Lecture: Analysis of Algorithms (CS483 - 001)

Amarda Shehu

Spring 2017

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class

@ Dynamic Programming
@ Longest Common Subsequence
@ Dynamic Programming Hallmark # 1: Optimal Substructure
@ Dynamic Programming Solution to LCS
@ Dynamic Programming Hallmark # 2: Overlapping
subproblems
@ The 0/1 Integer Knapsack Problem

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence

Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming

Dynamic Programming

Dynamic Programming is a design technique like
divide-and-conquer

Example: Longest Common Subsequence (LCS)

Given two sequences x[1...m] and y[1...n], find a longest
subsequence common to them both:

X: A/B (|j B\D Alx B BCBA =
2B D C A B A LES®,)

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence

Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming

Brute-force LCS Algorithm

Check every subsequence of x[1...m] to see if it is also a
subsequence of y[1...n].

Analysis:

@ There are 2™ possible subsequences of x, since each bit-vector
of length m represents a distinct subsequence of x

@ Checking each one of them into y takes O(n) time

@ So, worst-case running time is O(n - 2™)

@ An exponential running time is impractical

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence

Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming

A Better Algorithm

Simplification:

@ Look at the length of a longest common subsequence

@ Extend the algorithm to find the LCS itself
Notation: Let |s| denote the length of a sequence s
Proposed Strategy: Consider prefixes of x and y

e Define c[i,j] = [LCS(x[L...i],y[L...]])]

@ Then, LCS(x,y) = ¢[m, n]

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence
Dynamic P|og|'|mm|na Hallmark # 1: Optimal Substructure
ing Solution to LCS
g Hallmark # 2: Overlapping subproblems
The 0/1 Intcrrcn Kmps’ack Problem

Dynamic Programming

Recursive Formulation

Theorem:
linj] = { cli — Lj— 1]'+ 1 if x[i] = y[j]
max{c[i — 1,j],c[i,j — 1]} otherwise
Proof: Case x[i] = y[j]
1 2 i m
1 2 =\ / n
) M -]

Let z[1...k] = LCS(x[L...i],y[L...]]), where c[i,j] = k. Then
z[k] = x[i]. Otherwise, z could be extended by x[i]. Moreover,
z[1...k—=1] =LCS (x[1...i—1],y[1...j—1]).

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence

Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming

Continuing Proof in Case 1

Claim: z[1...k—1] =LCS(x[1...i—1],y[1...j—1])
Proof of Claim by Contradiction:
@ Suppose w is a longer common subsequence of x[1...i — 1]
and y[1...j—1]. Thatis, |w| > k — 1.
@ Then, cut and paste: w - z[k] (w concatenated by z[k]) is also
a common subsequence of x[1...i] and y[1.../]. Since
|w - z[k]| > k, we have reached a contradiction, proving the
above claim.
@ So, c[i —1,j— 1] = k — 1, which implies that
C[’?J] = C[I - 17./ -]'] + L

Case 2 is proven with a similar argument.

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence

Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programming Hallmark # 2: Overlapping subproblems

Dynamic Programming

The 0/1 Integer Knapsack Problem

Dynamic Programming: Hallmark # 1

0

(D Optimal substructure

An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

N

If z=LCS(x,y), then any prefix of z is an LCS of a prefix of x
and a prefix of y.

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence

Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming

Recursive Algorithm for LCS

LCS(x, vy, i, j)
1: if x[i] = y[j] then
2. c[i,j] « LCS(x,y,i—1,j—1)+1
3: else c[i, j] = max{LCS(x,y,i— 1,j),LCS(x,y,i,j — 1)}

Worst-case: When x[i] # y[j], the algorithm evaluates two
subproblems, each one with only one parameter decremented.

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence

Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming

Analysis of Recursion Tree

same
subproblem

The height of the recursion tree is m+ n. It seems that the work is
exponential because we are solving the same subproblems over and
over. We need to remember subproblems once we solve them!

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programming Dynamic Programming Hallmark # 2: Overlapping subproblems

The 0/1 Integer Knapsack Problem

Dynamic Programming: Hallmark # 2

D

O Overlapping subproblems
A recursive solution contains a
“small” number of distinct
subproblems repeated many times.

N

The number of distinct LCS subproblems for two strings of lengths
m and n is only mn.

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence

Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming

Memoization Algorithm

Memoization: After computing a solution to a subproblem, store
it in a table. Subsequent calls check the table to avoid redoing
work.

LCS(x, y, i, j)
1. if c[i,j] = NIL then
2. if x[i] = y[j] then
3: cli,j] < LCS(x,y,i—1,j—1)+1
4: else c[i,j] = max{LCS(x,y,i— 1,j),LCS(x,y,i,j — 1)}

Running Time Analysis: T(n, m) € 6(m - n) since the amount of
work per table entry is constant.
Space Analysis: S(n, m) € 6(m - n) since we only store the table.

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence

Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming

Dynamic Programming Algorithm

Idea:

o Fill the table top left to
bottom right B

e T(n,m)e6(m-n)

@ Reconstruct the LCS by
tracing backwards

e S(n,m) € f(m-n)

o Exercise: reduce S(n, m) to B

O(min{m, n}) A

@
oclo|lolo|lo|lo|o
el k=== ="
RN | = === O |
NN~ = o0
W (o | === oW
W W NN —= O
AW W io|IN|—| o |
AR WO~ O

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programmin 0 5 q
Y g g Dynamic Programming Hallmark # 2: Overlapping subproblems

The 0/1 Integer Knapsack Problem

ther Dynamic Programming Problem

The 0/1 Integer Knapsack Problem

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programmin 0 5 q
Y g g Dynamic Programming Hallmark # 2: Overlapping subproblems

The 0/1 Integer Knapsack Problem

The 0/1 Integer Knapsack Problem

@ Given n objects
@ Each object has an integer weight w; and integer profit p;
@ You have a knapsack with an integer weight capacity M

@ Problem: Find the subset of n objects that fits in the
knapsack and gives the maximum total profit

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programmin 0 5 q
Y g g Dynamic Programming Hallmark # 2: Overlapping subproblems

The 0/1 Integer Knapsack Problem

Examples of Possible Solutions

Say the knapsack has capacity M = 20:

Object i |1 2 3 4 5 6
Profit p; |7 6 12 3 12 6
Weight w; |2 8 10 4 14 5

Possible solutions:

@ Put items 1-3 in knapsack: Total weight is 20, and profit is 25
@ Put items 1, 2, 4, and 6: Total weight now is 19, profit is 32

@ Other possible solutions ...

How long does it take to evaluate all feasible solutions?

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programmin 0 5 q
Y g g Dynamic Programming Hallmark # 2: Overlapping subproblems

The 0/1 Integer Knapsack Problem

Mathematical Formulation of the Optimization Problem

MAXIMIZE
pr-X1+p2-X2...+ Ppn-Xn

such that (SUBJECT TO CONSTRAINT)

wixi+waoxo+ ...+ wyoxp, <M

where x; € {0,1} for i € {1,2,...,n}

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programmin 0 5 q
Y g g Dynamic Programming Hallmark # 2: Overlapping subproblems

The 0/1 Integer Knapsack Problem

A Dynamic Programming Solution

Define f;(y) to be the optimal solution to the subproblem:

MAXIMIZE p1 -x1 +p2-xo+ ...+ pi - X
suchthat wi -x1 +wo - xo+...+w;-x; <y

where x; € {0,1} for j € {1,2,...,i}

Then we see the optimal substructure of the solution:

fily) = max{fi_1(y), pi + fic1(y — wi)} ify >w;
I) if y < w

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programmin 0 5 q
Y g g Dynamic Programming Hallmark # 2: Overlapping subproblems

The 0/1 Integer Knapsack Problem

Seeing the Optimal Substructure

e fi(y) = the maximum profit for capacity y considering only
object 1, where x; € {0,1}

e f(y) = the maximum profit for capacity y considering only
objects 1 and 2, where x1,x; € {0,1}

o Consider what happens when we consider object 3:

e If x3 =0, this means we do not choose to include object 3 in
the knapsack. So, maximum profit is what it used to be using
objects 1, 2: f3(y) = H(y)

e Else, we choose to include, which means we only have y — ws
capacity for objects 1, 2:

@ We do not know a priori whether x3 should be 0 or 1
@ The only criterion is that f(y) = max{f(y), L(y — ws)}

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence

Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming

Computing f;(y)

@ The optimal substructure dictates that we compute f;_1(y)
for all capacities y € {0,1,..., M}

@ The recursion shows it is only necessary to save f;(y) and
fi—1(y) for all possible values of y

@ Basic Idea:

o Set fo(y)=0Vy € {0,1,...,M}
e Compute fi(y) Vy € {0,1,..., M}

o Compute f,(y) Vy € {0,1,... M}

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence

Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming

Dynamic Programming Solution in Action

Let p = (7,6,12,3,12,16), w = (2,8,10,4,14,5), and M = 20

o1 2 3 4 ... 10 ... 20
b0 0 O O O 0 ... 0
10 0 7 7 7 7 4
10 0 7 7 7 13 ... 13
10 0 7 7 7 13
fa
fs
fo

Question: How big is the matrix that stores solutions to
subproblems?

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS

Dynamic Programmin 0 5 q
Y g g Dynamic Programming Hallmark # 2: Overlapping subproblems

The 0/1 Integer Knapsack Problem

A Simpler Version of the Knapsack Problem

What if one can take portions of one item?

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

	Dynamic Programming
	Longest Common Subsequence
	Dynamic Programming Hallmark # 1: Optimal Substructure
	Dynamic Programming Solution to LCS
	Dynamic Programming Hallmark # 2: Overlapping subproblems
	The 0/1 Integer Knapsack Problem

