
Outline of Today’s Class
Dynamic Programming

Lecture: Analysis of Algorithms (CS483 - 001)

Amarda Shehu

Spring 2017

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

1 Dynamic Programming
Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping
subproblems
The 0/1 Integer Knapsack Problem

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming

Dynamic Programming is a design technique like
divide-and-conquer

Example: Longest Common Subsequence (LCS)

Given two sequences x [1 . . .m] and y [1 . . . n], find a longest
subsequence common to them both:

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Brute-force LCS Algorithm

Check every subsequence of x [1 . . .m] to see if it is also a
subsequence of y [1 . . . n].

Analysis:

There are 2m possible subsequences of x , since each bit-vector
of length m represents a distinct subsequence of x

Checking each one of them into y takes O(n) time

So, worst-case running time is O(n · 2m)

An exponential running time is impractical

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

A Better Algorithm

Simplification:

Look at the length of a longest common subsequence

Extend the algorithm to find the LCS itself

Notation: Let |s| denote the length of a sequence s

Proposed Strategy: Consider prefixes of x and y

Define c[i , j] = |LCS(x[1 . . . i], y[1 . . . j])|
Then, LCS(x, y) = c[m,n]

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Recursive Formulation

Theorem:

c[i , j] =

{
c[i − 1, j − 1] + 1 if x [i] = y [j]
max{c[i − 1, j], c[i , j − 1]} otherwise

Proof: Case x [i] = y [j]

Let z [1 . . . k] = LCS(x[1 . . . i], y[1 . . . j]), where c[i , j] = k . Then
z [k] = x [i]. Otherwise, z could be extended by x [i]. Moreover,
z [1 . . . k − 1] = LCS (x [1 . . . i − 1], y [1 . . . j − 1]).

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Continuing Proof in Case 1

Claim: z [1 . . . k − 1] = LCS(x[1 . . . i− 1], y[1 . . . j− 1])

Proof of Claim by Contradiction:

Suppose w is a longer common subsequence of x [1 . . . i − 1]
and y [1 . . . j − 1]. That is, |w | > k − 1.

Then, cut and paste: w · z [k] (w concatenated by z [k]) is also
a common subsequence of x [1 . . . i] and y [1 . . . j]. Since
|w · z [k]| > k , we have reached a contradiction, proving the
above claim.

So, c[i − 1, j − 1] = k − 1, which implies that
c[i , j] = c[i − 1, j − 1] + 1.

Case 2 is proven with a similar argument.

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming: Hallmark # 1

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x
and a prefix of y .

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Recursive Algorithm for LCS

LCS(x, y, i, j)
1: if x [i] = y [j] then
2: c[i , j] ← LCS(x , y , i − 1, j − 1) + 1
3: else c[i , j] = max{LCS(x, y, i− 1, j),LCS(x, y, i, j− 1)}

Worst-case: When x [i] 6= y [j], the algorithm evaluates two
subproblems, each one with only one parameter decremented.

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Analysis of Recursion Tree

The height of the recursion tree is m + n. It seems that the work is
exponential because we are solving the same subproblems over and
over. We need to remember subproblems once we solve them!

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming: Hallmark # 2

The number of distinct LCS subproblems for two strings of lengths
m and n is only mn.

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Memoization Algorithm

Memoization: After computing a solution to a subproblem, store
it in a table. Subsequent calls check the table to avoid redoing
work.

LCS(x, y, i, j)
1: if c[i , j] = NIL then
2: if x [i] = y [j] then
3: c[i , j] ← LCS(x , y , i − 1, j − 1) + 1
4: else c[i , j] = max{LCS(x, y, i− 1, j),LCS(x, y, i, j− 1)}

Running Time Analysis: T (n,m) ∈ θ(m · n) since the amount of
work per table entry is constant.
Space Analysis: S(n,m) ∈ θ(m · n) since we only store the table.

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming Algorithm

Idea:

Fill the table top left to
bottom right

T (n,m) ∈ θ(m · n)

Reconstruct the LCS by
tracing backwards

S(n,m) ∈ θ(m · n)

Exercise: reduce S(n,m) to
O(min{m, n})

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Another Dynamic Programming Problem

The 0/1 Integer Knapsack Problem

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

The 0/1 Integer Knapsack Problem

Given n objects

Each object has an integer weight wi and integer profit pi

You have a knapsack with an integer weight capacity M

Problem: Find the subset of n objects that fits in the
knapsack and gives the maximum total profit

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Examples of Possible Solutions

Say the knapsack has capacity M = 20:

Object i 1 2 3 4 5 6

Profit pi 7 6 12 3 12 6

Weight wi 2 8 10 4 14 5

Possible solutions:

Put items 1-3 in knapsack: Total weight is 20, and profit is 25

Put items 1, 2, 4, and 6: Total weight now is 19, profit is 32

Other possible solutions ...

How long does it take to evaluate all feasible solutions?

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Mathematical Formulation of the Optimization Problem

MAXIMIZE
p1 · x1 + p2 · x2 . . .+ pn · xn

such that (SUBJECT TO CONSTRAINT)

w1 · x1 + w2 · x2 + . . .+ wn · xn ≤ M

where xi ∈ {0, 1} for i ∈ {1, 2, . . . , n}

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

A Dynamic Programming Solution

Define fi (y) to be the optimal solution to the subproblem:

MAXIMIZE p1 · x1 + p2 · x2 + . . .+ pi · xi
such that w1 · x1 + w2 · x2 + . . .+ wi · xi ≤ y

where xj ∈ {0, 1} for j ∈ {1, 2, . . . , i}

Then we see the optimal substructure of the solution:

fi (y) =

{
max{fi−1(y), pi + fi−1(y − wi)} if y ≥ wi

fi−1(y) if y < wi

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Seeing the Optimal Substructure

f1(y) = the maximum profit for capacity y considering only
object 1, where x1 ∈ {0, 1}
f2(y) = the maximum profit for capacity y considering only
objects 1 and 2, where x1, x2 ∈ {0, 1}
Consider what happens when we consider object 3:

If x3 = 0, this means we do not choose to include object 3 in
the knapsack. So, maximum profit is what it used to be using
objects 1, 2: f3(y) = f2(y)
Else, we choose to include, which means we only have y − w3

capacity for objects 1, 2:

We do not know a priori whether x3 should be 0 or 1
The only criterion is that f3(y) = max{f2(y), f2(y − w3)}

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Computing fi(y)

The optimal substructure dictates that we compute fi−1(y)
for all capacities y ∈ {0, 1, . . . ,M}
The recursion shows it is only necessary to save fi (y) and
fi−1(y) for all possible values of y

Basic Idea:

Set f0(y) = 0 ∀y ∈ {0, 1, . . . ,M}
Compute f1(y) ∀y ∈ {0, 1, . . . ,M}
...
Compute fn(y) ∀y ∈ {0, 1, . . .M}

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

Dynamic Programming Solution in Action

Let p = (7, 6, 12, 3, 12, 16), w = (2, 8, 10, 4, 14, 5), and M = 20

0 1 2 3 4 . . . 10 . . . 20

f0 0 0 0 0 0 . . . 0 . . . 0

f1 0 0 7 7 7 . . . 7 . . . 7

f2 0 0 7 7 7 . . . 13 . . . 13

f3 0 0 7 7 7 . . . 13

f4
f5
f6

Question: How big is the matrix that stores solutions to
subproblems?

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

Outline of Today’s Class
Dynamic Programming

Longest Common Subsequence
Dynamic Programming Hallmark # 1: Optimal Substructure
Dynamic Programming Solution to LCS
Dynamic Programming Hallmark # 2: Overlapping subproblems
The 0/1 Integer Knapsack Problem

A Simpler Version of the Knapsack Problem

What if one can take portions of one item?

Amarda Shehu Lecture: Analysis of Algorithms (CS483 - 001)

	Dynamic Programming
	Longest Common Subsequence
	Dynamic Programming Hallmark # 1: Optimal Substructure
	Dynamic Programming Solution to LCS
	Dynamic Programming Hallmark # 2: Overlapping subproblems
	The 0/1 Integer Knapsack Problem

