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Path Planning

From Workspace to Configuration Space

simple workspace obstacle transformed into complex configuration-space obstacle
robot transformed into point in configuration space
path transformed from swept volume to 1d curve

[fig from Jyh-Ming Lien]

Explicit Construction of Configuration Space/Roadmaps

PSPACE-complete
Exponential dependency on dimension
No practical algorithms
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Motion Planning for a Point Robot in 2D

Robotic system: Single point

Task: Compute collision-free path from initial to goal position
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Motion Planning for a Point Robot in 2D

Robotic system: Single point

Task: Compute collision-free path from initial to goal position

b

b
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init

Monte-Carlo Idea:

Define input space

Generate inputs at random by sampling the input space

Perform a deterministic computation using the input samples

Aggregate the partial results into final result
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Sampling-based Motion Planning

Robotic system: Single point

Task: Compute collision-free path from initial to goal position
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Sample points

Discard samples that are in collision

Connect neighboring samples via straight-line segments

Discard straight-line segments that are in collision

⇒ Gives rise to a graph, called the roadmap

⇒ Collision-free path can be found by performing graph search on the roadmap
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Probabilistic RoadMap (PRM) Method

[Kavraki, Švestka, Latombe, Overmars 1996]

0. Initialization
add qinit and qgoal to roadmap vertex set V
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1. Sampling
repeat several times

q ← Sample()

if IsCollisionFree(q) = true

add q to roadmap vertex set V
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2. Connect Samples
for each pair of neighboring samples (qa, qb) ∈ V × V

path← GenerateLocalPath(qa, qb)

if IsCollisionFree(path) = true

add (qa, qb) to roadmap edge set E
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3. Graph Search
search graph (V ,E) for path from qinit to qgoal
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Sampling-based Path Planning

Advantages

Computationally efficient

Solves high-dimensional problems (with hundreds of DOFs)

Easy to implement

Applications in many different areas

When a solution exists, a probabilistically complete planner finds a solution with
probability as time goes to infinity.

When a solution does not exists, a probabilistically complete planner may not be
able to determine that a solution does not exist.
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Applications in many different areas

Disadvantages

Does not guarantee completeness (a complete planner always finds a solution if
there exists one, or reports that no solution exists)

Is it then just a heuristic approach? No. It’s more than that
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When a solution exists, a probabilistically complete planner finds a solution with
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PRM Applied to 2D-point Robot

q = (x , y)← Sample()

x ← rand(minx ,maxx)

y ← rand(miny ,maxy )
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IsSampleCollisionFree(q)

Point inside/outside polygon test

path← GenerateLocalPath(qa, qb)

Straight-line segment from point qa to point qb

IsPathCollisionFree(path)

Segment-polygon intersection test
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PRM Applied to 2D Rigid-Body Robot
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PRM Applied to 2D Rigid-Body Robot

q = (x , y , θ)← Sample()

x ← rand(minx ,maxx); y ← rand(miny ,maxy );
θ ← rand(−π, π)
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PRM Applied to Articulated Chain

q = (θ1, θ2, . . . , θn)← Sample()

θi ← rand(−π, π), ∀i ∈ [1, n]

IsSampleCollisionFree(q)

Place chain in configuration q (forward kinematics)
Check for collision with obstacles

path← GenerateLocalPath(qa, qb)

Continuous function parameterized by time: path : [0, 1]→ Q
Starts at qa and ends at qb: path(0) = qa, path(1) = qb
Many possible ways of defining it, e.g., by linear interpolation

path(t) = (1− t) ∗ qa + t ∗ qb

IsPathCollisionFree(path)

Incremental approach

Subdivision approach
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Path Smoothing

Solution paths produced by PRM planners tend to be long and non-smooth (due to
sampling and edge connections)

Post processing is commonly used to improve the quality of the paths

A common practice is to repeatedly replace long paths by short paths
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SmoothPath(q1, q2, . . . , qn) – one version

1: for several times do
2: select i and j uniformly at random from 1, 2, . . . , n
3: attempt to directly connect qi to qj
4: if successful, remove the in-between nodes, i.e., qi+1, . . . , qj
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4: if successful, remove the in-between nodes, i.e., qi+1, . . . , qj

SmoothPath(q1, q2, . . . , qn) – another version

1: for several times do
2: select i and j uniformly at random from 1, 2, . . . , n
3: q ← generate collision-free sample
4: attempt to connect qi to qj through q
5: if successful, replace the in-between nodes qi+1, . . . , qj by q

Amarda Shehu (485) Probabilistic Roadmap Approaches 9



Roadmaps with no Cycles

Edge in cycle does not improve roadmap connectivity

Edge is added to roadmap only if it connects two different roadmap components

1: if SameRoadmapComponent(qa, qb) = false then
2: path← GeneratePath(qa, qb)
3: if IsPathCollisionFree(path) = true then
4: (qa, qb).path← path
5: E ← E ∪ {(qa, qb)}

Disjoint-set data structure is used to speed up computation of
SameRoadmapComponent(qa, qb)
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Connecting Roadmap Nodes to Nearest Neighbors

Edges between neighboring nodes are more likely to be collision
free than edges between far away nodes

Common practice is to attempt to connect each node to k of its nearest neighbors

Nearest neighbors defined by some distance metric ρ : Q × Q → R≥0, e.g.,
geodesic distances, i.e., shortest-path distances according to topology
weighted combination of translation and rotation components
Euclidean distance between selected robot points

Good distance metrics reflect the likelihood of successful connections

Numerous algorithms/data structures for nearest-neighbors computations, e.g.,
kd-tree, R-tree, M-tree, V-tree, PR-tree, GNAT, iDistance, CoverTree
Computational challenges of nearest neighbors in high-dimensional spaces

Efficiency deteriorates rapidly
Not much better than brute-force approach

Alternative approach is to compute approximate nearest neighbors
[Plaku, Kavraki: WAFR 2006, SDM 2007]

Minimal losses in accuracy of neighbors
No loss in accuracy of overall path planner
Significant computational gains
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Lazy PRM

Perform collision checking only when necessary
[Bohlin, Kavraki: Handbook on Randomized Computing 2000]

LazyRoadmapConstruction

1: V ← V ∪ {qinit, qgoal}; E ← ∅
2: for several times do
3: q ← generate config uniformly at random; q.checked← false; V ← V ∪ {q}
4: for each pair (qa, qb) ∈ V × V do
5: (qa, qb).res← 1.0; (qa, qb).path← GeneratePath(qa, qb); E ← E ∪ {(qa, qb)}
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Lazy PRM

Perform collision checking only when necessary
[Bohlin, Kavraki: Handbook on Randomized Computing 2000]

LazyRoadmapCollisionChecking

1: for several times do
2: [q1, q2, . . . , qn]← search G = (V , E) for sequence of edges connecting qinit to qgoal
3: for i = 1, 2, . . . , n do
4: if qi .checked = false and IsConfigCollisionFree(qi ) = false then
5: remove qi from roadmap; goto line 2
6: else
7: qi .checked← true
8: while no edge collisions are found and minimum resolution not reached do
9: for i = 1, 2, . . . , n − 1 do

10: (qi , qi+1).res← (qi , qi+1).res/2; check (qi , qi+1).path at resolution (qi , qi+1).res
11: if collision found in (qi , qi+1).path then
12: remove (qi , qi+1) from roadmap; goto line 2
13: return (q1, q2).path ◦ · · · ◦ (qn−1, qn).path
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Narrow-Passage Problem

Probability of generating samples via uniform sampling in a narrow passage is low
due to the small volume of the narrow passage

Generating samples inside a narrow passage may be critical to the success of the
path planner

Objective is then to design sampling strategies that can increase the probability of
generating samples inside narrow passages
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Gaussian Sampling in PRM

Objective: Increase Sampling Inside/Near Narrow Passages
Approach: Sample from a Gaussian distribution biased near the obstacles

GenerateCollisionFreeConfig [Boor, Overmars, van Der Stappen: ICRA 1999]

1: qa ← generate config uniformly at random
2: r ← generate distance from Gaussian distribution
3: qb ← generate config uniformly at random at distance r from qa

4: oka ← IsConfigCollisionFree(qa)
5: okb ← IsConfigCollisionFree(qb)

6: ifoka = true and okb = false then return qa
7: ifoka = false and okb = true then return qb

8: return null
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Obstacle-based Sampling in PRM

Objective: Increase Sampling Inside/Near Narrow Passages
Approach: Move samples in collision outside obstacle boundary

GenerateCollisionFreeConfig [Amato, Bayazit, Dale, Jones, Vallejo: WAFR 1998]
1: qa ← generate config uniformly at random
2: if IsConfigCollisionFree(qa) = true then
3: return qa
4: else
5: qb ← generate config uniformly at random
6: path← GeneratePath(qa, qb)
7: for t = δ to |path| by δ do
8: if IsConfigCollisionFree(path(t)) then
9: return path(t)

10: return null
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Bridge-based Sampling in PRM

Objective: Increase Sampling Inside/Near Narrow Passages
Approach: Create “bridge” between samples in collision

GenerateCollisionFreeConfig [Hsu, Jiang, Reif, Sun: ICRA 2003]
1: qa ← generate config uniformly at random
2: qb ← generate config uniformly at random

3: oka ← IsConfigCollisionFree(qa)
4: okb ← IsConfigCollisionFree(qb)

5: if oka = false and okb = false then
6: path← GeneratePath(qa, qb)
7: q ← path(0.5|path|)
8: if IsConfigCollisionFree(q) then
9: return q

10: return null
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Visibility-based Sampling in PRM

Objective: Capture connectivity of configuration space with few samples
Approach: Generate samples that create new components or join existing components

GenerateCollisionFreeConfig [Nisseoux, Simeon, Laumond: Advanced Robotics J 2000]
1: q ← generate config uniformly at random

2: if IsConfigCollisionFree(q) = true then
3: if q belongs to a new roadmap component then
4: return q

5: if q connects two roadmap components then
6: return q

7: return null

q1: creates new roadmap component

q2: creates new roadmap component

q3: creates new roadmap component

q4: connects two roadmap components

q5: connects two roadmap components

Amarda Shehu (485) Probabilistic Roadmap Approaches 17



Importance Sampling

Objective: Increase Sampling Inside/Near Narrow Passages
Approach: Improve roadmap connectivity

Construct roadmap using given sampling strategy

Identify roadmap nodes that lie in regions that are hard to connect

Sample more in these regions

Associate weight w(q) with each configuration q in the roadmap

Weight w(q) indicates difficulty of region around q

w(q) = 1
1+deg(q)

w(q) = number of times connections from/to q have failed
combination of different strategies

Select sample with probability w(q)∑
q′∈V w(q′)

Generate more samples around q

Connect new samples to neighboring roadmap nodes
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Select sample with probability w(q)∑
q′∈V w(q′)

Generate more samples around q

Connect new samples to neighboring roadmap nodes
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Combine Different Sampling Strategies

Each sampling strategy has its strengths and weakness

Objective is to identify the appropriate sampling strategy for a given region

Balance between being “smart and slow” and “dumb and fast”
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Each sampling strategy has its strengths and weakness

Objective is to identify the appropriate sampling strategy for a given region

One common strategy is to assign a weight wi to each sampler Si

A sampler Si is then selected with probability

wi∑
j wj

Sampler weight is updated based on quality of performance

Balance between being “smart and slow” and “dumb and fast”
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Motivation: Tree-based Motion Planning

PRM-based planners aim to construct a roadmap that captures the whole
connectivity of the configuration space

Good when the objective is to solve multiple queries

Maybe a bit too much when the objective is to solve a single query
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General Idea

Grow a tree in the free configuration space from qinit toward qgoal

TreeSearchFramework(qinit, qgoal)
1: T ← RootTree(qinit)
2: while qgoal has not been reached do
3: q ← SelectConfigFromTree(T )
4: AddTreeBranchFromConfig(T , q)

Critical Issues

How should a configuration be selected from the tree?

How should a new branch be added to the tree from the selected configuration?
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Rapidly-exploring Random Tree (RRT)

Pull the tree toward random samples in the configuration space
[LaValle, Kuffner: 1999]

RRT relies on nearest neighbors and

distance metric ρ : Q × Q ← R≥0

RRT adds Voronoi bias to tree growth

RRT(qinit, qgoal)

Binitialize tree
1: T ← create tree rooted at qinit

2: while solution not found do

Bselect configuration from tree
3: qrand ← generate a random sample
4: qnear ← nearest configuration in T to qrand according to distance ρ

Badd new branch to tree from selected configuration
5: path← generate path (not necessarily collision free) from qnear to qrand
6: if IsSubpathCollisionFree(path, 0, step) then
7: qnew ← path(step)
8: add configuration qnew and edge (qnear, qnew) to T

Bcheck if a solution is found
9: if ρ(qnew, qgoal) ≈ 0 then

10: return solution path from root to qnew
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Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement

Suggested Improvements in the Literature
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Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement

BasicRRT does not take advantage of qgoal

Tree is pulled towards random directions based on the uniform sampling of Q

In particular, tree growth is not directed towards qgoal

Suggested Improvements in the Literature
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Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement

BasicRRT does not take advantage of qgoal

Tree is pulled towards random directions based on the uniform sampling of Q

In particular, tree growth is not directed towards qgoal

Suggested Improvements in the Literature

Introduce goal-bias to tree growth (known as GoalBiasRRT)
qrand is selected as qgoal with probability p
qrand is selected based on uniform sampling of Q with probability 1− p
Probability p is commonly set to ≈ 0.05
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Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement

BasicRRT takes only one small step when adding a new tree branch

This slows down tree growth

Suggested Improvements in the Literature
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Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement

BasicRRT takes only one small step when adding a new tree branch

This slows down tree growth

Suggested Improvements in the Literature

Take several steps until qrand is reached or a collision is found (ConnectRRT)

Add all the intermediate nodes to the tree
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Expansive-Space Tree (EST)

Push the tree frontier in the free configuration space
[Hsu, Rock, Motwani, Latombe: 1999]
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Expansive-Space Tree (EST)

Push the tree frontier in the free configuration space
[Hsu, Rock, Motwani, Latombe: 1999]

EST relies on a probability distribution to guide tree growth

EST associates a weight w(q) with each tree configuration q

w(q) is a running estimate on importance of selecting q as the tree configuration
from which to add a new tree branch

w(q) = 1
1+deg(q)

w(q) = 1/(1+ number of neighbors near q)
combination of different strategies
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EST associates a weight w(q) with each tree configuration q

w(q) is a running estimate on importance of selecting q as the tree configuration
from which to add a new tree branch

w(q) = 1
1+deg(q)

w(q) = 1/(1+ number of neighbors near q)
combination of different strategies

SelectConfigFromTree

select q in T with probability w(q)/
∑

q′∈T w(q′)
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Expansive-Space Tree (EST)

Push the tree frontier in the free configuration space
[Hsu, Rock, Motwani, Latombe: 1999]

EST relies on a probability distribution to guide tree growth

EST associates a weight w(q) with each tree configuration q

w(q) is a running estimate on importance of selecting q as the tree configuration
from which to add a new tree branch

w(q) = 1
1+deg(q)

w(q) = 1/(1+ number of neighbors near q)
combination of different strategies

SelectConfigFromTree

select q in T with probability w(q)/
∑

q′∈T w(q′)

AddTreeBranchFromConfig(T , q)

qnear ← sample a collision-free configuration near q

path← generate path from q to qnear

if path is collision-free, then add qnear and (q, qnear) to T
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Expansive-Space Tree (EST)

Push the tree frontier in the free configuration space
[Hsu, Rock, Motwani, Latombe: 1999]

EST relies on a probability distribution to guide tree growth

EST associates a weight w(q) with each tree configuration q

w(q) is a running estimate on importance of selecting q as the tree configuration
from which to add a new tree branch

w(q) = 1
1+deg(q)

w(q) = 1/(1+ number of neighbors near q)
combination of different strategies

SelectConfigFromTree

select q in T with probability w(q)/
∑

q′∈T w(q′)

AddTreeBranchFromConfig(T , q)

qnear ← sample a collision-free configuration near q

path← generate path from q to qnear

if path is collision-free, then add qnear and (q, qnear) to T
[play movie]
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Observations in High-Dimensional Problems

Tree generally grows rapidly for the first few thousand iterations

Tree growth afterwards slows down quite significantly

Large number of configurations increases computational cost

It becomes increasingly difficult to guide the tree towards previously unexplored
parts of the free configuration space
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Observations in High-Dimensional Problems

Tree generally grows rapidly for the first few thousand iterations

Tree growth afterwards slows down quite significantly

Large number of configurations increases computational cost

It becomes increasingly difficult to guide the tree towards previously unexplored
parts of the free configuration space

Possible improvements?
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Bi-directional Trees

Grow two trees, rooted at qinit and qgoal, towards each other

Bi-directional trees improve computational efficiency compared to a single tree

Growth slows down significantly later than when using a single tree

Fewer configurations in each tree, which imposes less of a computational burden

Each tree explores a different part of the configuration space

BiTree(qinit, qgoal)

1: Tinit ← create tree rooted at qinit
2: Tgoal ← create tree rooted at qgoal
3: while solution not found do
4: add new branch to Tinit
5: add new branch to Tgoal
6: attempt to connect neighboring configurations

from the two trees
7: if successful, return path from qinit to qgoal
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Bi-directional Trees

Grow two trees, rooted at qinit and qgoal, towards each other

Bi-directional trees improve computational efficiency compared to a single tree

Growth slows down significantly later than when using a single tree

Fewer configurations in each tree, which imposes less of a computational burden

Each tree explores a different part of the configuration space

BiTree(qinit, qgoal)

1: Tinit ← create tree rooted at qinit
2: Tgoal ← create tree rooted at qgoal
3: while solution not found do
4: add new branch to Tinit
5: add new branch to Tgoal
6: attempt to connect neighboring configurations

from the two trees
7: if successful, return path from qinit to qgoal

Different tree planners can be used to grow each of the trees

E.g., RRT can be used for one tree and EST can be used for the other
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High-dimensional Motion Planning

PRM provides global sampling of the configuration space

But, if sampling is sparse, then roadmap is disconnected
Moreover, dense sampling is impractical in high-dimensional spaces

Tree planner provides fast local exploration of area around root

But, tree growth slows down significantly in high-dimensional spaces
Although bi-directional trees offer some improvements, problems still remain
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High-dimensional Motion Planning

PRM provides global sampling of the configuration space

But, if sampling is sparse, then roadmap is disconnected
Moreover, dense sampling is impractical in high-dimensional spaces

Tree planner provides fast local exploration of area around root

But, tree growth slows down significantly in high-dimensional spaces
Although bi-directional trees offer some improvements, problems still remain

Desired Properties for a Motion Planner

Guides exploration towards goal

Strikes right balance between breadth and depth of search
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Sampling-based Roadmap of Trees (SRT)

High-dimensional Motion Planning

PRM provides global sampling of the configuration space

But, if sampling is sparse, then roadmap is disconnected
Moreover, dense sampling is impractical in high-dimensional spaces

Tree planner provides fast local exploration of area around root

But, tree growth slows down significantly in high-dimensional spaces
Although bi-directional trees offer some improvements, problems still remain

Desired Properties for a Motion Planner

Guides exploration towards goal

Strikes right balance between breadth and depth of search

Sampling-based Roadmap of Trees (SRT) [Plaku, Bekris, Chen, Ladd, Kavraki: Trans on Robotics 2005]

Hierarchical planner

Top level performs global sampling (PRM-based)

Bottom level performs local sampling (tree-based, e.g., RRT, EST)

Combines advantages of global and local sampling
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Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap
1: V ← ∅; E ← ∅
2: while |V | < ntrees do
3: T ← create tree rooted at a collision-free

configuration
4: use tree planner to grow T for some time
5: add T to roadmap vertices V
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Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap
1: V ← ∅; E ← ∅
2: while |V | < ntrees do
3: T ← create tree rooted at a collision-free

configuration
4: use tree planner to grow T for some time
5: add T to roadmap vertices V
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Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap
1: V ← ∅; E ← ∅
2: while |V | < ntrees do
3: T ← create tree rooted at a collision-free

configuration
4: use tree planner to grow T for some time
5: add T to roadmap vertices V

SelectWhichTreesToConnect
1: Epairs ← ∅
2: for each T ∈ V do
3: Sneighs ← k nearest trees in V to T
4: Srand ← r random trees in V
5: Epairs ← Epairs ∪{(T , T ′) : T ′ ∈ Sneighs ∪Srand}
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Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap
1: V ← ∅; E ← ∅
2: while |V | < ntrees do
3: T ← create tree rooted at a collision-free

configuration
4: use tree planner to grow T for some time
5: add T to roadmap vertices V

SelectWhichTreesToConnect
1: Epairs ← ∅
2: for each T ∈ V do
3: Sneighs ← k nearest trees in V to T
4: Srand ← r random trees in V
5: Epairs ← Epairs ∪{(T , T ′) : T ′ ∈ Sneighs ∪Srand}

ConnectTreesInRoadmap
1: for each (T1, T2) ∈ Epairs do
2: if AreTreesConnected(T1, T2) = false then
3: run bi-directional tree planner to connect T1 to T2

4: if connection successful then
5: add edge (T1, T2) to roadmap
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Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap
1: V ← ∅; E ← ∅
2: while |V | < ntrees do
3: T ← create tree rooted at a collision-free

configuration
4: use tree planner to grow T for some time
5: add T to roadmap vertices V

SelectWhichTreesToConnect
1: Epairs ← ∅
2: for each T ∈ V do
3: Sneighs ← k nearest trees in V to T
4: Srand ← r random trees in V
5: Epairs ← Epairs ∪{(T , T ′) : T ′ ∈ Sneighs ∪Srand}

ConnectTreesInRoadmap
1: for each (T1, T2) ∈ Epairs do
2: if AreTreesConnected(T1, T2) = false then
3: run bi-directional tree planner to connect T1 to T2

4: if connection successful then
5: add edge (T1, T2) to roadmap

SolveQuery(qinit, qgoal)
1: Tinit ← create tree rooted at qinit

2: Tgoal ← create tree rooted at qgoal
3: connect Tinit and Tgoal to roadmap
4: search roadmap graph for solution
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Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap
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configuration
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Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap
1: V ← ∅; E ← ∅
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Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap
1: V ← ∅; E ← ∅
2: while |V | < ntrees do
3: T ← create tree rooted at a collision-free

configuration
4: use tree planner to grow T for some time
5: add T to roadmap vertices V
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2: Tgoal ← create tree rooted at qgoal
3: connect Tinit and Tgoal to roadmap
4: search roadmap graph for solution
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Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap
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Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap
1: V ← ∅; E ← ∅
2: while |V | < ntrees do
3: T ← create tree rooted at a collision-free

configuration
4: use tree planner to grow T for some time
5: add T to roadmap vertices V

SelectWhichTreesToConnect
1: Epairs ← ∅
2: for each T ∈ V do
3: Sneighs ← k nearest trees in V to T
4: Srand ← r random trees in V
5: Epairs ← Epairs ∪{(T , T ′) : T ′ ∈ Sneighs ∪Srand}

ConnectTreesInRoadmap
1: for each (T1, T2) ∈ Epairs do
2: if AreTreesConnected(T1, T2) = false then
3: run bi-directional tree planner to connect T1 to T2

4: if connection successful then
5: add edge (T1, T2) to roadmap

SolveQuery(qinit, qgoal)
1: Tinit ← create tree rooted at qinit

2: Tgoal ← create tree rooted at qgoal
3: connect Tinit and Tgoal to roadmap
4: search roadmap graph for solution
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Sampling-based Motion Planning

Advantages

Explores small subset of possibilities by sampling

Computationally efficient

Solves high-dimensional problems (with hundreds of DOFs)

Easy to implement

Applications in many different areas

Disadvantages

Does not guarantee completeness (a complete planner always finds a solution if
there exists one, or reports that no solution exists)

Is it then just a heuristic approach? No. It’s more than that

It offers probabilistic completeness

When a solution exists, a probabilistically complete planner finds a solution with
probability as time goes to infinity.

When a solution does not exists, a probabilistically complete planner may not be
able to determine that a solution does not exist.
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Proof Outline: Probabilistic Completeness of PRM

Components

Free configuration space Qfree: arbitrary open subset of [0, 1]d

Local connector: connects a, b ∈ Qfree via a straight-line path and succeeds if path lies
entirely in Qfree

Collection of roadmap samples from Qfree
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Proof Outline: Probabilistic Completeness of PRM

Components

Free configuration space Qfree: arbitrary open subset of [0, 1]d

Local connector: connects a, b ∈ Qfree via a straight-line path and succeeds if path lies
entirely in Qfree

Collection of roadmap samples from Qfree

Let a, b ∈ Qfree such that there exists a path γ between a and b lying in Qfree. Then
the probability that PRM correctly answers the query (a, b) after generating n
collision-free configurations is given by

Pr[(a, b)SUCCESS] ≥ 1−
⌈

2L

ρ

⌉
e−σρ

dn,

where

L is the length of the path γ

ρ = clr(γ) is the clearance of path γ from obstacles

σ = µ(B1(·))

2dµ(Qfree)

µ(B1(·)) is the volume of the unit ball in Rd

µ(Qfree) is the volume of Qfree
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Proof Outline: Probabilistic Completeness of PRM (cont.)

Basic Idea

Reduce path to a set of open balls in Qfree

Calculate probability of generating samples in those balls

Connect samples in different balls via straight-line paths to compute solution path
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Proof Outline: Probabilistic Completeness of PRM (cont.)

Note that clearance ρ = clr(γ) > 0

Let m =
⌈

2L
ρ

⌉
. Then, γ can be covered with m balls Bρ/2(qi ) where a = q1, . . . , qm = b

Let yi ∈ Bρ/2(qi ) and yi+1 ∈ Bρ/2(qi+1).

Then, the straight-line segment yiyi+1 ∈ Qfree, since yi , yi+1 ∈ Bρ(qi )

Ii
def
= indicator variable that there exists y ∈ V s.t. y ∈ Bρ/2(qi )

Pr[(a, b)FAILURE] = Pr
[∨m

i=1 Ii = 0
]

=
∑m

i=1 Pr[Ii = 0]

Note that Pr[Ii = 0] =
(

1−
µ(Bρ/2(qi ))

µ(Qfree)

)n
i.e., probability that none of the n PRM samples falls in Bρ/2(qi )
Ii ’s are independent because of uniform samling in PRM

Therefore, Pr[(a, b)FAILURE] = m
(

1−
µ(Bρ/2(·))

µ(Qfree)

)n
µ(Bρ/2(·))

µ(Qfree)
=

( ρ2 )dµ(B1(·))

µ(Qfree)
= σρd

Therefore, Pr[(a, b)FAILURE] = m
(
1− σρd

)n ≤ me−σρ
dn =

⌈
2L
ρ

⌉
e−σρ

dn

since (1− x) ≤ e−x ∀x ≥ 0
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