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Robot Motion Planning

Application of search approaches, such as A*, stochastic search, and more.

Search in geometric structures (constrained configuration space)

Spatial Reasoning

Challenges
Continuous state space
Vast, high-dimensional configuration space for searching

The problem is reduced to finding the path of a point robot through configuration
space by expanding obstacles.
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Motion Planning Problem

A = robot with p dofs in 2D or 3D workspace

CB = set of obstacles

A configuration q is legal if it does not cause the robot to intersect the obstacles

Given start and goal configurations, qstart, qgoal, find a continuous sequence of
legal configurations from qstart to qgoal.

Report failure if no valid path is found.
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From Formal Guarantees to Practical Algorithms

Formal result not useful for practical algorithms1: A path (if it exists) can be found
in time exponential in p and polynomial in m and d.

p: dimension of c-space
m: number of polynomials describing free c-space
d: maximum degree of the polynomials

In practical approaches: reduce intractable problem in continuous c-space into
tractable problem in a discrete space, where then one can use all standard
techniques for path finding, such as A*, stochastic search, and more.

Basic Approaches:
Roadmaps: Visibility graphs vs. Voronoi diagrams
Cell decomposition
Potential fields

Extensions
Sampling techniques
Online algorithms

1J. Canny. “The complexity of Robot Motion Planning Plans.” MIT Ph.D. Dissertation, 1987.
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Roadmaps

General Idea:
Avoid searching entire space

Pre-compute a (hopefully small) graph (the roadmap) such that staying on the
“roads” is guaranteed to avoid the obstacles.

Find a path between qstart and qgoal by using the roadmap.
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Visibility Graphs

In the absence of obstacles, the best path is the straight line between qstart and qgoal.
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Visibility Graphs

Assuming polygonal osbtacles, it looks like the shortest path is a sequence of
straight lines joining the vertices of the obstacles.

Is this always true?
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Visibility Graphs

Visibility graph G = set of unblocked lines between vertices of the obstacles, qstart,
and qgoal

A node P is lined to a node P’ if P’ is visible from P

Solution = shortest path in visibility graph G.

Amarda Shehu (485) 8



Visibility Graph Construction

Sweep a line originating at each vertex

Record those lines that end at visible vertices.
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Complexity

Let N = total number of vertices of the obstacle polygons

Naive: O(N3)

Sweep: O(N2 · lg(N))

Optimal: O(N2)
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Visibility Graphs: Weaknesses

Shortest path but:
Tries to stay as close as possible to obstacles
Any execution error will lead to a collision
Complicated in more than 2 dimensions

We may not care about strict optimality so long as we find a safe path. Staying
away from obstacles is more important than finding the shortest path

Need to define other types of “roadmaps”
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Voronoi Diagrams

Given a set of data points in the plane:

Color the entire plane such that the color of any point in the plane is the same as the
color of its nearest neighbor
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Voronoi Diagrams

Voronoi diagram = Set of line segments separating regions corresponding to
different colors

Line segment = points equidistant from 2 data points
Vertices = points equidistant from more than 2 data points
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Voronoi Diagrams
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Voronoi Diagrams

Complexity (in the plane):

O(N · logN) time

O(N) space

See htpp://www.cs.cornell.edu/Info/People/chew/Delaunay.html for interactive
demo
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Voronoi Diagrams: Beyond Points

Edges are combinations of straight line segments and segments of quadratic curves

Straight edges: Points equidistant from 2 lines

Curved edges: Points equidistant from one corner and one line
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Voronoi Diagrams: Polygons

Key property: Points on edges of Voronoi diagram are furthest from obstacles

Idea: Construct a path between qstart and qgoal by following edges on Voronoi
diagram

Use Voronoi diagram as roadmap graph instead of visibility graph
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Voronoi Diagrams: Planning

Find point q∗
start of the Voronoi diagram closest to qstart

Find point q∗
goal of the Voronoi diagramn closest to qgoal

Compute shortest path from q∗
start to q∗

goal on the Voronoi diagram
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Voronoi Diagrams: Weaknesses

Difficult to compute in higher dimensions or non-polygonal worlds

Approximate algorithms exist
Use of Voronoi is not necessarily best heuristic (stay away from obstacles)

It can lead to paths that are much too conservative

Can be unstable: that is, small changes in obstacle configuration can lead to large
changes in the diagram
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Cell Decomposition

Key Idea: Decompose c-space into cells so that any path inside a cell is
obstacle-free

Approximate vs. Exact Cell Decomposition
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Approximate Cell Decomposition

Define discrete grid in c-space

Mark any cell of the grid that intersects configuration space obstacles as blocked

Find path through remaining cells by using, for instance, A* (using Euclidean
distance as heuristic)

Cannot be complete as described. Why?
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Approximate Cell Decomposition

Cannot find path in this case, even though one exists

Solution:
Distinguish between

Cells that are entirely contained in some configuration space obtacle (FULL) and
Cells that partially intersect configuration space obstacles (MIXED)

Try to find path using current set of cells
If no path found:

Subdivide MIXED cells again and try with new set of cells
UNTIL some reasonable cell size and then stop with failure
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Approximate Cell Decomposition: Limitations

Good:
Limited assumption on obstacle configuration
Approach used in practice
Finds obvious solutions quickly

Bad:
No clear notion of optimality (“best” path)
Trade-off completeness/computation
Still difficult to employ in high dimensions
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Exact Cell Decomposition
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Exact Cell Decomposition

Graph of cells defines a roadmap
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Exact Cell Decomposition

Graph can be used to find a path between any two configurations
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Exact Cell Decomposition

Critical Event 1: Create new cell

Critical Event 2: Split cell
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Plane Sweep Algorithm

Initialize current list of cells to empty

Order vertices of configuration space obstacles along the x direction

For every vertex:

Construct plane at corresponding x location
Depending on type of event:

Slit current cell into 2 new cells OR
Merge two current cells

Create a new cell

Complexity in 2D:
Time: O(N · logN)
Space: O(N)
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Exact Cell Decomposition

A version of exact cell decomposition can be extended to higher dimensions and
non-polygonal boundaries (cylindrical cell decomposition)

Provides exact solution; thus, completeness

Expensive and difficult to implement in higher dimensions
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Potential Fields

See previous lecture.
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Back to Roadmaps and Dimensionality of C-space

Millipede-like robot (S. Redon) has close to 13,000 dofs.
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Dealing with C-space Dimension

Figure : Full set of neighbors vs. random subset of neighbors

We should evaluate all neighbors of current state, but:
Size of neighborhood grows exponentially with dimension
Very expensive in high dimensions

Solution:

Evaluate on random subset of K neighbors
Move to lowest potential neighbor

Draw away:

Completely describing and optimally exploring C-space is too hard in high
dimensions and not necessary
Focus on finding a good sampling of C-space. So, probabilistic motion planning!
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