CS 485: Autonomous Robotics

Bug Algorithms

Amarda Shehu

Department of Computer Science
George Mason University

1 General Properties of Bug Path-Planning Algorithms

2 Bug Algorithms with Tactile (Contact) Sensors

- Bug0
- Bug1
- Bug2

3 Bug Algorithms with Range Sensors

- TangentBug

4 Summary

Problem: Compute a collision-free path from an initial to a goal position

Bug Path-Planning Algorithms

Reactive Paradigm

- No global model of the world, i.e., obstacles are unknown
- Only local information acquired through sensing
- Inspired by insects

Bug Path-Planning Algorithms

Reactive Paradigm

Properties

- Complete algorithms, i.e., find solution if it exists, report no when there is no solution

■ Theoretical lower and upper bounds on path length; optimal paths in certain cases

Bug Path-Planning Algorithms

Reactive Paradigm

- No global model of the world, i.e., obstacles are unknown
- Only local information acquired through sensing
- Inspired by insects

Properties

■ Complete algorithms, i.e., find solution if it exists, report no when there is no solution

- Theoretical lower and upper bounds on path length; optimal paths in certain cases

Environment

- Two-dimensional scene filled with unknown obstacles
- Each obstacle is a simple closed curve of finite length and non-zero thickness
- A straight line crosses an obstacle finitely many times
- Obstacles do not touch each other
- Locally finite number of obstacles, i.e., any disc of finite radius intersects a finite set of obstacles
- Initial and goal positions are known

Bug Path-Planning Algorithms

Reactive Paradigm

■ No global model of the world, i.e., obstacles are unknown

- Only local information acquired through sensing
- Inspired by insects

Properties

■ Complete algorithms, i.e., find solution if it exists, report no when there is no solution

- Theoretical lower and upper bounds on path length; optimal paths in certain cases

Environment

- Two-dimensional scene filled with unknown obstacles
- Each obstacle is a simple closed curve of finite length and non-zero thickness
- A straight line crosses an obstacle finitely many times
- Obstacles do not touch each other
- Locally finite number of obstacles, i.e., any disc of finite radius intersects a finite set of obstacles
- Initial and goal positions are known

Bug Path-Planning Algorithms

Reactive Paradigm

■ No global model of the world, i.e., obstacles are unknown

- Only local information acquired through sensing
- Inspired by insects

Properties

- Complete algorithms, i.e., find solution if it exists, report no when there is no solution
- Theoretical lower and upper bounds on path length; optimal paths in certain cases

Environment

- Two-dimensional scene filled with unknown obstacles
- Each obstacle is a simple closed curve of finite length and non-zero thickness
- A straight line crosses an obstacle finitely many times
- Obstacles do not touch each other
- Locally finite number of obstacles, i.e., any disc of finite radius intersects a finite set of obstacles
- Initial and goal positions are known

Simple Sensing

- Bug1, Bug2 assume essentially tactile (contact) sensing
- TangentBug, VisBug, DistBug deal with finite distance sensing
- I-Bug uses only signal strength emanating from goal,

Tactile Sensor

- Provides current position

■ Detects when a contact with an obstacle occurs

Tactile Sensor

- Provides current position
- Detects when a contact with an obstacle occurs
Bug0, Bug1, Bug2 Algorithms - General Idea
repeat until goal is reached
- head toward goal
- if sensor reports contact with an obstacle then
- follow obstacle boundary
- at some point, leave the obstacle and head again toward goal

Tactile Sensor

- Provides current position
- Detects when a contact with an obstacle occurs
Bug0, Bug1, Bug2 Algorithms - General Idea
repeat until goal is reached
- head toward goal

■ if sensor reports contact with an obstacle then

- follow obstacle boundary
- at some point, leave the obstacle and head again toward goal

Path consists of a sequence of hit $\left(H_{i}\right)$ and leave $\left(L_{i}\right)$ points Algorithms differ on how leave points are computed

Bug0 Algorithm

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
- follow obstacle boundary
until can head toward goal again

Bug0 Algorithm

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
- follow obstacle boundary until can head toward goal again

Is Bug0 a complete algorithm?

Bug0 Algorithm

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
- follow obstacle boundary until can head toward goal again

Is Bug0 a complete algorithm?

Bug0 Algorithm

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
- follow obstacle boundary until can head toward goal again

Is Bug0 a complete algorithm?

Bug0 fails to find a solution even though a solution exists

Bug0 Algorithm

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
- follow obstacle boundary until can head toward goal again

Is Bug0 a complete algorithm?

Bug0 fails to find a solution even though a solution exists Bug0 has no memory

Bug0 Algorithm

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
- follow obstacle boundary until can head toward goal again

Is Bug0 a complete algorithm?

Bug0 fails to find a solution even though a solution exists Bug0 has no memory
can we obtain a complete algorithm if Bug has some memory?

Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 repeat until goal is reached

- head toward goal

■ if sensor reports contact with an obstacle then

- circumnavigate the obstacle and remember how close you get to the goal
- return to that closest point (by wall following) and continue toward goal

Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 repeat until goal is reached

- head toward goal

■ if sensor reports contact with an obstacle then

- circumnavigate the obstacle and remember how close you get to the goal
- return to that closest point (by wall following) and continue toward goal

Bug1 Pseudocode

1: $L_{0} \leftarrow$ init; $i \leftarrow 1$
2: loop

Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430
repeat until goal is reached

- head toward goal

■ if sensor reports contact with an obstacle then

- circumnavigate the obstacle and remember how close you get to the goal
- return to that closest point (by wall following) and continue toward goal

Bug1 Pseudocode

1: $L_{0} \leftarrow$ init ; $i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: until goal is reached or obstacle is encountered at H_{i}

Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430
repeat until goal is reached

- head toward goal

■ if sensor reports contact with an obstacle then

- circumnavigate the obstacle and remember how close you get to the goal
- return to that closest point (by wall following) and continue toward goal

Bug1 Pseudocode

1: $L_{0} \leftarrow$ init; $i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: until goal is reached or obstacle is encountered at H_{i}
5: if goal is reached then exit with success

Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430
repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
- circumnavigate the obstacle and remember how close you get to the goal
- return to that closest point (by wall following) and continue toward goal

Bug1 Pseudocode

1: $L_{0} \leftarrow$ init ; $i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: until goal is reached or obstacle is encountered at H_{i}
5: if goal is reached then exit with success

6: repeat follow boundary recording point L_{i} with shortest distance to goal
7: until goal is reached or H_{i} is re-encountered

Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 repeat until goal is reached

- head toward goal

■ if sensor reports contact with an obstacle then

- circumnavigate the obstacle and remember how close you get to the goal
- return to that closest point (by wall following) and continue toward goal

Bug1 Pseudocode

1: $L_{0} \leftarrow$ init $; i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: until goal is reached or obstacle is encountered at H_{i}
5: if goal is reached then exit with success

6: repeat follow boundary recording point L_{i} with shortest distance to goal
7: until goal is reached or H_{i} is re-encountered
8: if goal is reached then exit with success

Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
- circumnavigate the obstacle and remember how close you get to the goal
- return to that closest point (by wall following) and continue toward goal

Bug1 Pseudocode

1: $L_{0} \leftarrow$ init; $i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: until goal is reached or obstacle is encountered at H_{i}
5: if goal is reached then exit with success

6: repeat follow boundary recording point L_{i} with shortest distance to goal
7: until goal is reached or H_{i} is re-encountered
8: if goal is reached then exit with success
9: follow boundary from H_{i} to L_{i} along shortest route

Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 repeat until goal is reached

- head toward goal

■ if sensor reports contact with an obstacle then

- circumnavigate the obstacle and remember how close you get to the goal
- return to that closest point (by wall following) and continue toward goal

Bug1 Pseudocode

1: $L_{0} \leftarrow$ init ; $i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: until goal is reached or obstacle is encountered at H_{i}
5: if goal is reached then exit with success

6: repeat follow boundary recording point L_{i} with shortest distance to goal
7: until goal is reached or H_{i} is re-encountered
8: if goal is reached then exit with success
9: follow boundary from H_{i} to L_{i} along shortest route
10: if move on straight line from L_{i} toward goal moves into obstacle then exit with failure 11: \quad else $i \leftarrow i+1$

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch:

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?
- if straight line is tangent to obstacle, then no circumnavigation

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?
- if straight line is tangent to obstacle, then no circumnavigation
- otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?
- if straight line is tangent to obstacle, then no circumnavigation
- otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d\left(L_{i}\right.$, goal $)>d\left(H_{i+1}\right.$, goal $)$ since

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?
- if straight line is tangent to obstacle, then no circumnavigation
- otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d\left(L_{i}\right.$, goal $)>d\left(H_{i+1}\right.$, goal $)$ since different obstacles do not touch

Therefore,

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?
- if straight line is tangent to obstacle, then no circumnavigation
- otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d\left(L_{i}\right.$, goal $)>d\left(H_{i+1}\right.$, goal $)$ since different obstacles do not touch

Therefore, $d($ init, goal $) \geq d\left(H_{1}\right.$, goal $)>d\left(L_{1}\right.$, goal $)>d\left(H_{2}\right.$, goal $)>d\left(L_{2}\right.$, goal $)>\ldots$ Thus,

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?
- if straight line is tangent to obstacle, then no circumnavigation
- otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d\left(L_{i}\right.$, goal $)>d\left(H_{i+1}\right.$, goal $)$ since different obstacles do not touch

Therefore, $d($ init, goal $) \geq d\left(H_{1}\right.$, goal $)>d\left(L_{1}\right.$, goal $)>d\left(H_{2}\right.$, goal $)>d\left(L_{2}\right.$, goal $)>\ldots$ Thus, since $d\left(L_{i}\right.$, goal) is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?
- if straight line is tangent to obstacle, then no circumnavigation
- otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d\left(L_{i}\right.$, goal $)>d\left(H_{i+1}\right.$, goal $)$ since different obstacles do not touch

Therefore, $d($ init, goal $) \geq d\left(H_{1}\right.$, goal $)>d\left(L_{1}\right.$, goal $)>d\left(H_{2}\right.$, goal $)>d\left(L_{2}\right.$, goal $)>\ldots$
Thus, since $d\left(L_{i}\right.$, goal) is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 2: Bug meets only a finite number of obstacles
Proof Sketch:

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?
- if straight line is tangent to obstacle, then no circumnavigation
- otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d\left(L_{i}\right.$, goal $)>d\left(H_{i+1}\right.$, goal $)$ since different obstacles do not touch

Therefore, $d($ init, goal $) \geq d\left(H_{1}\right.$, goal $)>d\left(L_{1}\right.$, goal $)>d\left(H_{2}\right.$, goal $)>d\left(L_{2}\right.$, goal $)>\ldots$
Thus, since $d\left(L_{i}\right.$, goal) is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 2: Bug meets only a finite number of obstacles
Proof Sketch: Straight-line segments from L_{i} to $H_{i+1}(i=0,1, \ldots)$ are within the same circle of radius d (init, goal) centered at goal since

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?
- if straight line is tangent to obstacle, then no circumnavigation
- otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d\left(L_{i}\right.$, goal $)>d\left(H_{i+1}\right.$, goal $)$ since different obstacles do not touch

Therefore, $d($ init, goal $) \geq d\left(H_{1}\right.$, goal $)>d\left(L_{1}\right.$, goal $)>d\left(H_{2}\right.$, goal $)>d\left(L_{2}\right.$, goal $)>\ldots$
Thus, since $d\left(L_{i}\right.$, goal) is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 2: Bug meets only a finite number of obstacles
Proof Sketch: Straight-line segments from L_{i} to $H_{i+1}(i=0,1, \ldots)$ are within the same circle of radius d (init, goal) centered at goal since

- each hit point is closer than the last leave point

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?
- if straight line is tangent to obstacle, then no circumnavigation
- otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d\left(L_{i}\right.$, goal $)>d\left(H_{i+1}\right.$, goal $)$ since different obstacles do not touch

Therefore, $d($ init, goal $) \geq d\left(H_{1}\right.$, goal $)>d\left(L_{1}\right.$, goal $)>d\left(H_{2}\right.$, goal $)>d\left(L_{2}\right.$, goal $)>\ldots$
Thus, since $d\left(L_{i}\right.$, goal) is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 2: Bug meets only a finite number of obstacles
Proof Sketch: Straight-line segments from L_{i} to $H_{i+1}(i=0,1, \ldots)$ are within the same circle of radius d (init, goal) centered at goal since

- each hit point is closer than the last leave point
- assumption that any finite disc can intersect only a finite number of obstacles

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?
- if straight line is tangent to obstacle, then no circumnavigation
- otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d\left(L_{i}\right.$, goal $)>d\left(H_{i+1}\right.$, goal $)$ since different obstacles do not touch

Therefore, $d($ init, goal $) \geq d\left(H_{1}\right.$, goal $)>d\left(L_{1}\right.$, goal $)>d\left(H_{2}\right.$, goal $)>d\left(L_{2}\right.$, goal $)>\ldots$
Thus, since $d\left(L_{i}\right.$, goal) is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 2: Bug meets only a finite number of obstacles
Proof Sketch: Straight-line segments from L_{i} to $H_{i+1}(i=0,1, \ldots)$ are within the same circle of radius d (init, goal) centered at goal since

- each hit point is closer than the last leave point
- assumption that any finite disc can intersect only a finite number of obstacles Corollary: Bug1 algorithm always terminates in finite time

Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again
Proof Sketch: Consider the sequence of points visited by bug: init, $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$

- $d\left(H_{i}\right.$, goal $) \geq d\left(L_{i}\right.$, goal $)$ since L_{i} closest point on obstacle boundary to goal
- $d\left(H_{i}\right.$, goal $)>d\left(L_{i}\right.$, goal $)$ since $H_{i} \neq L_{i}$. Why?
- if straight line is tangent to obstacle, then no circumnavigation
- otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d\left(L_{i}\right.$, goal $)>d\left(H_{i+1}\right.$, goal $)$ since different obstacles do not touch

Therefore, $d($ init, goal $) \geq d\left(H_{1}\right.$, goal $)>d\left(L_{1}\right.$, goal $)>d\left(H_{2}\right.$, goal $)>d\left(L_{2}\right.$, goal $)>\ldots$
Thus, since $d\left(L_{i}\right.$, goal) is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 2: Bug meets only a finite number of obstacles
Proof Sketch: Straight-line segments from L_{i} to $H_{i+1}(i=0,1, \ldots)$ are within the same circle of radius d (init, goal) centered at goal since

- each hit point is closer than the last leave point
- assumption that any finite disc can intersect only a finite number of obstacles

Corollary: Bug1 algorithm always terminates in finite time
Proof Sketch: Follows immediately from Lemma 1 and Lemma 2

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch:

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then
1 Bug1 does not terminate in finite time, or

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then
1 Bug1 does not terminate in finite time, or
2 There is no path to goal, but Bug1

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then
1 Bug1 does not terminate in finite time, or
2 There is no path to goal, but Bug1 incorrectly reports finding a path, or

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then
1 Bug1 does not terminate in finite time, or
2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
3 There is at least a path to goal, but Bug1 incorrectly reports finding no path But...

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then
1 Bug1 does not terminate in finite time, or
2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
3 There is at least a path to goal, but Bug1 incorrectly reports finding no path But...

1 Lemma 1 and 2 imply that Bug1 always terminates in finite time

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then
1 Bug1 does not terminate in finite time, or
2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
3 There is at least a path to goal, but Bug1 incorrectly reports finding no path
But...
1 Lemma 1 and 2 imply that Bug1 always terminates in finite time
2. Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports finding a path to goal, then there is a path to goal

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then
1 Bug1 does not terminate in finite time, or
2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
3 There is at least a path to goal, but Bug1 incorrectly reports finding no path But...

1 Lemma 1 and 2 imply that Bug1 always terminates in finite time
2. Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports finding a path to goal, then there is a path to goal

3 Then, move from last leave point toward goal crosses into obstacle

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then
1 Bug1 does not terminate in finite time, or
2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
3 There is at least a path to goal, but Bug1 incorrectly reports finding no path
But...
1 Lemma 1 and 2 imply that Bug1 always terminates in finite time
2 Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports finding a path to goal, then there is a path to goal

3 Then, move from last leave point toward goal crosses into obstacle

- But, line must cross obstacle even number of times (Jordan curve theorem)

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then
1 Bug1 does not terminate in finite time, or
2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
3 There is at least a path to goal, but Bug1 incorrectly reports finding no path
But...
1 Lemma 1 and 2 imply that Bug1 always terminates in finite time
2 Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports finding a path to goal, then there is a path to goal

3 Then, move from last leave point toward goal crosses into obstacle

- But, line must cross obstacle even number of times (Jordan curve theorem)
- Then, there is another intersection point on boundary closer to goal

Bug1 Completeness Analysis

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then
1 Bug1 does not terminate in finite time, or
2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
3 There is at least a path to goal, but Bug1 incorrectly reports finding no path
But...
1 Lemma 1 and 2 imply that Bug1 always terminates in finite time
2. Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports finding a path to goal, then there is a path to goal
3 Then, move from last leave point toward goal crosses into obstacle

- But, line must cross obstacle even number of times (Jordan curve theorem)
- Then, there is another intersection point on boundary closer to goal
- Since, we assumed there is a path to goal, then goal cannot be encircled by obstacle

Bug1 Completeness Analysis

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then
1 Bug1 does not terminate in finite time, or
2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
3 There is at least a path to goal, but Bug1 incorrectly reports finding no path
But...
1 Lemma 1 and 2 imply that Bug1 always terminates in finite time
2 Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports finding a path to goal, then there is a path to goal
3 Then, move from last leave point toward goal crosses into obstacle

- But, line must cross obstacle even number of times (Jordan curve theorem)
- Then, there is another intersection point on boundary closer to goal
- Since, we assumed there is a path to goal, then goal cannot be encircled by obstacle
- Thus, bug must have encountered this other intersection point (which is supposedly closer to the goal) when circumnavigating obstacle boundary, which contradicts definition of leave point

Lower Bound: What is the shortest distance that Bug1 might travel?

Bug1 Lower and Upper Bounds on Path Length

Lower Bound: What is the shortest distance that Bug1 might travel?

- d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

Lower Bound: What is the shortest distance that Bug1 might travel?

- d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- any path can be looked as consisting of straight-line segments (from $L_{i_{1}}$ to H_{i}) and walking around the obstacles

Lower Bound: What is the shortest distance that Bug1 might travel?

- d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- any path can be looked as consisting of straight-line segments (from $L_{i_{1}}$ to H_{i}) and walking around the obstacles
- sum of straight-line segments \leq

Lower Bound: What is the shortest distance that Bug1 might travel?

- d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- any path can be looked as consisting of straight-line segments (from $L_{i_{1}}$ to H_{i}) and walking around the obstacles
- sum of straight-line segments $\leq d$ (init, goal). Why?

Lower Bound: What is the shortest distance that Bug1 might travel?

- d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- any path can be looked as consisting of straight-line segments (from $L_{i_{1}}$ to H_{i}) and walking around the obstacles
- sum of straight-line segments $\leq d$ (init, goal). Why? (leave point is closest to obstacle)

Lower Bound: What is the shortest distance that Bug1 might travel?

- d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- any path can be looked as consisting of straight-line segments (from $L_{i_{1}}$ to H_{i}) and walking around the obstacles
- sum of straight-line segments $\leq d$ (init, goal). Why? (leave point is closest to obstacle)
- when going from H_{i} to L_{i}, Bug1 first circumnavigates the i-th obstacle and then, after coming back to H_{i}, selects the shorter route to go to L_{i}. Thus, $1.5 p_{i}$, where p_{i} is the perimeter of the i-th obstacle

Lower Bound: What is the shortest distance that Bug1 might travel?

- d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- any path can be looked as consisting of straight-line segments (from $L_{i_{1}}$ to H_{i}) and walking around the obstacles
- sum of straight-line segments $\leq d$ (init, goal). Why? (leave point is closest to obstacle)
- when going from H_{i} to L_{i}, Bug1 first circumnavigates the i-th obstacle and then, after coming back to H_{i}, selects the shorter route to go to L_{i}. Thus, $1.5 p_{i}$, where p_{i} is the perimeter of the i-th obstacle
Therefore, upper bound

$$
d(\text { init }, \text { goal })+1.5 \sum_{i=1}^{n} p_{i}
$$

What is n ?

Lower Bound: What is the shortest distance that Bug1 might travel?

- d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- any path can be looked as consisting of straight-line segments (from $L_{i_{1}}$ to H_{i}) and walking around the obstacles
- sum of straight-line segments $\leq d$ (init, goal). Why? (leave point is closest to obstacle)
- when going from H_{i} to L_{i}, Bug1 first circumnavigates the i-th obstacle and then, after coming back to H_{i}, selects the shorter route to go to L_{i}. Thus, $1.5 p_{i}$, where p_{i} is the perimeter of the i-th obstacle
Therefore, upper bound

$$
d(\text { init }, \text { goal })+1.5 \sum_{i=1}^{n} p_{i}
$$

What is n ?

- number of obstacles intersecting the disc of radius d (init, goal) centered at goal

Lower Bound: What is the shortest distance that Bug1 might travel?

- d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- any path can be looked as consisting of straight-line segments (from $L_{i_{1}}$ to H_{i}) and walking around the obstacles
- sum of straight-line segments $\leq d$ (init, goal). Why? (leave point is closest to obstacle)
- when going from H_{i} to L_{i}, Bug1 first circumnavigates the i-th obstacle and then, after coming back to H_{i}, selects the shorter route to go to L_{i}. Thus, $1.5 p_{i}$, where p_{i} is the perimeter of the i-th obstacle
Therefore, upper bound

$$
d(\text { init }, \text { goal })+1.5 \sum_{i=1}^{n} p_{i}
$$

What is n ?

- number of obstacles intersecting the disc of radius d (init, goal) centered at goal Remind me again why it is not necessary to consider obstacles outside this disk?

Lower Bound: What is the shortest distance that Bug1 might travel?

- d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- any path can be looked as consisting of straight-line segments (from $L_{i_{1}}$ to H_{i}) and walking around the obstacles
- sum of straight-line segments $\leq d$ (init, goal). Why? (leave point is closest to obstacle)
- when going from H_{i} to L_{i}, Bug1 first circumnavigates the i-th obstacle and then, after coming back to H_{i}, selects the shorter route to go to L_{i}. Thus, $1.5 p_{i}$, where p_{i} is the perimeter of the i-th obstacle
Therefore, upper bound

$$
d(\text { init }, \text { goal })+1.5 \sum_{i=1}^{n} p_{i}
$$

What is n ?

- number of obstacles intersecting the disc of radius d (init, goal) centered at goal Remind me again why it is not necessary to consider obstacles outside this disk?
- see proof of Lemma 2, distances from $H_{1}, L_{1}, H_{2}, L_{2}, \ldots$ to goal become smaller and smaller and are never more than d (init, goal). So, bug never encounters obstacles outside this disk

Bug2 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 call the line from init to goal the m-line repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle \mathcal{O}_{i} then

■ follow \mathcal{O}_{i} until m-line encountered again at a closer point to goal

- leave \mathcal{O}_{i} and head toward goal

Bug2 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 call the line from init to goal the m-line
repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle \mathcal{O}_{i} then

■ follow \mathcal{O}_{i} until m-line encountered again at a closer point to goal

- leave \mathcal{O}_{i} and head toward goal

Bug2 Pseudocode

1: $L_{0} \leftarrow$ init; $i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: if no obstacle encountered then exist with success
5: $\quad \mathcal{O}_{i}$ is encountered at hit point H_{i}

Bug2 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 call the line from init to goal the m-line repeat until goal is reached

- head toward goal

■ if sensor reports contact with an obstacle \mathcal{O}_{i} then
■ follow \mathcal{O}_{i} until m-line encountered again at a closer point to goal

- leave \mathcal{O}_{i} and head toward goal

Bug2 Pseudocode

1: $L_{0} \leftarrow$ init; $i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: if no obstacle encountered then exist with success
5: $\quad \mathcal{O}_{i}$ is encountered at hit point H_{i}
6: repeat follow boundary
7: until
(a) goal is reached or

Bug2 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 call the line from init to goal the m-line repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle \mathcal{O}_{i} then

■ follow \mathcal{O}_{i} until m-line encountered again at a closer point to goal

- leave \mathcal{O}_{i} and head toward goal

Bug2 Pseudocode

1: $L_{0} \leftarrow$ init; $i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: if no obstacle encountered then exist with success
5: $\quad \mathcal{O}_{i}$ is encountered at hit point H_{i}
6: repeat follow boundary

7: until
(a) goal is reached or
(b) H_{i} is re-encountered

Bug2 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 call the line from init to goal the m-line repeat until goal is reached

- head toward goal

■ if sensor reports contact with an obstacle \mathcal{O}_{i} then
■ follow \mathcal{O}_{i} until m-line encountered again at a closer point to goal

- leave \mathcal{O}_{i} and head toward goal

Bug2 Pseudocode

1: $L_{0} \leftarrow$ init; $i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: if no obstacle encountered then exist with success
5: $\quad \mathcal{O}_{i}$ is encountered at hit point H_{i}
6: repeat follow boundary
7: until
(a) goal is reached or
(b) H_{i} is re-encountered
(c) m-line is re-encountered at Q s.t
$Q \neq H_{i}$
$d(Q$, goal $)<d\left(H_{i}\right.$, goal $)$, and
line $\left(Q\right.$, goal) does not cross \mathcal{O}_{i} at Q

Bug2 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 call the line from init to goal the m-line repeat until goal is reached

- head toward goal

■ if sensor reports contact with an obstacle \mathcal{O}_{i} then
■ follow \mathcal{O}_{i} until m-line encountered again at a closer point to goal

- leave \mathcal{O}_{i} and head toward goal

Bug2 Pseudocode

1: $L_{0} \leftarrow$ init; $i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: if no obstacle encountered then exist with success
5: $\quad \mathcal{O}_{i}$ is encountered at hit point H_{i}
6: repeat follow boundary
7: until
(a) goal is reached or
(b) H_{i} is re-encountered
(c) m-line is re-encountered at Q s.t
$Q \neq H_{i}$
$d(Q$, goal $)<d\left(H_{i}\right.$, goal $)$, and
line $\left(Q\right.$, goal) does not cross \mathcal{O}_{i} at Q
8: if goal is reached then exit with success

Bug2 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 call the line from init to goal the m-line repeat until goal is reached

■ head toward goal
■ if sensor reports contact with an obstacle \mathcal{O}_{i} then
■ follow \mathcal{O}_{i} until m-line encountered again at a closer point to goal

- leave \mathcal{O}_{i} and head toward goal

Bug2 Pseudocode

1: $L_{0} \leftarrow$ init; $i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: if no obstacle encountered then exist with success
5: $\quad \mathcal{O}_{i}$ is encountered at hit point H_{i}
6: repeat follow boundary
7: until
(a) goal is reached or
(b) H_{i} is re-encountered
(c) m-line is re-encountered at Q s.t
$Q \neq H_{i}$
$d(Q$, goal $)<d\left(H_{i}\right.$, goal $)$, and
line $\left(Q\right.$, goal) does not cross \mathcal{O}_{i} at Q
8: if goal is reached then exit with success
9: else if H_{i} is re-encountered then exit with failure

$$
\text { else if } H_{i} \text { is re-encountered then exit with failure }
$$

Bug2 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 call the line from init to goal the m-line repeat until goal is reached

■ head toward goal
■ if sensor reports contact with an obstacle \mathcal{O}_{i} then
■ follow \mathcal{O}_{i} until m-line encountered again at a closer point to goal

- leave \mathcal{O}_{i} and head toward goal

Bug2 Pseudocode

1: $L_{0} \leftarrow$ init; $i \leftarrow 1$
2: loop
3: repeat move on a straight line from L_{i-1} to goal
4: if no obstacle encountered then exist with success
5: $\quad \mathcal{O}_{i}$ is encountered at hit point H_{i}
6: repeat follow boundary
7: until
(a) goal is reached or
(b) H_{i} is re-encountered
(c) m-line is re-encountered at Q s.t
$Q \neq H_{i}$
$d(Q$, goal $)<d\left(H_{i}\right.$, goal $)$, and
line $\left(Q\right.$, goal) does not cross \mathcal{O}_{i} at Q
8: if goal is reached then exit with success
9: else if H_{i} is re-encountered then exit with failure
10: \quad else $L_{i} \leftarrow Q ; i \leftarrow i+1$

Bug2 Analysis

Lemma 3: Bug2 meets only a finite number of obstacles. Moreover, the only obstacles that can be met are those that intersect the straight-line segment (init, goal)

Bug2 Analysis

Lemma 3: Bug2 meets only a finite number of obstacles. Moreover, the only obstacles that can be met are those that intersect the straight-line segment (init, goal)

Lemma 4: Bug2 will pass any point of the i-th obstacle boundary at most $n_{i} / 2$ times, where n_{i} is the number of intersections between the straight line (init, goal) and the i-th obstacle

Bug2 Analysis

Lemma 3: Bug2 meets only a finite number of obstacles. Moreover, the only obstacles that can be met are those that intersect the straight-line segment (init, goal)

Lemma 4: Bug2 will pass any point of the i-th obstacle boundary at most $n_{i} / 2$ times, where n_{i} is the number of intersections between the straight line (init, goal) and the i-th obstacle

Theorem: Bug2 is a complete path-planning algorithm. Moreover, the length of a path generated by Bug2 never exceeds the limit

$$
d(i n i t, g \circ a l)+\sum_{i} \frac{n_{i} p_{i}}{2},
$$

where p_{i} 's refer to the perimeters of the obstacles intersecting the straight-line segment (init, goal)

Bug2 Analysis

Lemma 3: Bug2 meets only a finite number of obstacles. Moreover, the only obstacles that can be met are those that intersect the straight-line segment (init, goal)

Lemma 4: Bug2 will pass any point of the i-th obstacle boundary at most $n_{i} / 2$ times, where n_{i} is the number of intersections between the straight line (init, goal) and the i-th obstacle

Theorem: Bug2 is a complete path-planning algorithm. Moreover, the length of a path generated by Bug2 never exceeds the limit

$$
d(\text { init, goal })+\sum_{i} \frac{n_{i} p_{i}}{2},
$$

where p_{i} 's refer to the perimeters of the obstacles intersecting the straight-line segment (init, goal)

Proof Sketch for Lemma 3: Similar to for Bug1.
Proof Sketch for Lemma 4: (take-home exercise)

Bug2 Analysis

Lemma 3: Bug2 meets only a finite number of obstacles. Moreover, the only obstacles that can be met are those that intersect the straight-line segment (init, goal)

Lemma 4: Bug2 will pass any point of the i-th obstacle boundary at most $n_{i} / 2$ times, where n_{i} is the number of intersections between the straight line (init, goal) and the i-th obstacle

Theorem: Bug2 is a complete path-planning algorithm. Moreover, the length of a path generated by Bug2 never exceeds the limit

$$
d(\text { init, goal })+\sum_{i} \frac{n_{i} p_{i}}{2},
$$

where p_{i} 's refer to the perimeters of the obstacles intersecting the straight-line segment (init, goal)

Proof Sketch for Lemma 3: Similar to for Bug1.
Proof Sketch for Lemma 4: (take-home exercise)
Useful ideas:

- m-line intersects $\mathcal{O}_{i} n_{i}$ times
- At most n_{i} leave points from \mathcal{O}_{i} (Why?)
- Half of them not valid (Why?)
- Distance traversed to reach each valid point is what?

Bug1 vs Bug2

Bug1 is an exhaustive search algorithm - looks at all choices before commiting Bug1 has a more stable performance

Bug2 is a greedy search algorithm

- takes first choice that looks better

Bug2 often outperforms Bug1, but not always

Bug1 is an exhaustive search algorithm - looks at all choices before commiting Bug1 has a more stable performance

Bug2 is a greedy search algorithm

- takes first choice that looks better

Bug2 often outperforms Bug1, but not always

Draw scenes in which Bug2 beats Bug1 and vice-versa

Bug1 is an exhaustive search algorithm - looks at all choices before commiting Bug1 has a more stable performance

Bug2 is a greedy search algorithm

- takes first choice that looks better

Bug2 often outperforms Bug1, but not always

Draw scenes in which Bug2 beats Bug1 and vice-versa

Bug1 is an exhaustive search algorithm - looks at all choices before commiting Bug1 has a more stable performance

Bug2 is a greedy search algorithm

- takes first choice that looks better

Bug2 often outperforms Bug1, but not always

Draw scenes in which Bug2 beats Bug1 and vice-versa

Bug1 beats Bug2 in this scene

Bug1 is an exhaustive search algorithm - looks at all choices before commiting Bug1 has a more stable performance

Bug2 is a greedy search algorithm

- takes first choice that looks better

Bug2 often outperforms Bug1, but not always

Draw scenes in which Bug2 beats Bug1 and vice-versa

Bug1 beats Bug2 in this scene ... but only if Bug2 always turns counterclock-wise or always turns clockwise when following boundary

Bug2 beats Bug1

Bug1 is an exhaustive search algorithm - looks at all choices before commiting Bug1 has a more stable performance

Bug2 is a greedy search algorithm

- takes first choice that looks better

Bug2 often outperforms Bug1, but not always

Draw scenes in which Bug2 beats Bug1 and vice-versa

Bug1 beats Bug2 in this scene . . . but only if Bug2 always turns counterclock-wise or always turns clockwise when following boundary what happens if Bug2 decides at random whether to turn counterclock-wise or clockwise each time it has follow an obstacle boundary?

Bug1 is an exhaustive search algorithm - looks at all choices before commiting Bug1 has a more stable performance

Bug2 is a greedy search algorithm

- takes first choice that looks better

Bug2 often outperforms Bug1, but not always

Draw scenes in which Bug2 beats Bug1 and vice-versa

Bug1 beats Bug2 in this scene . . . but only if Bug2 always turns counterclock-wise or always turns clockwise when following boundary what happens if Bug2 decides at random whether to turn counterclock-wise or clockwise each time it has follow an obstacle boundary?
can you draw a scene then where Bug1 beats Bug2 no matter how Bug2 decides to turn each time it has follow an obstacle, boundary?

Raw Distance Function $\rho: \mathbb{R}^{2} \times[0,2 \pi) \rightarrow \mathbb{R}$

$$
\rho(x, \theta)=\min _{\alpha \in[0, \infty)} \alpha \text { such that the point } x+\alpha\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right] \in \bigcup_{i} \text { Boundary }\left(O_{i}\right)
$$

- $\rho(x, \theta)$ is the distance to the closest obstacle along the ray emanating from point $x \in \mathbb{R}^{2}$ at an angle $\theta \in[0,2 \pi)$

Saturated Raw Distance Function $\rho_{R}: \mathbb{R}^{2} \times[0,2 \pi) \rightarrow \mathbb{R}$ with Sensing Range $R \in \mathbb{R} \geq 0$

$$
\rho_{R}(x, \theta)= \begin{cases}\rho(x, \theta), & \text { if } \rho(x, \theta)<R \\ \infty, & \text { otherwise }\end{cases}
$$

- ρ_{R} has same value as ρ when obstacle is within sensing range R
- ρ_{R} has ∞ value when obstacles are outside the sensing range R

TangentBug relies on range sensor ρ_{R} to compute endpoints of finite continuous segments on obstacle boundaries

These segments constitute its local model of the world

TangentBug relies on range sensor ρ_{R} to compute endpoints of finite continuous segments on obstacle boundaries

These segments constitute its local model of the world

- TangentBug currently thinks it has unobstructed way to goal

TangentBug Algorithm - Idea

TangentBug relies on range sensor ρ_{R} to compute endpoints of finite continuous segments on obstacle boundaries

These segments constitute its local model of the world

- TangentBug now sees that it can't go straight to the goal. What can it do?
- TangentBug currently thinks it has unobstructed way to goal

TangentBug Algorithm - Idea

TangentBug relies on range sensor ρ_{R} to compute endpoints of finite continuous segments on obstacle boundaries

These segments constitute its local model of the world

- TangentBug now sees that it can't go straight to the goal. What can it do?
- Choose the point B_{i} that minimizes heuristic distance $d\left(x, B_{i}\right)+d\left(B_{i}\right.$, goal $)$
- TangentBug currently thinks it has unobstructed way to goal

TangentBug Algorithm - Idea

TangentBug relies on range sensor ρ_{R} to compute endpoints of finite continuous segments on obstacle boundaries

These segments constitute its local model of the world

- TangentBug currently thinks it has unobstructed way to goal

- TangentBug now sees that it can't go straight to the goal. What can it do?
- Choose the point B_{i} that minimizes heuristic distance $d\left(x, B_{i}\right)+d\left(B_{i}\right.$, goal $)$
- What if this distance starts increasing?

TangentBug Algorithm - Idea

TangentBug relies on range sensor ρ_{R} to compute endpoints of finite continuous segments on obstacle boundaries

These segments constitute its local model of the world

- TangentBug currently thinks it has unobstructed way to goal

- TangentBug now sees that it can't go straight to the goal. What can it do?
- Choose the point B_{i} that minimizes heuristic distance $d\left(x, B_{i}\right)+d\left(B_{i}\right.$, goal $)$
- What if this distance starts increasing? Then, start following some boundary
- A motion-to-goal behavior as long as way is clear or there is a visible obstacle boundary point that decreases heuristic distance
- A boundary following behavior invoked when heuristic distance increases
- A value $d_{\text {followed }}$ which is the shortest distance between the sensed boundary and goal
- A value $d_{\text {reach }}$ which is the shortest distance between blocking obstacle and goal (or distance to goal if no blocking obstacle visible)
- Terminate boundary following behavior when $d_{\text {reach }}<d_{\text {followed }}$
repeat until goal is reached
1 repeat
- take sensor-range reading and compute continuous range segments
- move toward point $n \in\left\{\right.$ goal, $\left.B_{1}, B_{2}, \ldots\right\}$ that minimizes $h(x, n)=d(x, n)+d(n$, goal $)$
until
- goal is reached, or
- value of $h(x, n)$ begins to increase

2 follow boundary continuing in same direction as before repeating

- update discontinuity points $\left\{B_{1}, B_{2}, \ldots\right\}, d_{\text {reach }}, d_{\text {followed }}$ until
- goal is reached, or
- a complete cycle is performed (goal is unreachable)
- $d_{\text {reach }}<d_{\text {followed }}$

Completeness proof similar to other bug-algorithm proofs, although the definition of hit and leave points is trickier

Basic problem: compute tangent to curve forming boundary of obstacle at any point, and drive the robot in that direction

■ Let $D(x)=\min _{c} d(x, c), c \in \bigcup$ Boundary $\left(O_{i}\right)$

- Let $G(x)=D(x)-W$, where W is some safe following distance
- Note that $\nabla G(x)$ points radially away from the object
- Define $T(x)=(\nabla G(x))$ the tangent direction

■ in a real sensor, this is just the tangent to the array element with lowest reading

- We could just move in the direction $T(x)$
- open-loop control
- Bug0 is incomplete
- Bug1 is complete, safe, and reliable
- Bug2 is complete, better in some cases than Bug1, but worse in others
- TangentBug is complete, supports range sensors

Reactive paradigm with minimal global information
Point Robot, Simple Motions

- Move straight toward goal
- Move along obstacle boundary
- Stop

