CS 485: Autonomous Robotics (Exact) Roadmaps

Amarda Shehu

Department of Computer Science George Mason University

Robot Motion Planning

- Application of search approaches, such as A*, stochastic search, and more.
- Search in geometric structures (constrained configuration space)
- Spatial Reasoning
- Challenges
 - Continuous state space
 - Vast, high-dimensional configuration space for searching

The problem is reduced to finding the path of a point robot through configuration space by expanding obstacles.

Motion Planning Problem

- A = robot with p dofs in 2D or 3D workspace
- CB = set of obstacles
- A configuration q is legal if it does not cause the robot to intersect the obstacles
- Given start and goal configurations, q_{start} , q_{goal} , find a continuous sequence of legal configurations from q_{start} to q_{goal} .
- Report failure if no valid path is found.

From Formal Guarantees to Practical Algorithms

- Formal result not useful for practical algorithms¹: A path (if it exists) can be found in time exponential in p and polynomial in m and d.
 - p: dimension of c-space
 - m: number of polynomials describing free c-space
 - d: maximum degree of the polynomials
- In practical approaches: reduce intractable problem in continuous c-space into tractable problem in a discrete space, where then one can use all standard techniques for path finding, such as A*, stochastic search, and more.
- Basic Approaches:
 - Roadmaps: Visibility graphs vs. Voronoi diagrams
 - Cell decomposition
 - Potential fields
- Extensions
 - Sampling techniques
 - Online algorithms

¹J. Canny. "The complexity of Robot Motion Planning Plans." MIT Ph.D. Dissertation, 1987.

Roadmaps

General Idea:

- Avoid searching entire space
- Pre-compute a (hopefully small) graph (the roadmap) such that staying on the "roads" is guaranteed to avoid the obstacles.
- Find a path between q_{start} and q_{goal} by using the roadmap.

Visibility Graphs

In the absence of obstacles, the best path is the straight line between q_{start} and q_{goal} .

Visibility Graphs

- Assuming polygonal osbtacles, it looks like the shortest path is a sequence of straight lines joining the vertices of the obstacles.
- Is this always true?

Visibility Graphs

- Visibility graph G = set of unblocked lines between vertices of the obstacles, $q_{\rm start}$, and $q_{\rm goal}$
- A node P is lined to a node P' if P' is visible from P
- Solution = shortest path in visibility graph G.

Visibility Graph Construction

- Sweep a line originating at each vertex
- Record those lines that end at visible vertices.

Complexity

- Let N = total number of vertices of the obstacle polygons
- Naive: $O(N^3)$
- Sweep: $O(N^2 \cdot lg(N))$
- Optimal: $O(N^2)$

Visibility Graphs: Weaknesses

- Shortest path but:
 - Tries to stay as close as possible to obstacles
 - Any execution error will lead to a collision
 - Complicated in more than 2 dimensions
- We may not care about strict optimality so long as we find a safe path. Staying away from obstacles is more important than finding the shortest path
- Need to define other types of "roadmaps"

Given a set of data points in the plane:

• Color the entire plane such that the color of any point in the plane is the same as the color of its nearest neighbor

- Voronoi diagram = Set of line segments separating regions corresponding to different colors
 - Line segment = points equidistant from 2 data points
 - Vertices = points equidistant from more than 2 data points

- Voronoi diagram = Set of line segments separation regions corresponding to different colors
 - Line segment = points equidistant from 2 data points
 - Vertices = points equidistant from more than 2 data points

- Complexity (in the plane):
- O(N · logN) time
- O(N) space
- See http://www.cs.cornell.edu/Info/People/chew/Delaunay.html for interactive demo

Voronoi Diagrams: Beyond Points

- Edges are combinations of straight line segments and segments of quadratic curves
- Straight edges: Points equidistant from 2 lines
- Curved edges: Points equidistant from one corner and one line

Voronoi Diagrams: Polygons

- Key property: Points on edges of Voronoi diagram are furthest from obstacles
- \blacksquare Idea: Construct a path between $q_{\rm start}$ and $q_{\rm goal}$ by following edges on Voronoi diagram
- Use Voronoi diagram as roadmap graph instead of visibility graph

Voronoi Diagrams: Planning

- Find point q^*_{start} of the Voronoi diagram closest to q_{start}
- Find point q^*_{goal} of the Voronoi diagramn closest to q_{goal}
- Compute shortest path from q^*_{start} to q^*_{goal} on the Voronoi diagram

Voronoi Diagrams: Weaknesses

- Difficult to compute in higher dimensions or non-polygonal worlds
- Approximate algorithms exist
 Use of Voronoi is not necessarily best heuristic (stay away from obstacles)
- It can lead to paths that are much too conservative
- Can be unstable: that is, small changes in obstacle configuration can lead to large changes in the diagram

Cell Decomposition

- Key Idea: Decompose c-space into cells so that any path inside a cell is obstacle-free
- Approximate vs. Exact Cell Decomposition

Approximate Cell Decomposition

- Define discrete grid in c-space
- Mark any cell of the grid that intersects configuration space obstacles as blocked
- Find path through remaining cells by using, for instance, A* (using Euclidean distance as heuristic)
- Cannot be complete as described. Why?

Approximate Cell Decomposition

- Cannot find path in this case, even though one exists
- Solution:
- Distinguish between
 - Cells that are entirely contained in some configuration space obtacle (FULL) and
 - Cells that partially intersect configuration space obstacles (MIXED)
- Try to find path using current set of cells
- If no path found:
 - Subdivide MIXED cells again and try with new set of cells
 - UNTIL some reasonable cell size and then stop with failure

Approximate Cell Decomposition: Limitations

Good:

- Limited assumption on obstacle configuration
- Approach used in practice
- Finds obvious solutions quickly
- Bad:
 - No clear notion of optimality ("best" path)
 - Trade-off completeness/computation
 - Still difficult to employ in high dimensions

Graph of cells defines a roadmap

Graph can be used to find a path between any two configurations

- Critical Event 1: Create new cell
- Critical Event 2: Split cell

Plane Sweep Algorithm

- Initialize current list of cells to empty
- Order vertices of configuration space obstacles along the x direction
- For every vertex:
 - Construct plane at corresponding x location
 - Depending on type of event:
 - Slit current cell into 2 new cells OR
 - Merge two current cells
 - Create a new cell
- Complexity in 2D:
 - Time: $O(N \cdot logN)$
 - Space: O(N)

- A version of exact cell decomposition can be extended to higher dimensions and non-polygonal boundaries (cylindrical cell decomposition)
- Provides exact solution; thus, completeness
- Expensive and difficult to implement in higher dimensions

Potential Fields

See previous lecture.

Back to Roadmaps and Dimensionality of C-space

Millipede-like robot (S. Redon) has close to 13,000 dofs.

Dealing with C-space Dimension

Figure : Full set of neighbors vs. random subset of neighbors

- We should evaluate all neighbors of current state, but:
- Size of neighborhood grows exponentially with dimension
- Very expensive in high dimensions

Solution:

- Evaluate on random subset of K neighbors
- Move to lowest potential neighbor

Draw away:

- Completely describing and optimally exploring C-space is too hard in high dimensions and not necessary
- Focus on finding a good sampling of C-space. So, probabilistic motion planning!