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Basic Motion Planning

Problem: Compute a collision-free path from an initial to a goal position

init

goal
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Bug Path-Planning Algorithms

Reactive Paradigm

Sense Act

No global model of the world, i.e., obstacles are unknown

Only local information acquired through sensing

Inspired by insects

Properties

Complete algorithms, i.e., find solution if it exists, report no when there is no solution

Theoretical lower and upper bounds on path length; optimal paths in certain cases

Environment

Two-dimensional scene filled with unknown obstacles

Each obstacle is a simple closed curve of finite length
and non-zero thickness

A straight line crosses an obstacle finitely many times

Obstacles do not touch each other

Locally finite number of obstacles, i.e., any disc of
finite radius intersects a finite set of obstacles

Initial and goal positions are known

Point Robot, Simple Motions

Move straight toward goal

Move along obstacle boundary

Stop

Simple Sensing

Bug1, Bug2 assume essentially tactile (contact) sensing

TangentBug, VisBug, DistBug deal with finite distance sensing

I-Bug uses only signal strength emanating from goal
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Bug with Tactile (Contact) Sensor

Tactile Sensor

Provides current position

Detects when a contact with an obstacle occurs

Bug0, Bug1, Bug2 Algorithms – General Idea

repeat until goal is reached

head toward goal

if sensor reports contact with an obstacle then

follow obstacle boundary
at some point, leave the obstacle and head again toward goal

Path consists of a sequence of hit (Hi ) and leave (Li ) points

Algorithms differ on how leave points are computed
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Bug0 Algorithm

repeat until goal is reached

head toward goal

if sensor reports contact with an obstacle then

follow obstacle boundary
until can head toward goal again

init

goal
H1

L1

H2

L2
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H1
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H2

L2

Is Bug0 a complete algorithm?

init

goal

H1

Bug0 fails to find a solution even though a solution exists
Bug0 has no memory

can we obtain a complete algorithm if Bug has some memory?
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Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

repeat until goal is reached

head toward goal

if sensor reports contact with an obstacle then

circumnavigate the obstacle and remember how close you get to the goal
return to that closest point (by wall following) and continue toward goal

init

goal
H1

L1

H2
L2

Bug1 Pseudocode
1: L0 ← init; i ← 1
2: loop
3: repeat move on a straight line from Li−1 to goal
4: until goal is reached or obstacle is encountered at Hi

5: if goal is reached then exit with success

6: repeat follow boundary recording point Li with shortest distance to goal
7: until goal is reached or Hi is re-encountered

8: if goal is reached then exit with success

9: follow boundary from Hi to Li along shortest route

10: if move on straight line from Li toward goal moves into obstacle then exit with failure
11: else i ← i + 1

Amarda Shehu (485) Bug Algorithms with Tactile (Contact) Sensors 7



Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

repeat until goal is reached

head toward goal

if sensor reports contact with an obstacle then

circumnavigate the obstacle and remember how close you get to the goal
return to that closest point (by wall following) and continue toward goal

init

goal
H1

L1

H2
L2

Bug1 Pseudocode
1: L0 ← init; i ← 1
2: loop

3: repeat move on a straight line from Li−1 to goal
4: until goal is reached or obstacle is encountered at Hi

5: if goal is reached then exit with success

6: repeat follow boundary recording point Li with shortest distance to goal
7: until goal is reached or Hi is re-encountered

8: if goal is reached then exit with success

9: follow boundary from Hi to Li along shortest route

10: if move on straight line from Li toward goal moves into obstacle then exit with failure
11: else i ← i + 1

Amarda Shehu (485) Bug Algorithms with Tactile (Contact) Sensors 7



Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

repeat until goal is reached

head toward goal

if sensor reports contact with an obstacle then

circumnavigate the obstacle and remember how close you get to the goal
return to that closest point (by wall following) and continue toward goal

init

goal
H1

L1

H2
L2

Bug1 Pseudocode
1: L0 ← init; i ← 1
2: loop
3: repeat move on a straight line from Li−1 to goal
4: until goal is reached or obstacle is encountered at Hi

5: if goal is reached then exit with success

6: repeat follow boundary recording point Li with shortest distance to goal
7: until goal is reached or Hi is re-encountered

8: if goal is reached then exit with success

9: follow boundary from Hi to Li along shortest route

10: if move on straight line from Li toward goal moves into obstacle then exit with failure
11: else i ← i + 1

Amarda Shehu (485) Bug Algorithms with Tactile (Contact) Sensors 7



Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

repeat until goal is reached

head toward goal

if sensor reports contact with an obstacle then

circumnavigate the obstacle and remember how close you get to the goal
return to that closest point (by wall following) and continue toward goal

init

goal
H1

L1

H2
L2

Bug1 Pseudocode
1: L0 ← init; i ← 1
2: loop
3: repeat move on a straight line from Li−1 to goal
4: until goal is reached or obstacle is encountered at Hi

5: if goal is reached then exit with success

6: repeat follow boundary recording point Li with shortest distance to goal
7: until goal is reached or Hi is re-encountered

8: if goal is reached then exit with success

9: follow boundary from Hi to Li along shortest route

10: if move on straight line from Li toward goal moves into obstacle then exit with failure
11: else i ← i + 1

Amarda Shehu (485) Bug Algorithms with Tactile (Contact) Sensors 7



Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

repeat until goal is reached

head toward goal

if sensor reports contact with an obstacle then

circumnavigate the obstacle and remember how close you get to the goal
return to that closest point (by wall following) and continue toward goal

init

goal
H1

L1

H2
L2

Bug1 Pseudocode
1: L0 ← init; i ← 1
2: loop
3: repeat move on a straight line from Li−1 to goal
4: until goal is reached or obstacle is encountered at Hi

5: if goal is reached then exit with success

6: repeat follow boundary recording point Li with shortest distance to goal
7: until goal is reached or Hi is re-encountered

8: if goal is reached then exit with success

9: follow boundary from Hi to Li along shortest route

10: if move on straight line from Li toward goal moves into obstacle then exit with failure
11: else i ← i + 1

Amarda Shehu (485) Bug Algorithms with Tactile (Contact) Sensors 7



Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

repeat until goal is reached

head toward goal

if sensor reports contact with an obstacle then

circumnavigate the obstacle and remember how close you get to the goal
return to that closest point (by wall following) and continue toward goal

init

goal
H1

L1

H2
L2

Bug1 Pseudocode
1: L0 ← init; i ← 1
2: loop
3: repeat move on a straight line from Li−1 to goal
4: until goal is reached or obstacle is encountered at Hi

5: if goal is reached then exit with success

6: repeat follow boundary recording point Li with shortest distance to goal
7: until goal is reached or Hi is re-encountered

8: if goal is reached then exit with success

9: follow boundary from Hi to Li along shortest route

10: if move on straight line from Li toward goal moves into obstacle then exit with failure
11: else i ← i + 1

Amarda Shehu (485) Bug Algorithms with Tactile (Contact) Sensors 7



Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

repeat until goal is reached

head toward goal

if sensor reports contact with an obstacle then

circumnavigate the obstacle and remember how close you get to the goal
return to that closest point (by wall following) and continue toward goal

init

goal
H1

L1

H2
L2

Bug1 Pseudocode
1: L0 ← init; i ← 1
2: loop
3: repeat move on a straight line from Li−1 to goal
4: until goal is reached or obstacle is encountered at Hi

5: if goal is reached then exit with success

6: repeat follow boundary recording point Li with shortest distance to goal
7: until goal is reached or Hi is re-encountered

8: if goal is reached then exit with success

9: follow boundary from Hi to Li along shortest route

10: if move on straight line from Li toward goal moves into obstacle then exit with failure
11: else i ← i + 1

Amarda Shehu (485) Bug Algorithms with Tactile (Contact) Sensors 7



Bug1 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

repeat until goal is reached

head toward goal

if sensor reports contact with an obstacle then

circumnavigate the obstacle and remember how close you get to the goal
return to that closest point (by wall following) and continue toward goal

init

goal
H1

L1

H2
L2

Bug1 Pseudocode
1: L0 ← init; i ← 1
2: loop
3: repeat move on a straight line from Li−1 to goal
4: until goal is reached or obstacle is encountered at Hi

5: if goal is reached then exit with success

6: repeat follow boundary recording point Li with shortest distance to goal
7: until goal is reached or Hi is re-encountered

8: if goal is reached then exit with success

9: follow boundary from Hi to Li along shortest route

10: if move on straight line from Li toward goal moves into obstacle then exit with failure
11: else i ← i + 1

Amarda Shehu (485) Bug Algorithms with Tactile (Contact) Sensors 7



Bug1 Properties

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal,

the bug never returns to this obstacle again

Proof Sketch:

Consider the sequence of points visited by bug: init,H1, L1,H2, L2, . . .

d(Hi , goal) ≥ d(Li , goal) since Li closest point on obstacle boundary to goal

d(Hi , goal) > d(Li , goal) since Hi 6= Li . Why?

if straight line is tangent to obstacle, then no circumnavigation
otherwise, straight line crosses obstacle at two distinct points (since obstacle has
finite thickness)

d(Li , goal) > d(Hi+1, goal) since different obstacles do not touch

Therefore, d(init, goal) ≥ d(H1, goal) > d(L1, goal) > d(H2, goal) > d(L2, goal) > . . .

Thus, since d(Li , goal) is the shortest distance from the i-th obstacle to goal and since each

each new hit point is closer than the last leave point, then bug cannot encounter the i-th

obstacle again

Lemma 2: Bug meets only a finite number of obstacles

Proof Sketch: Straight-line segments from Li to Hi+1 (i = 0, 1, . . .) are within the same circle of
radius d(init, goal) centered at goal since

each hit point is closer than the last leave point

assumption that any finite disc can intersect only a finite number of obstacles

Corollary: Bug1 algorithm always terminates in finite time

Proof Sketch: Follows immediately from Lemma 1 and Lemma 2
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Bug1 Completeness Analysis

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

finds a path to goal when a path exists or

terminates with failure when there is no path to goal

Proof Sketch:

Assume to the contrary that Bug1 is incomplete. Then

1 Bug1 does not terminate in finite time, or

2 There is no path to goal, but Bug1 incorrectly reports finding a path, or

3 There is at least a path to goal, but Bug1 incorrectly reports finding no path

But. . .

1 Lemma 1 and 2 imply that Bug1 always terminates in finite time

2 Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports
finding a path to goal, then there is a path to goal

3 Then, move from last leave point toward goal crosses into obstacle

But, line must cross obstacle even number of times (Jordan curve theorem)
Then, there is another intersection point on boundary closer to goal
Since, we assumed there is a path to goal, then goal cannot be encircled by obstacle
Thus, bug must have encountered this other intersection point (which is supposedly
closer to the goal) when circumnavigating obstacle boundary, which contradicts
definition of leave point
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Bug1 Lower and Upper Bounds on Path Length

Lower Bound: What is the shortest distance that Bug1 might travel?

d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

any path can be looked as consisting of straight-line segments (from Li1 to Hi ) and
walking around the obstacles

sum of straight-line segments ≤ d(init, goal). Why? (leave point is closest to obstacle)
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coming back to Hi , selects the shorter route to go to Li . Thus, 1.5pi , where pi is the
perimeter of the i-th obstacle

Therefore, upper bound
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n∑
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pi

What is n?

number of obstacles intersecting the disc of radius d(init, goal) centered at goal

Remind me again why it is not necessary to consider obstacles outside this disk?

see proof of Lemma 2, distances from H1, L1,H2, L2, . . . to goal become smaller and
smaller and are never more than d(init, goal). So, bug never encounters obstacles
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Bug2 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

call the line from init to goal the m-line

repeat until goal is reached

head toward goal

if sensor reports contact with an obstacle Oi then
follow Oi until m-line encountered again at a closer point to goal
leave Oi and head toward goal

init

goal
H1

L1

H2
L2

Bug2 Pseudocode
1: L0 ← init; i ← 1
2: loop
3: repeat move on a straight line from Li−1 to goal
4: if no obstacle encountered then exist with success

5: Oi is encountered at hit point Hi

6: repeat follow boundary
7: until

(a) goal is reached or
(b) Hi is re-encountered
(c) m-line is re-encountered at Q s.t

Q 6= Hi

d(Q, goal) < d(Hi , goal), and
line (Q, goal) does not cross Oi at Q

8: if goal is reached then exit with success
9: else if Hi is re-encountered then exit with failure

10: else Li ← Q; i ← i + 1
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Bug2 Analysis

Lemma 3: Bug2 meets only a finite number of obstacles. Moreover, the only obstacles that can

be met are those that intersect the straight-line segment (init, goal)

Lemma 4: Bug2 will pass any point of the i-th obstacle boundary at most ni/2 times, where ni
is the number of intersections between the straight line (init, goal) and the i-th obstacle

Theorem: Bug2 is a complete path-planning algorithm. Moreover, the length of a path
generated by Bug2 never exceeds the limit

d(init, goal) +
∑
i

nipi

2
,

where pi ’s refer to the perimeters of the obstacles intersecting the straight-line segment

(init, goal)

Proof Sketch for Lemma 3: Similar to for Bug1.
Proof Sketch for Lemma 4: (take-home exercise)

Useful ideas:

m-line intersects Oi ni times

At most ni leave points from Oi (Why?)

Half of them not valid (Why?)

Distance traversed to reach each valid point is what?
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Bug1 vs Bug2

Bug1 is an exhaustive search algorithm
– looks at all choices before commiting
Bug1 has a more stable performance

Bug2 is a greedy search algorithm
– takes first choice that looks better
Bug2 often outperforms Bug1, but not always

Draw scenes in which Bug2 beats Bug1 and vice-versa

init goal

Bug2 beats Bug1

Bug1 beats Bug2 in this scene . . . but only if

Bug2 always turns counterclock-wise or always

turns clockwise when following boundary

what happens if Bug2 decides at random

whether to turn counterclock-wise or clockwise

each time it has follow an obstacle boundary?

can you draw a scene then where Bug1 beats

Bug2 no matter how Bug2 decides to turn each

time it has follow an obstacle boundary?
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turns clockwise when following boundary

what happens if Bug2 decides at random

whether to turn counterclock-wise or clockwise

each time it has follow an obstacle boundary?

can you draw a scene then where Bug1 beats

Bug2 no matter how Bug2 decides to turn each

time it has follow an obstacle boundary?
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Bug with Range Sensor

Raw Distance Function ρ : R2 × [0, 2π)→ R

ρ(x , θ) = min
α∈[0,∞)

α such that the point x + α

[
cos θ
sin θ

]
∈
⋃
i

Boundary(Oi )

ρ(x , θ) is the distance to the closest obstacle along the ray emanating from point x ∈ R2

at an angle θ ∈ [0, 2π)

Saturated Raw Distance Function ρR : R2 × [0, 2π)→ R with Sensing Range R ∈ R≥0

ρR(x , θ) =

{
ρ(x , θ), if ρ(x , θ) < R

∞, otherwise

ρR has same value as ρ when obstacle is within sensing range R

ρR has ∞ value when obstacles are outside the sensing range R
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TangentBug Algorithm – Idea

Ishay Kamon, Elon Romon, and Ehud Rivlin: IJRR (1998) 17:934–953

TangentBug relies on range sensor ρR to
compute endpoints of finite continuous
segments on obstacle boundaries

These segments constitute its local model
of the world

goal x

B1

B2

B3

B4

B5

B6

B7

B8

TangentBug currently thinks it has
unobstructed way to goal

goal x

B1 B2

B3

B4B6

B5

B7

B8

TangentBug now sees that it can’t go
straight to the goal. What can it do?

Choose the point Bi that minimizes
heuristic distance d(x ,Bi ) + d(Bi , goal)

What if this distance starts increasing?
Then, start following some boundary
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TangentBug Algorithm – Basic Steps

A motion-to-goal behavior as long as way is clear or there is a visible obstacle
boundary point that decreases heuristic distance

A boundary following behavior invoked when heuristic distance increases

A value dfollowed which is the shortest distance between the sensed boundary and
goal

A value dreach which is the shortest distance between blocking obstacle and goal (or
distance to goal if no blocking obstacle visible)

Terminate boundary following behavior when dreach < dfollowed
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TangentBug Algorithm – Pseudocode

repeat until goal is reached

1 repeat
take sensor-range reading and compute continuous range segments
move toward point n ∈ {goal,B1,B2, . . .} that minimizes
h(x , n) = d(x , n) + d(n, goal)

until
goal is reached, or
value of h(x , n) begins to increase

2 follow boundary continuing in same direction as before repeating
update discontinuity points {B1,B2, . . .}, dreach, dfollowed

until
goal is reached, or
a complete cycle is performed (goal is unreachable)
dreach < dfollowed

Completeness proof similar to other bug-algorithm proofs, although the definition of hit
and leave points is trickier
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TangentBug Algorithm – Some Implementation Details

Basic problem: compute tangent to curve forming boundary of obstacle at any point,
and drive the robot in that direction

Let D(x) = minc d(x , c), c ∈
⋃
Boundary(Oi )

Let G(x) = D(x)−W , where W is some safe following distance

Note that ∇G(x) points radially away from the object

Define T (x) = (∇G(x)) the tangent direction
in a real sensor, this is just the tangent to the array element with lowest reading

We could just move in the direction T (x)
open-loop control
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Summary

Bug0 is incomplete

Bug1 is complete, safe, and reliable

Bug2 is complete, better in some cases than Bug1, but worse in others

TangentBug is complete, supports range sensors

Reactive paradigm with minimal global information

Point Robot, Simple Motions

Move straight toward goal

Move along obstacle boundary

Stop
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