken

The marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.2 Mb and 16298 putative gene models. We identified a large non-ribosomal peptide synthetase gene (nrps1) and supporting pks2 gene in the same biosynthetic gene cluster. This cluster and the genes within the cluster are functionally active as confirmed by RNA-Seq. Characterization of carbohydrate-active enzymes and major facilitator superfamily (MFS)-type transporters lead to postulate S. brevicaulis originated from a soil fungus, which came into contact with the marine sponge Tethya aurantium. This marine sponge seems to provide shelter to this fungus and micro-environment suitable for its survival in the ocean. This study also builds the platform for further investigations of the role of life-style and secondary metabolites from S. brevicaulis.

Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers

Tue, 10/27/2015 - 16:00

by Vasudha Sehgal, Elena G. Seviour, Tyler J. Moss, Gordon B. Mills, Robert Azencott, Prahlad T. Ram

MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by regulating the expression of their target genes. As such, the dysregulation of miRNA expression has been frequently linked to cancer. With rapidly accumulating molecular data linked to patient outcome, the need for identification of robust multi-omic molecular markers is critical in order to provide clinical impact. While previous bioinformatic tools have been developed to identify potential biomarkers in cancer, these methods do not allow for rapid classification of oncogenes versus tumor suppressors taking into account robust differential expression, cutoffs, p-values and non-normality of the data. Here, we propose a methodology, Robust Selection Algorithm (RSA) that addresses these important problems in big data omics analysis. The robustness of the survival analysis is ensured by identification of optimal cutoff values of omics expression, strengthened by p-value computed through intensive random resampling taking into account any non-normality in the data and integration into multi-omic functional networks. Here we have analyzed pan-cancer miRNA patient data to identify functional pathways involved in cancer progression that are associated with selected miRNA identified by RSA. Our approach demonstrates the way in which existing survival analysis techniques can be integrated with a functional network analysis framework to efficiently identify promising biomarkers and novel therapeutic candidates across diseases.