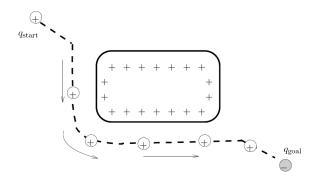
CS 485: Autonomous Robotics Potential Functions, aka May the Force be with you

Amarda Shehu

Department of Computer Science George Mason University

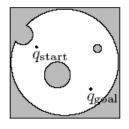
Basic Idea

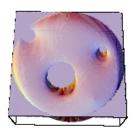
- Suppose the goal is a point $g \in \mathbb{R}^2$
- Suppose the robot is a point $r \in \mathbb{R}^2$
- Think of a spring drawing the robot toward the goal and away from obstacles
- Can also think of like and opposite charges



Another Idea

- Think of the goal as the bottom of a bowl
- The robot is at the rim of the bowl
- What will happen?





Using Potential Functions for Path Planning

- Both the spring and bowl analogies are ways of storing *potential energy*
- The robot moves to a lower-energy configuration

A potential function is a function $U: \mathbb{R}^n \to \mathbb{R}$

Energy is minimized by following the *negated gradient* of the potential energy function

gradient at
$$q \in \mathbb{R}^n$$
: $\nabla U(q) = \left[\frac{\partial U}{\partial q_1}(q), \dots, \frac{\partial U}{\partial q_n}(q)\right]^T$

We can now think of a vector field over the space of all q's

■ the robot looks at the vector at its current position and goes in that direction

Attractive + Repulsive Potentials

Desired objectives

- robot moves toward the goal (attractive potential)
- robot stays away from the obstacles (repulsive potential)

$$U(q) = U_{att}(q) + U_{rep}(q)$$

Attractive Potential: Conic Potential

Attractive potential: $U_{att}(q)$

- lacktriangleright monotonically increasing with distance from q_{goal}
- lacksquare example: conic potential (scaled distance to goal, $\zeta>0$ scaling factor)

$$U_{att}(q) = \zeta ||q, q_{goal}||$$

■ what's the gradient?

$$abla U_{ ext{att}}(q) = rac{\zeta}{||q,q_{ ext{goal}}||} (q-q_{ ext{goal}})$$

what's the magnitude of the gradient at q?

$$||
abla U_{att}(q)|| = egin{cases} \zeta, & q
eq q_{goal} \ undefined, & q = q_{goal} \end{cases}$$

lacktriangle conic potential has discontinuity at q_{goal}

Attractive Potential: Quadratic Potential

Attractive potential: $U_{att}(q)$

- lacktriangleright monotonically increasing with distance from q_{goal}
- preference:
 continuously differentiable + magnitude decreases as robot approaches q_{goal}
- lacksquare example: quadratic potential ($\zeta>0$ scaling factor)

$$U_{att}(q) = rac{1}{2} \zeta \, \left| \left| q, q_{goal}
ight|
ight|^2$$

what's the gradient?

$$abla U_{ extstyle{att}}(q) = \zeta \; (q - q_{ extstyle{goal}})$$

 \blacksquare what's the magnitude of the gradient at q?

$$||\nabla U_{att}(q)|| = \zeta ||q, q_{goal}||$$

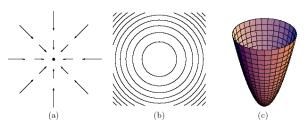


Figure : (a) Potential Field. (b) Contour Plot. (c) Quadratic Potential.

Attractive Potential: Quadratic Potential

Attractive potential: $U_{att}(q)$

- lacktriangleright monotonically increasing with distance from q_{goal}
- lacktriangle preference: continuously differentiable + magnitude decreases as robot approaches q_{goal}
- \blacksquare example: quadratic potential ($\zeta > 0$ scaling factor)

$$U_{ extsf{att}}(q) = rac{1}{2} \zeta \, \left| \left| q, q_{ extsf{goal}}
ight|
ight|^2$$

what's the gradient?

$$\nabla U_{att}(q) = \zeta \; (q - q_{goal})$$

■ what's the magnitude of the gradient at *q*?

$$||\nabla U_{\mathsf{att}}(q)|| = \zeta ||q, q_{\mathsf{goal}}||$$

- what happens when robot is far away from the goal?
- robot may move too fast as potential grows without bounds the further away from goal; this may produce a velocity that is too large

Attractive Potential: Combining Conic and Quadratic

Attractive potential: $U_{att}(q)$

- lacktriangleright monotonically increasing with distance from q_{goal}
- preference:
 - continuously differentiable, magnitude decreases as robot approaches $q_{\it goal}$ does not produce very large velocities
- lacktriangle combine conic and quadratic potentials ($\zeta > 0$ scaling factor)

$$U_{att}(q) = \begin{cases} \frac{1}{2}\zeta \, ||q, q_{goal}||^2, & \text{if } ||q, q_{goal}|| \leq d_{goal}^* \\ d_{goal}^*\zeta \, ||q, q_{goal}|| - \frac{1}{2}\zeta \left(d_{goal}^*\right)^2, & \text{if } ||q, q_{goal}|| > d_{goal}^* \end{cases}$$

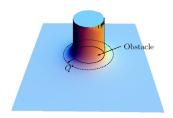
 $(d_{goal}^*$: threshold from goal where planner switches between conic and quadratic potentials)

■ what's the gradient? is it well defined at the boundary?

$$abla U_{ ext{att}}(q) = egin{cases} \zeta\left(q-q_{ ext{goal}}
ight), & ext{if } ||q,q_{ ext{goal}}|| \leq d_{ ext{goal}}^* \ d_{ ext{goal}}^* \zeta\left(q-q_{ ext{goal}}
ight)/||q,q_{ ext{goal}}||, & ext{if } ||q,q_{ ext{goal}}|| > d_{ ext{goal}}^* \end{cases}$$

Repulsive potential: $U_{rep}(q)$

- the closer the robot is to an obstacle, the stronger the repulsive force should be
- robot keeps track of closest obstacle
- there is a threshold so robot can ignore far away obstacles



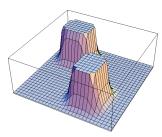
Repulsive potential: $U_{rep}(q)$

■ the closer the robot is to an obstacle, the stronger the repulsive force should be

$$U_{rep}(q) = egin{cases} rac{1}{2} \eta \ \left(rac{1}{D(q)} - rac{1}{d_{obst}^*}
ight)^2, & \textit{if } D(q) \leq d_{obst}^* \ 0, & \textit{otherwise} \end{cases}$$

$$abla U_{rep}(q) = egin{cases} \eta\left(rac{1}{d_{obst}^*} - rac{1}{D(q)}
ight) rac{1}{(D(q))^2}
abla D(q), & \textit{if } D(q) \leq d_{obst}^* \ 0, & \textit{otherwise} \end{cases}$$

- D(q): distance to the closest obstacle; $\eta > 0$ scaling factor
- lacksquare d $_{obst}^*$: threshold to allow the robot to ignore obstacles far away from it



Repulsive potential: $U_{rep}(q)$

■ the closer the robot is to an obstacle, the stronger the repulsive force should be

$$U_{rep}(q) = egin{cases} rac{1}{2} \eta \ \left(rac{1}{D(q)} - rac{1}{d_{obst}^*}
ight)^2, & \textit{if } D(q) \leq d_{obst}^* \ 0, & \textit{otherwise} \end{cases}$$

$$abla U_{rep}(q) = egin{cases} \eta\left(rac{1}{d_{obst}^*} - rac{1}{D(q)}
ight) rac{1}{(D(q))^2}
abla D(q), & \textit{if } D(q) \leq d_{obst}^* \ 0, & \textit{otherwise} \end{cases}$$

- D(q): distance to the closest obstacle; $\eta > 0$ scaling factor
- d_{obst}^* : threshold to allow the robot to ignore obstacles far away from it
- what happens around points that are two-way equidistant from obstacles?

D is nonsmooth \Longrightarrow path may oscillate

Repulsive potential: $U_{rep}(q)$

minimum distance to i-th obstacle

$$d_i(q) = \min_{c \in \text{Obstacle}:} d(q, c)$$

 \blacksquare for convex obstacles (c is closest point to q)

$$abla d_i(q) = rac{c-q}{||q,c||}$$

■ repulsive potential for each obstacle

$$U_{rep_i}(q) = egin{cases} rac{1}{2} \eta \; \left(rac{1}{d_i(q)} - rac{1}{d_{obst_i}^*}
ight)^2, & \textit{if} \; d_i(q) \leq d_{obst_i}^* \ 0, & \textit{otherwise} \end{cases}$$

overall repulsive potential as sum of obstacle potentials

$$U_{rep}(q) = \sum_{\cdot} U_{rep_i}(q)$$

Gradient Descent: Moving Opposite to the Gradient

repeat until gradient is zero (or its magnitude very small)

■ take small step in the direction opposite the gradient

Pseudocode

- 1: $q \leftarrow q_{init}$
- 2: while $||\nabla U(q)|| > \epsilon$ do
- 3: $\mathbf{q} \leftarrow \mathbf{q} \alpha \nabla U(\mathbf{q})$
- \bullet $\epsilon > 0$: small constant to ensure termination criteria
- $\alpha > 0$: step size (doesn't have to be constant)

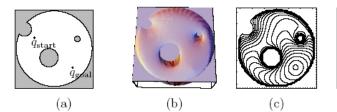


Figure : (a): Configuration space with gray obstacles. (b) Potential function energy surface. (c) Contour plot for energy surface. (d) Gradient vectors for potential function.

(d)

Gradient Descent: Moving Opposite to the Gradient

repeat until gradient is zero (or its magnitude very small)

take small step in the direction opposite the gradient

Pseudocode

- 1: $q \leftarrow q_{init}$
- 2: while $||\nabla U(q)|| > \epsilon$ do
- 3: $\mathbf{q} \leftarrow \mathbf{q} \alpha \nabla U(\mathbf{q})$
 - \bullet $\epsilon > 0$: small constant to ensure termination criteria
 - $\alpha > 0$: step size (doesn't have to be constant)

Weaknesses of Gradient Descent

- it is relatively slow close to the minimum
- it might 'zigzag' down valleys

Better Methods

- Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
 - ... but more complex to implement

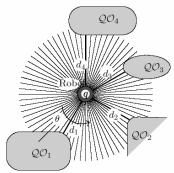
Mobile Robot Implementation

- Robot knows goal position
- Robot does not know where obstacles are located
- Robot has range sensor and can determine its own position

 $U_{att}(q)$ can be easily computed since goal position is known

 $U_{rep}(q)$ approximate it via data from range sensor

- D(q): approximated as the global minimum of the raw distance function ρ
- $d_i(q)$: approximated as local minima with respect to θ in $\rho(q,\theta)$



Brushfire Algorithm - Compute Distances on a Grid

$U_{rep}(q)$:

- discretize space by imposing a grid (define cell neighbors 4- or 8-connectivity)
- label with 1 cells that are partially or fully occupied by obstacles
- label with 2 all unlabeled cells neighboring 1-labeled cells
- **...**
- label with n all unlabeled cells neighboring (n-1)-labeled cells
- stop when all cells have been labeled

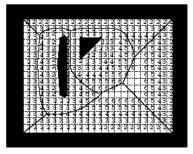
8				_	_		_	_	_			
7	4	3	3	3	3	3	3	3	3	3	3	3
6	4	3	2	2	2	2	2	2	2	2	2	3
5	4	3	2	1	1	2	2	1	1	1	2	3
4	4	3	2	$\backslash 1$	1	2	2	1	1	1	2	3
3	4	3	2	1	1	2	2	1	1	1	2	3
2	4	3	2	2	2	2	2	1	1	1	2	3
1	4	3	3	3	3	3	2	2	2	2	2	3
0	4	4	4	4	4	3	3	3	3	3	3	3
	0	1	2	3	4	5	6	7	8	9	10	11

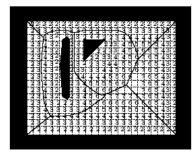
■ gradient from each cell points to a neighbor with lowest label

Brushfire Algorithm - Compute Distances on a Grid

$U_{rep}(q)$:

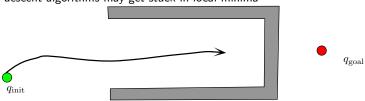
- discretize space by imposing a grid (define cell neighbors 4- or 8-connectivity)
- label with 1 cells that are partially or fully occupied by obstacles
- label with 2 all unlabeled cells neighboring 1-labeled cells
- **.** . . .
- lacktriangle label with n all unlabeled cells neighboring (n-1)-labeled cells
- stop when all cells have been labeled
- can planner get stuck?





Local Minima Problem

Gradient descent algorithms may get stuck in local minima



Two approaches to avoid local-minima problem

- do something different than gradient descent to overcome/avoid local minima
- define potential function so that there is only one global minimum

Wave-Front Planner: Complete Planner in Grid Spaces

- similar to Brushfire algorithm discretize space by imposing a grid
- lacktriangle label with 1 cells that are partially or fully occupied by obstacles
- label with 2 cell where goal is located
- label with 3 all unlabeled cells neighboring 2-labeled cells
- ..
- lacksquare label with n all unlabeled cells neighboring (n-1)-labeled cells
- stop when init cell (green circle) has been labeled

8											
7	8	8	8	8	8	9					
6	7	7	7	7	8	9 <mark>°</mark>	9	9			
5	6	6	6	1	1	8	8	1	1	1	
4	5	5	5	1	1	7	7	1	1	1	
3	4	4	4	1	1	6	7	1	1	1	
2	3	3	3	4	5	6	7	1	1	1	
1	3	2	3	4	5	6	7	8	9		
0	3	3	3	4	5	6	7	8	9		

■ each time move to neighboring non-obstacle cell with lowest label

Potential Functions in Non-Euclidean Spaces

How can we deal with rigid bodies and manipulators?

- Think of gradient vectors as forces
- Define forces in workspace W (which is \mathbb{R}^2 or \mathbb{R}^3)
- "Lift up" forces in configuration space Q

Relationship between Forces in the Workspace and Configuration Space

lacktriangle point $x \in W$ in workspace related to configuration $q \in Q$ via forward kinematics

$$x = FK(q)$$

- "virtual work" principle: work (or power) is a coordinate-independent quantity
- \blacksquare in workspace, power done by a force f is $f^T\dot{x}$
- \blacksquare in configuration space, power done by a force u is $u^T \dot{q}$
- mapping from workspace forces to configuration space forces done via Jacobian $J = \partial FK/\partial q$ of the forward kinematic function

$$f^T \dot{x} = u^T \dot{q}$$
 (by the "virtual work" principle)
 $\Rightarrow f^t J \dot{q} = u^T \dot{q}$ (by Jacobian property $\dot{x} = J \dot{q}$)
 $\Rightarrow f^T J = u^T$
 $\Rightarrow I^T f = u$

Potential Functions for Rigid-Body Robots

- Pick control points r_1, \ldots, r_n on the robot in its initial placement, e.g., r_j could be selected as the j-th robot vertex
- Let $FK_j(q)$ denote the forward kinematics of point r_j example: when $q = (x, y, \theta)$ and $r_i = (x_i, y_i)$

$$\mathrm{FK}_{j}(q) = \left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) \left(\begin{array}{c} x_{j} \\ y_{j} \end{array} \right) + \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} x_{j}\cos\theta - y_{j}\sin\theta + x \\ x_{j}\sin\theta + y_{j}\cos\theta + y \end{array} \right)$$

■ Define ∇U_{att_i} in workspace for each control point r_j , and scale it appropriately, e.g.,

$$abla U_{att_j}(q) = ext{SCALE}_{att}\left(ext{FK}_j(q) - \left(egin{array}{c} g_x \ g_y \end{array}
ight)
ight), \quad ext{where } (g_x,g_y) ext{ is goal center}$$

■ Define $\nabla U_{rep_{i,j}}$ in workspace for each control point r_j and obstacle i, and scale it appropriately,

$$abla U_{rep_{i,j}}(q) = ext{SCALE}_{rep} \left(\left(egin{array}{c} o_{i,x} \ o_{i,y} \end{array}
ight) - ext{FK}_j(q)
ight),$$

where $(o_{i,x}, o_{i,y})$ is closest point to $FK_i(q)$ on obstacle i

Potential Functions for Rigid-Body Robots (cont.)

■ Compute Jacobian

$$J_{j}(q) = \begin{pmatrix} \frac{\partial FK_{j}(q)[1]}{\partial x} & \frac{\partial FK_{j}(q)[1]}{\partial y} & \frac{\partial FK_{j}(q)[1]}{\partial \theta} \\ \frac{\partial FK_{j}(q)[2]}{\partial x} & \frac{\partial FK_{j}(q)[2]}{\partial y} & \frac{\partial FK_{j}(q)[2]}{\partial \theta} \end{pmatrix}$$

 Compute overall gradient in configuration space (apply Jacobian to scaled versions of the workspace gradients)

$$abla U_{ ext{cs}}(q) = \sum_{j} J_{j}^{T}(q)
abla U_{ ext{att}_{j}}(q) + \sum_{j} J_{j}^{T}(q) \sum_{i}
abla U_{ ext{rep}_{i,j}}(q)$$

Apply appropriate scaling to position and orientation components separately, i.e.,

$$move_{x,y} \leftarrow \text{SCALE}_{cs}(\nabla U_{cs_{x,y}}(q)), \quad move_{\theta} \leftarrow \text{SCALE}_{cs}(\nabla U_{cs_{\theta}}(q))$$

Potential Functions for Manipulators

2d chain with n revolute joints where link j has length ℓ_j

End position of the *j*-th link
$$(1 \le j \le n)$$
:

$$\operatorname{FK}_{j}(\theta_{1}, \theta_{2}, \dots, \theta_{n}) = M(\theta_{1})M(\theta_{2})\dots M(\theta_{j}) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \text{ where for } 1 \le i \le j$$

$$M(\theta_i) = \left(\begin{array}{ccc} \cos\theta_i & -\sin\theta_i & 0 \\ \sin\theta_i & \cos\theta_i & 0 \\ 0 & 0 & 1 \end{array} \right) \left(\begin{array}{ccc} 1 & 0 & \ell_i \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right) = \left(\begin{array}{ccc} \cos\theta_i & -\sin\theta_i & \ell_i\cos\theta_i \\ \sin\theta_i & \cos\theta_i & \ell_i\sin\theta_i \\ 0 & 0 & 1 \end{array} \right)$$

Jacobian of
$$j$$
-th link $(1 \le j \le n)$:
$$J_j(\theta_1, \dots, \theta_n) = \begin{pmatrix} \frac{\partial \mathrm{FK}_j(\theta_1, \dots, \theta_n)[1]}{\partial \theta_1} & \cdots & \frac{\partial \mathrm{FK}_j(\theta_1, \dots, \theta_n)[1]}{\partial \theta_j} & 0 \dots 0 \\ \frac{\partial \mathrm{FK}_j(q)[2]}{\partial \theta_1} & \cdots & \frac{\partial \mathrm{FK}_j(q)[2]}{\partial \theta_j} & 0 \dots 0 \end{pmatrix}, \text{ where for } 1 \le i \le j$$

$$\frac{\partial \mathrm{FK}_{j}(\theta_{1},\ldots,\theta_{n})[1]}{\partial \theta_{i}} = -\sin\theta_{i}(ga + hb + a\ell_{i}) + \cos\theta_{i}(gb - ha + b\ell_{i})$$

$$2\mathrm{FK}_{j}(\theta_{1},\ldots,\theta_{n})[1]$$

$$\frac{\partial \mathrm{FK}_j(\theta_1,\ldots,\theta_n)[2]}{\partial \theta_i} = -\sin\theta_i(gd + he + d\ell_i) + \cos\theta_i(ge - hd + e\ell_i)$$

$$\begin{pmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{pmatrix} = M(\theta_1) \dots M(\theta_{i-1}), \begin{pmatrix} g \\ h \\ 1 \end{pmatrix} = M(\theta_{i+1}) \dots M(\theta_j) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Potential Functions for Manipulators (cont.)

2d chain with n revolute joints where link j has length ℓ_j

■ Compute $J_j(\theta_1, \dots, \theta_n)$, $i \leq j$, using a simplified but equivalent definition

$$\frac{\partial FK_j}{\partial \theta_i} = \begin{pmatrix} -FK_j(\theta_1, \dots, \theta_n)[2] + FK_{i-1}(\theta_1, \dots, \theta_n)[2] \\ FK_j(\theta_1, \dots, \theta_n)[1] - FK_{i-1}(\theta_1, \dots, \theta_n)[1] \end{pmatrix}$$

■ Define ∇U_{att_n} for the end-effector and scale it appropriately:

$$abla U_{att_n}(\theta_1,\ldots,\theta_n) = \mathrm{SCALE}_{att}\left(\mathrm{FK}_n(\theta_1,\ldots,\theta_n) - \left(egin{array}{c} g_x \ g_y \end{array}
ight)\right), \quad (g_x,g_y)$$
: goal center

■ Define $\nabla U_{rep_{i,j}}$ in workspace between the end-position of the *j*-th link and the *i*-th obstacle and scale it appropriately, e.g.,

$$\nabla U_{rep_{i,j}}(\theta_1,\ldots,\theta_n) = \text{SCALE}_{rep}\left(\begin{pmatrix} o_{i,x} \\ o_{i,y} \end{pmatrix} - \text{FK}_j(\theta_1,\ldots,\theta_n)\right),$$

 $(o_{i,x}, o_{i,y})$: closest point on the *i*-th obstacle to the end position of the *j*-th link

■ Compute overall gradient in configuration space

$$\nabla U_{\text{cs}}(\theta_1, \dots, \theta_n) = \\ \text{SCALE}(J_j^T(\theta_1, \dots, \theta_n) \nabla U_{\text{att}_n}(\theta_1, \dots, \theta_n) + \\ \sum_{i,i} J_j^T(\theta_1, \dots, \theta_n) \nabla U_{\text{rep}_{i,j}}(\theta_1, \dots, \theta_n))$$

Summary

Basic potential fields: attractive/repulsive forces

Path planning by following gradient of potential field

- Gradient descent (incomplete, suffers from local minima)
- Brushfire algorithm (incomplete, suffers from local minima, grid world)
- Wavefront planner (complete, grid world)

Potential Functions in Non-Euclidean Spaces

- Gradients as forces
 - Lift up workspace forces to configuration space forces
 - Applicable to rigid body robots and manipulators