CS 485: Autonomous Robotics
 Sampling-Based Motion Planning

Amarda Shehu

Department of Computer Science
George Mason University

From Workspace to Configuration Space

- simple workspace obstacle transformed into complex configuration-space obstacle
- robot transformed into point in configuration space
- path transformed from swept volume to 1d curve

Workspace

\triangle robot

- robot
[fig from Jyh-Ming Lien]

Explicit Construction of Configuration Space/Roadmaps

- PSPACE-complete
- Exponential dependency on dimension
- No practical algorithms
- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position
- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position How would you solve it?

- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position How would you solve it?

Hint: How would you approximate π ?

- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position How would you solve it?

Hint: How would you approximate π ?

- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position How would you solve it?

Hint: How would you approximate π ?

- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position How would you solve it?

Hint: How would you approximate π ?

- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position How would you solve it?

Hint: How would you approximate π ?

- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position

Monte-Carlo Idea:

- Define input space
- Generate inputs at random by sampling the input space
- Perform a deterministic computation using the input samples
- Aggregate the partial results into final result
- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position

- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position

- Sample points
- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position

- Sample points
- Discard samples that are in collision
- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position

- Sample points
- Discard samples that are in collision
- Connect neighboring samples via straight-line segments
- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position

- Sample points
- Discard samples that are in collision
- Connect neighboring samples via straight-line segments
- Discard straight-line segments that are in collision
- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position

- Sample points
- Discard samples that are in collision
- Connect neighboring samples via straight-line segments
- Discard straight-line segments that are in collision
\Rightarrow Gives rise to a graph, called the roadmap
- Robotic system: Single point
- Task: Compute collision-free path from initial to goal position

- Sample points
- Discard samples that are in collision
- Connect neighboring samples via straight-line segments
- Discard straight-line segments that are in collision
\Rightarrow Gives rise to a graph, called the roadmap
\Rightarrow Collision-free path can be found by performing graph search on the roadmap

0 . Initialization

add $q_{\text {init }}$ and $q_{\text {goal }}$ to roadmap vertex set V

1. Sampling
repeat several times

$$
q \leftarrow \operatorname{SAMPLE}()
$$

if $\operatorname{IsCollisionFree}(q)=$ true add q to roadmap vertex set V

2. Connect Samples

for each pair of neighboring samples $\left(q_{a}, q_{b}\right) \in V \times V$
path $\leftarrow \operatorname{GenerateLocalPath}\left(q_{a}, q_{b}\right)$
if IsCollisionFree(path) $=$ true
add $\left(q_{a}, q_{b}\right)$ to roadmap edge set E

3. Graph Search
search graph (V, E) for path from $q_{\text {init }}$ to $q_{\text {goal }}$

Advantages

- Computationally efficient

■ Solves high-dimensional problems (with hundreds of DOFs)

- Easy to implement
- Applications in many different areas

Sampling-based Path Planning

Advantages

- Computationally efficient
- Solves high-dimensional problems (with hundreds of DOFs)
- Easy to implement
- Applications in many different areas

Disadvantages

- Does not guarantee completeness (a complete planner always finds a solution if there exists one, or reports that no solution exists)

Sampling-based Path Planning

Advantages

- Computationally efficient

■ Solves high-dimensional problems (with hundreds of DOFs)

- Easy to implement
- Applications in many different areas

Disadvantages

- Does not guarantee completeness (a complete planner always finds a solution if there exists one, or reports that no solution exists)

Is it then just a heuristic approach?

Sampling-based Path Planning

Advantages

- Computationally efficient

■ Solves high-dimensional problems (with hundreds of DOFs)

- Easy to implement
- Applications in many different areas

Disadvantages

- Does not guarantee completeness (a complete planner always finds a solution if there exists one, or reports that no solution exists)

Is it then just a heuristic approach? No. It's more than that

Sampling-based Path Planning

Advantages

- Computationally efficient
- Solves high-dimensional problems (with hundreds of DOFs)
- Easy to implement
- Applications in many different areas

Disadvantages

- Does not guarantee completeness (a complete planner always finds a solution if there exists one, or reports that no solution exists)

Is it then just a heuristic approach? No. It's more than that
It offers probabilistic completeness

- When a solution exists, a probabilistically complete planner finds a solution with probability as time goes to infinity.
- When a solution does not exists, a probabilistically complete planner may not be able to determine that a solution does not exist.

$$
\begin{aligned}
q & =(x, y) \leftarrow \operatorname{SAMPLE}() \\
& ■ x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) \\
& \square y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right)
\end{aligned}
$$

$$
\begin{aligned}
q & =(x, y) \leftarrow \operatorname{SAMPLE}() \\
& ■ x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) \\
& ■ y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right)
\end{aligned}
$$

IsSampleCollisionFree (q)

- Point inside/outside polygon test

$$
\begin{aligned}
q & =(x, y) \leftarrow \operatorname{SAMPLE}() \\
& ■ x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) \\
& ■ y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right)
\end{aligned}
$$

IsSampleCollisionFree (q)

- Point inside/outside polygon test
path $\leftarrow \operatorname{GenerateLocalPath}\left(q_{a}, q_{b}\right)$
- Straight-line segment from point q_{a} to point q_{b}

$$
\begin{aligned}
q & =(x, y) \leftarrow \operatorname{SAMPLE}() \\
& ■ x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) \\
& ■ y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right)
\end{aligned}
$$

IsSampleCollisionFree (q)

- Point inside/outside polygon test
path \leftarrow GenerateLocalPath $\left(q_{a}, q_{b}\right)$
■ Straight-line segment from point q_{a} to point q_{b}

IsPathCollisionFree(path)
■ Segment-polygon intersection test

$$
\begin{array}{rl}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
■ & x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{array}
$$

$$
\begin{array}{rl}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
■ & x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{array}
$$

IsSampleCollisionFree (q)

$$
\begin{array}{rl}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
■ & x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{array}
$$

IsSampleCollisionFree (q)

- Place rigid body in position and orientation specified by q
- Polygon-polygon intersection test

$$
\begin{array}{rl}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
■ & x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{array}
$$

IsSampleCollisionFree (q)

- Place rigid body in position and orientation specified by q
- Polygon-polygon intersection test

$$
\text { path } \leftarrow \operatorname{GenerateLocalPath}\left(q_{a}, q_{b}\right)
$$

$$
\begin{aligned}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
& x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{aligned}
$$

IsSampleCollisionFree (q)

- Place rigid body in position and orientation specified by q
- Polygon-polygon intersection test
path \leftarrow GenerateLocalPath $\left(q_{a}, q_{b}\right)$
- Continuous function parameterized by time: path : $[0,1] \rightarrow Q$

$$
\begin{aligned}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
& x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{aligned}
$$

IsSAmpleCollisionFree (q)

- Place rigid body in position and orientation specified by q
- Polygon-polygon intersection test
path \leftarrow GenerateLocalPath $\left(q_{a}, q_{b}\right)$
- Continuous function parameterized by time: path : $[0,1] \rightarrow Q$
- Starts at q_{a} and ends at $q_{b}: \operatorname{path}(0)=q_{a}, \operatorname{path}(1)=q_{b}$

$$
\begin{aligned}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
& x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{aligned}
$$

IsSampleCollisionFree (q)

- Place rigid body in position and orientation specified by q
- Polygon-polygon intersection test
path \leftarrow GenerateLocalPath $\left(q_{a}, q_{b}\right)$
- Continuous function parameterized by time: path : $[0,1] \rightarrow Q$

■ Starts at q_{a} and ends at $q_{b}: \operatorname{path}(0)=q_{a}, \operatorname{path}(1)=q_{b}$

- Many possible ways of defining it, e.g., by linear interpolation

$$
\operatorname{path}(t)=(1-t) * q_{a}+t * q_{b}
$$

$$
\begin{aligned}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
& x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{aligned}
$$

IsSampleCollisionFree (q)

- Place rigid body in position and orientation specified by q
- Polygon-polygon intersection test
path $\leftarrow \operatorname{GenerateLocalPath}\left(q_{a}, q_{b}\right)$
- Continuous function parameterized by time: path : $[0,1] \rightarrow Q$

■ Starts at q_{a} and ends at $q_{b}: \operatorname{path}(0)=q_{a}, \operatorname{path}(1)=q_{b}$

- Many possible ways of defining it, e.g., by linear interpolation

$$
\operatorname{path}(t)=(1-t) * q_{a}+t * q_{b}
$$

IsPathCollisionFree(path)

$$
\begin{aligned}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
& x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{aligned}
$$

IsSampleCollisionFree (q)

- Place rigid body in position and orientation specified by q
- Polygon-polygon intersection test
path $\leftarrow \operatorname{GenerateLocalPath}\left(q_{a}, q_{b}\right)$
■ Continuous function parameterized by time: path: $[0,1] \rightarrow Q$
- Starts at q_{a} and ends at $q_{b}: \operatorname{path}(0)=q_{a}, \operatorname{path}(1)=q_{b}$
- Many possible ways of defining it, e.g., by linear interpolation

$$
\operatorname{path}(t)=(1-t) * q_{a}+t * q_{b}
$$

IsPathCollisionFree(path)
■ Incremental approach

$$
\begin{aligned}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
& x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{aligned}
$$

IsSampleCollisionFree (q)

- Place rigid body in position and orientation specified by q
- Polygon-polygon intersection test
path $\leftarrow \operatorname{GenerateLocalPath}\left(q_{a}, q_{b}\right)$
■ Continuous function parameterized by time: path: $[0,1] \rightarrow Q$
- Starts at q_{a} and ends at $q_{b}: \operatorname{path}(0)=q_{a}, \operatorname{path}(1)=q_{b}$
- Many possible ways of defining it, e.g., by linear interpolation

$$
\operatorname{path}(t)=(1-t) * q_{a}+t * q_{b}
$$

IsPathCollisionFree(path)
■ Incremental approach

$$
\begin{aligned}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
& x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{aligned}
$$

IsSAmpleCollisionFree (q)

- Place rigid body in position and orientation specified by q
- Polygon-polygon intersection test
path $\leftarrow \operatorname{GenerateLocalPath}\left(q_{a}, q_{b}\right)$
■ Continuous function parameterized by time: path: $[0,1] \rightarrow Q$
- Starts at q_{a} and ends at $q_{b}: \operatorname{path}(0)=q_{a}, \operatorname{path}(1)=q_{b}$
- Many possible ways of defining it, e.g., by linear interpolation

$$
\operatorname{path}(t)=(1-t) * q_{a}+t * q_{b}
$$

IsPathCollisionFree(path)
■ Incremental approach

$$
\begin{aligned}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
& x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{aligned}
$$

IsSampleCollisionFree (q)

- Place rigid body in position and orientation specified by q
- Polygon-polygon intersection test
path $\leftarrow \operatorname{GenerateLocalPath}\left(q_{a}, q_{b}\right)$
■ Continuous function parameterized by time: path: $[0,1] \rightarrow Q$
- Starts at q_{a} and ends at $q_{b}: \operatorname{path}(0)=q_{a}, \operatorname{path}(1)=q_{b}$
- Many possible ways of defining it, e.g., by linear interpolation

$$
\operatorname{path}(t)=(1-t) * q_{a}+t * q_{b}
$$

IsPathCollisionFree(path)
■ Incremental approach

PRM Applied to 2D Rigid-Body Robot

$$
\begin{array}{rl}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
■ & x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{array}
$$

IsSampleCollisionFree (q)

- Place rigid body in position and orientation specified by q
- Polygon-polygon intersection test
path \leftarrow GenerateLocalPath $\left(q_{a}, q_{b}\right)$
■ Continuous function parameterized by time: path : $[0,1] \rightarrow Q$
■ Starts at q_{a} and ends at $q_{b}: \operatorname{path}(0)=q_{a}, \operatorname{path}(1)=q_{b}$
- Many possible ways of defining it, e.g., by linear interpolation

$$
\operatorname{path}(t)=(1-t) * q_{a}+t * q_{b}
$$

IsPathCollisionFree(path)

- Incremental approach

■ Subdivision approach

PRM Applied to 2D Rigid-Body Robot

$$
\begin{array}{rl}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
■ & x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{array}
$$

IsSampleCollisionFree (q)

- Place rigid body in position and orientation specified by q

■ Polygon-polygon intersection test path $\leftarrow \operatorname{GenerateLocalPath}\left(q_{a}, q_{b}\right)$

■ Continuous function parameterized by time: path: $[0,1] \rightarrow Q$
■ Starts at q_{a} and ends at $q_{b}: \operatorname{path}(0)=q_{a}, \operatorname{path}(1)=q_{b}$

- Many possible ways of defining it, e.g., by linear interpolation

$$
\operatorname{path}(t)=(1-t) * q_{a}+t * q_{b}
$$

IsPathCollisionFree (path)

- Incremental approach

■ Subdivision approach

PRM Applied to 2D Rigid-Body Robot

$$
\begin{array}{rl}
q= & (x, y, \theta) \leftarrow \operatorname{SAMPLE}() \\
■ & x \leftarrow \operatorname{RAND}\left(\min _{x}, \max _{x}\right) ; y \leftarrow \operatorname{RAND}\left(\min _{y}, \max _{y}\right) \\
& \theta \leftarrow \operatorname{RAND}(-\pi, \pi)
\end{array}
$$

IsSampleCollisionFree (q)

- Place rigid body in position and orientation specified by q
- Polygon-polygon intersection test
path \leftarrow GenerateLocalPath $\left(q_{a}, q_{b}\right)$
■ Continuous function parameterized by time: path: $[0,1] \rightarrow Q$
■ Starts at q_{a} and ends at $q_{b}: \operatorname{path}(0)=q_{a}, \operatorname{path}(1)=q_{b}$
- Many possible ways of defining it, e.g., by linear interpolation

$$
\operatorname{path}(t)=(1-t) * q_{a}+t * q_{b}
$$

IsPathCollisionFree(path)
■ Incremental approach

- Subdivision approach
[piano] [manocha] [kcar] [tri] [buggy]

$$
\begin{aligned}
q & =\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right) \leftarrow \operatorname{SAMPLE}() \\
& \text { - } \theta_{i} \leftarrow \operatorname{RAND}(-\pi, \pi), \forall i \in[1, n]
\end{aligned}
$$

$$
\begin{aligned}
q & =\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right) \leftarrow \operatorname{SAMPLE}() \\
& \text { - } \theta_{i} \leftarrow \operatorname{RAND}(-\pi, \pi), \forall i \in[1, n]
\end{aligned}
$$

IsSampleCollisionFree (q)

- Place chain in configuration q (forward kinematics)
- Check for collision with obstacles

$$
\begin{aligned}
q & =\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right) \leftarrow \operatorname{SAMPLE}() \\
& \text { - } \theta_{i} \leftarrow \operatorname{RAND}(-\pi, \pi), \forall i \in[1, n]
\end{aligned}
$$

IsSampleCollisionFree (q)

- Place chain in configuration q (forward kinematics)
- Check for collision with obstacles
path \leftarrow GenerateLocalPath $\left(q_{a}, q_{b}\right)$
■ Continuous function parameterized by time: path: $[0,1] \rightarrow Q$
- Starts at q_{a} and ends at $q_{b}: \operatorname{path}(0)=q_{a}, \operatorname{path}(1)=q_{b}$
- Many possible ways of defining it, e.g., by linear interpolation

$$
\operatorname{path}(t)=(1-t) * q_{a}+t * q_{b}
$$

$$
\begin{aligned}
q & =\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right) \leftarrow \operatorname{SAMPLE}() \\
& \text { - } \theta_{i} \leftarrow \operatorname{RAND}(-\pi, \pi), \forall i \in[1, n]
\end{aligned}
$$

IsSampleCollisionFree (q)

- Place chain in configuration q (forward kinematics)
- Check for collision with obstacles
path $\leftarrow \operatorname{GenerateLocalPath}\left(q_{a}, q_{b}\right)$
■ Continuous function parameterized by time: path: $[0,1] \rightarrow Q$
- Starts at q_{a} and ends at $q_{b}: \operatorname{path}(0)=q_{a}, \operatorname{path}(1)=q_{b}$
- Many possible ways of defining it, e.g., by linear interpolation

$$
\operatorname{path}(t)=(1-t) * q_{a}+t * q_{b}
$$

IsPathCollisionFree(path)
■ Incremental approach
■ Subdivision approach

- Solution paths produced by PRM planners tend to be long and non-smooth (due to sampling and edge connections)
- Post processing is commonly used to improve the quality of the paths
- A common practice is to repeatedly replace long paths by short paths
- Solution paths produced by PRM planners tend to be long and non-smooth (due to sampling and edge connections)
- Post processing is commonly used to improve the quality of the paths
- A common practice is to repeatedly replace long paths by short paths
$\operatorname{SmoothPath}\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ - one version
1: for several times do
2: \quad select i and j uniformly at random from $1,2, \ldots, n$
3: attempt to directly connect q_{i} to q_{j}
4: if successful, remove the in-between nodes, i.e., q_{i+1}, \ldots, q_{j}

- Solution paths produced by PRM planners tend to be long and non-smooth (due to sampling and edge connections)
- Post processing is commonly used to improve the quality of the paths
- A common practice is to repeatedly replace long paths by short paths

```
SmoothPath( }\mp@subsup{q}{1}{},\mp@subsup{q}{2}{},\ldots,\mp@subsup{q}{n}{})\mathrm{ - one version
```

1: for several times do
2: select i and j uniformly at random from $1,2, \ldots, n$
3: attempt to directly connect q_{i} to q_{j}
4: if successful, remove the in-between nodes, i.e., q_{i+1}, \ldots, q_{j}
$\operatorname{SmoothPath~}\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ - another version
1: for several times do
2: \quad select i and j uniformly at random from $1,2, \ldots, n$
3: $\quad q \leftarrow$ generate collision-free sample
4: attempt to connect q_{i} to q_{j} through q
5: if successful, replace the in-between nodes q_{i+1}, \ldots, q_{j} by q

- Edge in cycle does not improve roadmap connectivity
- Edge is added to roadmap only if it connects two different roadmap components

1: if $\operatorname{SamERoadmapComponent}\left(q_{a}, q_{b}\right)=$ false then
2: path $\leftarrow \operatorname{GeneratePath}\left(q_{a}, q_{b}\right)$
3: if IsPathCollisionFree(path) = true then
4: $\quad\left(q_{a}, q_{b}\right) \cdot$ path \leftarrow path
5: $\quad E \leftarrow E \cup\left\{\left(q_{a}, q_{b}\right)\right\}$

- Disjoint-set data structure is used to speed up computation of SameRoadmapComponent $\left(q_{a}, q_{b}\right)$

Connecting Roadmap Nodes to Nearest Neighbors

Edges between neighboring nodes are more likely to be collision free than edges between far away nodes

Edges between neighboring nodes are more likely to be collision free than edges between far away nodes

- Common practice is to attempt to connect each node to k of its nearest neighbors

Edges between neighboring nodes are more likely to be collision free than edges between far away nodes

- Common practice is to attempt to connect each node to k of its nearest neighbors

■ Nearest neighbors defined by some distance metric $\rho: Q \times Q \rightarrow \mathbb{R}^{\geq 0}$, e.g.,

Edges between neighboring nodes are more likely to be collision free than edges between far away nodes

- Common practice is to attempt to connect each node to k of its nearest neighbors

■ Nearest neighbors defined by some distance metric $\rho: Q \times Q \rightarrow \mathbb{R}^{\geq 0}$, e.g.,

- geodesic distances, i.e., shortest-path distances according to topology
- weighted combination of translation and rotation components
- Euclidean distance between selected robot points

Edges between neighboring nodes are more likely to be collision free than edges between far away nodes

- Common practice is to attempt to connect each node to k of its nearest neighbors

■ Nearest neighbors defined by some distance metric $\rho: Q \times Q \rightarrow \mathbb{R}^{\geq 0}$, e.g.,

- geodesic distances, i.e., shortest-path distances according to topology
- weighted combination of translation and rotation components
- Euclidean distance between selected robot points

Good distance metrics reflect the likelihood of successful connections

Edges between neighboring nodes are more likely to be collision free than edges between far away nodes

- Common practice is to attempt to connect each node to k of its nearest neighbors

■ Nearest neighbors defined by some distance metric $\rho: Q \times Q \rightarrow \mathbb{R}^{\geq 0}$, e.g.,

- geodesic distances, i.e., shortest-path distances according to topology
- weighted combination of translation and rotation components
- Euclidean distance between selected robot points

Good distance metrics reflect the likelihood of successful connections

- Numerous algorithms/data structures for nearest-neighbors computations, e.g., kd-tree, R-tree, M-tree, V-tree, PR-tree, GNAT, iDistance, CoverTree

Edges between neighboring nodes are more likely to be collision free than edges between far away nodes

- Common practice is to attempt to connect each node to k of its nearest neighbors

■ Nearest neighbors defined by some distance metric $\rho: Q \times Q \rightarrow \mathbb{R}^{\geq 0}$, e.g.,

- geodesic distances, i.e., shortest-path distances according to topology
- weighted combination of translation and rotation components
- Euclidean distance between selected robot points

Good distance metrics reflect the likelihood of successful connections

- Numerous algorithms/data structures for nearest-neighbors computations, e.g., kd-tree, R-tree, M-tree, V-tree, PR-tree, GNAT, iDistance, CoverTree
- Computational challenges of nearest neighbors in high-dimensional spaces
- Efficiency deteriorates rapidly
- Not much better than brute-force approach

Edges between neighboring nodes are more likely to be collision free than edges between far away nodes

- Common practice is to attempt to connect each node to k of its nearest neighbors

■ Nearest neighbors defined by some distance metric $\rho: Q \times Q \rightarrow \mathbb{R}^{\geq 0}$, e.g.,

- geodesic distances, i.e., shortest-path distances according to topology
- weighted combination of translation and rotation components
- Euclidean distance between selected robot points

Good distance metrics reflect the likelihood of successful connections

- Numerous algorithms/data structures for nearest-neighbors computations, e.g., kd-tree, R-tree, M-tree, V-tree, PR-tree, GNAT, iDistance, CoverTree
- Computational challenges of nearest neighbors in high-dimensional spaces
- Efficiency deteriorates rapidly
- Not much better than brute-force approach
- Alternative approach is to compute approximate nearest neighbors [Plaku, Kavraki: WAFR 2006, SDM 2007]
- Minimal losses in accuracy of neighbors
- No loss in accuracy of overall path planner
- Significant computational gains

Lazy PRM

Perform collision checking only when necessary

LaZyRoadmapConstruction

1: $V \leftarrow V \cup\left\{q_{\text {init }}, q_{\text {goal }}\right\} ; E \leftarrow \emptyset$
2: for several times do
3: $\quad q \leftarrow$ generate config uniformly at random; q.checked \leftarrow false; $V \leftarrow V \cup\{q\}$
4: for each pair $\left(q_{a}, q_{b}\right) \in V \times V$ do
5: $\quad\left(q_{a}, q_{b}\right)$.res $\leftarrow 1.0 ;\left(q_{a}, q_{b}\right)$.path $\leftarrow \operatorname{GeneratePath}\left(q_{a}, q_{b}\right) ; E \leftarrow E \cup\left\{\left(q_{a}, q_{b}\right)\right\}$

Perform collision checking only when necessary

LazyRoadmapCollisionChecking

for several times do

$$
\begin{aligned}
& {\left[q_{1}, q_{2}, \ldots, q_{n}\right] \leftarrow \text { search } G=(V, E) \text { for sequence of edges connecting } q_{\text {init }} \text { to } q_{\text {goal }}} \\
& \text { for } i=1,2, \ldots, n \text { do } \\
& \text { if } q_{i} \text {.checked }=\text { false and IsConFIGCOLLISIONFREE }\left(q_{i}\right)=\text { false then } \\
& \text { remove } q_{i} \text { from roadmap; goto line } 2 \\
& \text { else } \\
& \quad q_{i} \text {.checked } \leftarrow \text { true } \\
& \text { while no edge collisions are found and minimum resolution not reached do } \\
& \text { for } i=1,2, \ldots, n-1 \text { do } \\
& \quad\left(q_{i}, q_{i+1}\right) \text {.res } \leftarrow\left(q_{i}, q_{i+1}\right) \text {.res } / 2 ; \text { check }\left(q_{i}, q_{i+1}\right) \text {.path at resolution }\left(q_{i}, q_{i+1}\right) \text {.res } \\
& \text { if collision found in }\left(q_{i}, q_{i+1}\right) \text {.path then } \\
& \quad \text { remove }\left(q_{i}, q_{i+1}\right) \text { from roadmap; goto line } 2 \\
& \text { return }\left(q_{1}, q_{2}\right) \text {.path } \circ \cdots \circ\left(q_{n-1}, q_{n}\right) \text {.path }
\end{aligned}
$$

Perform collision checking only when necessary

LazyRoadmapCollisionChecking

for several times do

```
    \(\left[q_{1}, q_{2}, \ldots, q_{n}\right] \leftarrow\) search \(G=(V, E)\) for sequence of edges connecting \(q_{\text {init }}\) to \(q_{\text {goal }}\)
    for \(i=1,2, \ldots, n\) do
        if \(q_{i}\). checked \(=\mathrm{fal}\) se and \(\operatorname{IsConfig} \operatorname{CollisionFree}\left(q_{i}\right)=\mathrm{fal}\) se then
                remove \(q_{i}\) from roadmap; goto line 2
            else
                \(q_{i}\). checked \(\leftarrow\) true
    while no edge collisions are found and minimum resolution not reached do
        for \(i=1,2, \ldots, n-1\) do
            \(\left(q_{i}, q_{i+1}\right)\).res \(\leftarrow\left(q_{i}, q_{i+1}\right)\).res \(/ 2\); check \(\left(q_{i}, q_{i+1}\right)\).path at resolution \(\left(q_{i}, q_{i+1}\right)\).res
            if collision found in \(\left(q_{i}, q_{i+1}\right)\). path then
                remove \(\left(q_{i}, q_{i+1}\right)\) from roadmap; goto line 2
    return \(\left(q_{1}, q_{2}\right)\).path \(\circ \cdots \circ\left(q_{n-1}, q_{n}\right)\).path
```


Perform collision checking only when necessary

LazyRoadmapCollisionChecking

for several times do

$\left[q_{1}, q_{2}, \ldots, q_{n}\right] \leftarrow$ search $G=(V, E)$ for sequence of edges connecting $q_{\text {init }}$ to $q_{\text {goal }}$
for $i=1,2, \ldots, n$ do
if q_{i}. checked $=\mathrm{fal}$ se and $\operatorname{IsConfig} \operatorname{CollisionFree}\left(q_{i}\right)=\mathrm{fal}$ se then remove q_{i} from roadmap; goto line 2
else
q_{i}.checked \leftarrow true
while no edge collisions are found and minimum resolution not reached do
for $i=1,2, \ldots, n-1$ do
$\left(q_{i}, q_{i+1}\right)$.res $\leftarrow\left(q_{i}, q_{i+1}\right)$.res $/ 2$; check $\left(q_{i}, q_{i+1}\right)$.path at resolution $\left(q_{i}, q_{i+1}\right)$.res
if collision found in $\left(q_{i}, q_{i+1}\right)$. path then
remove $\left(q_{i}, q_{i+1}\right)$ from roadmap; goto line 2
return $\left(q_{1}, q_{2}\right)$.path $\circ \cdots \circ\left(q_{n-1}, q_{n}\right)$.path

Perform collision checking only when necessary

LazyRoadmapCollisionChecking

for several times do

$\left[q_{1}, q_{2}, \ldots, q_{n}\right] \leftarrow$ search $G=(V, E)$ for sequence of edges connecting $q_{\text {init }}$ to $q_{\text {goal }}$
for $i=1,2, \ldots, n$ do
if q_{i}. checked $=\mathrm{fal}$ se and $\operatorname{IsConfig} \operatorname{CollisionFree}\left(q_{i}\right)=\mathrm{fal}$ se then remove q_{i} from roadmap; goto line 2
else
q_{i}.checked \leftarrow true
while no edge collisions are found and minimum resolution not reached do
for $i=1,2, \ldots, n-1$ do
$\left(q_{i}, q_{i+1}\right)$.res $\leftarrow\left(q_{i}, q_{i+1}\right)$.res $/ 2$; check $\left(q_{i}, q_{i+1}\right)$.path at resolution $\left(q_{i}, q_{i+1}\right)$.res
if collision found in $\left(q_{i}, q_{i+1}\right)$. path then
remove $\left(q_{i}, q_{i+1}\right)$ from roadmap; goto line 2
return $\left(q_{1}, q_{2}\right)$.path $\circ \cdots \circ\left(q_{n-1}, q_{n}\right)$.path

Perform collision checking only when necessary

LazyRoadmapCollisionChecking

for several times do

```
    \(\left[q_{1}, q_{2}, \ldots, q_{n}\right] \leftarrow\) search \(G=(V, E)\) for sequence of edges connecting \(q_{\text {init }}\) to \(q_{\text {goal }}\)
    for \(i=1,2, \ldots, n\) do
        if \(q_{i}\).checked \(=\mathrm{fal}\) se and \(\operatorname{IsConfigCollisionFree~}\left(q_{i}\right)=\) false then
                remove \(q_{i}\) from roadmap; goto line 2
            else
                \(q_{i}\). checked \(\leftarrow\) true
    while no edge collisions are found and minimum resolution not reached do
        for \(i=1,2, \ldots, n-1\) do
            \(\left(q_{i}, q_{i+1}\right)\).res \(\leftarrow\left(q_{i}, q_{i+1}\right)\).res \(/ 2\); check \(\left(q_{i}, q_{i+1}\right)\).path at resolution \(\left(q_{i}, q_{i+1}\right)\).res
            if collision found in \(\left(q_{i}, q_{i+1}\right)\). path then
                        remove \(\left(q_{i}, q_{i+1}\right)\) from roadmap; goto line 2
    return \(\left(q_{1}, q_{2}\right)\).path \(\circ \cdots \circ\left(q_{n-1}, q_{n}\right)\).path
```


Perform collision checking only when necessary

LazyRoadmapCollisionChecking

for several times do

```
    \(\left[q_{1}, q_{2}, \ldots, q_{n}\right] \leftarrow\) search \(G=(V, E)\) for sequence of edges connecting \(q_{\text {init }}\) to \(q_{\text {goal }}\)
    for \(i=1,2, \ldots, n\) do
        if \(q_{i}\).checked \(=\mathrm{fal}\) se and \(\operatorname{IsConfigCollisionFree~}\left(q_{i}\right)=\) false then
                remove \(q_{i}\) from roadmap; goto line 2
            else
                \(q_{i}\). checked \(\leftarrow\) true
    while no edge collisions are found and minimum resolution not reached do
        for \(i=1,2, \ldots, n-1\) do
            \(\left(q_{i}, q_{i+1}\right)\).res \(\leftarrow\left(q_{i}, q_{i+1}\right)\).res \(/ 2\); check \(\left(q_{i}, q_{i+1}\right)\).path at resolution \(\left(q_{i}, q_{i+1}\right)\).res
            if collision found in \(\left(q_{i}, q_{i+1}\right)\). path then
                remove \(\left(q_{i}, q_{i+1}\right)\) from roadmap; goto line 2
    return \(\left(q_{1}, q_{2}\right)\).path \(\circ \cdots \circ\left(q_{n-1}, q_{n}\right)\).path
```


Perform collision checking only when necessary

LazyRoadmapCollisionChecking

for several times do

```
    \(\left[q_{1}, q_{2}, \ldots, q_{n}\right] \leftarrow\) search \(G=(V, E)\) for sequence of edges connecting \(q_{\text {init }}\) to \(q_{\text {goal }}\)
    for \(i=1,2, \ldots, n\) do
        if \(q_{i}\).checked \(=\mathrm{fal}\) se and \(\operatorname{IsConfigCollisionFree~}\left(q_{i}\right)=\) false then
                remove \(q_{i}\) from roadmap; goto line 2
            else
                \(q_{i}\). checked \(\leftarrow\) true
    while no edge collisions are found and minimum resolution not reached do
        for \(i=1,2, \ldots, n-1\) do
            \(\left(q_{i}, q_{i+1}\right)\).res \(\leftarrow\left(q_{i}, q_{i+1}\right)\).res \(/ 2\); check \(\left(q_{i}, q_{i+1}\right)\).path at resolution \(\left(q_{i}, q_{i+1}\right)\).res
            if collision found in \(\left(q_{i}, q_{i+1}\right)\). path then
                remove \(\left(q_{i}, q_{i+1}\right)\) from roadmap; goto line 2
    return \(\left(q_{1}, q_{2}\right)\).path \(\circ \cdots \circ\left(q_{n-1}, q_{n}\right)\).path
```


Perform collision checking only when necessary

LazyRoadmapCollisionChecking

for several times do

```
    \(\left[q_{1}, q_{2}, \ldots, q_{n}\right] \leftarrow\) search \(G=(V, E)\) for sequence of edges connecting \(q_{\text {init }}\) to \(q_{\text {goal }}\)
    for \(i=1,2, \ldots, n\) do
        if \(q_{i}\).checked \(=\mathrm{fal}\) se and \(\operatorname{IsConfigCollisionFree~}\left(q_{i}\right)=\) false then
                remove \(q_{i}\) from roadmap; goto line 2
            else
                \(q_{i}\).checked \(\leftarrow\) true
    while no edge collisions are found and minimum resolution not reached do
        for \(i=1,2, \ldots, n-1\) do
            \(\left(q_{i}, q_{i+1}\right)\).res \(\leftarrow\left(q_{i}, q_{i+1}\right)\).res \(/ 2\); check \(\left(q_{i}, q_{i+1}\right)\).path at resolution \(\left(q_{i}, q_{i+1}\right)\).res
            if collision found in \(\left(q_{i}, q_{i+1}\right)\). path then
                remove \(\left(q_{i}, q_{i+1}\right)\) from roadmap; goto line 2
    return \(\left(q_{1}, q_{2}\right)\).path \(\circ \cdots \circ\left(q_{n-1}, q_{n}\right)\).path
```


Perform collision checking only when necessary

LazyRoadmapCollisionChecking

for several times do

$\left[q_{1}, q_{2}, \ldots, q_{n}\right] \leftarrow$ search $G=(V, E)$ for sequence of edges connecting $q_{\text {init }}$ to $q_{\text {goal }}$
for $i=1,2, \ldots, n$ do
if q_{i}.checked $=$ false and IsConfigCollisionFree $\left(q_{i}\right)=$ false then remove q_{i} from roadmap; goto line 2
else
q_{i}.checked \leftarrow true
while no edge collisions are found and minimum resolution not reached do
for $i=1,2, \ldots, n-1$ do
$\left(q_{i}, q_{i+1}\right)$.res $\leftarrow\left(q_{i}, q_{i+1}\right)$.res $/ 2$; check $\left(q_{i}, q_{i+1}\right)$.path at resolution $\left(q_{i}, q_{i+1}\right)$.res
if collision found in $\left(q_{i}, q_{i+1}\right)$. path then
remove $\left(q_{i}, q_{i+1}\right)$ from roadmap; goto line 2
return $\left(q_{1}, q_{2}\right)$.path $\circ \cdots \circ\left(q_{n-1}, q_{n}\right)$.path

Perform collision checking only when necessary

LazyRoadmapCollisionChecking

for several times do

```
    \(\left[q_{1}, q_{2}, \ldots, q_{n}\right] \leftarrow\) search \(G=(V, E)\) for sequence of edges connecting \(q_{\text {init }}\) to \(q_{\text {goal }}\)
    for \(i=1,2, \ldots, n\) do
        if \(q_{i}\).checked \(=\mathrm{fal}\) se and \(\operatorname{IsConfigCollisionFree~}\left(q_{i}\right)=\) false then
                remove \(q_{i}\) from roadmap; goto line 2
            else
                \(q_{i}\). checked \(\leftarrow\) true
    while no edge collisions are found and minimum resolution not reached do
        for \(i=1,2, \ldots, n-1\) do
            \(\left(q_{i}, q_{i+1}\right)\).res \(\leftarrow\left(q_{i}, q_{i+1}\right)\).res \(/ 2\); check \(\left(q_{i}, q_{i+1}\right)\).path at resolution \(\left(q_{i}, q_{i+1}\right)\).res
            if collision found in \(\left(q_{i}, q_{i+1}\right)\). path then
                remove ( \(q_{i}, q_{i+1}\) ) from roadmap; goto line 2
    return \(\left(q_{1}, q_{2}\right)\).path \(\circ \cdots \circ\left(q_{n-1}, q_{n}\right)\).path
```


- Probability of generating samples via uniform sampling in a narrow passage is low due to the small volume of the narrow passage
- Generating samples inside a narrow passage may be critical to the success of the path planner
- Objective is then to design sampling strategies that can increase the probability of generating samples inside narrow passages

Gaussian Sampling in PRM

Objective: Increase Sampling Inside/Near Narrow Passages Approach: Sample from a Gaussian distribution biased near the obstacles

GenerateCollisionFreeConfig

[Boor, Overmars, van Der Stappen: ICRA 1999]
1: $q_{a} \leftarrow$ generate config uniformly at random
2: $r \leftarrow$ generate distance from Gaussian distribution
3: $q_{b} \leftarrow$ generate config uniformly at random at distance r from q_{a}
4: $\mathrm{ok}_{a} \leftarrow \operatorname{ISCONFIGCOLLISIONFREE}\left(q_{a}\right)$
5: $\mathrm{ok}_{b} \leftarrow$ IsConfigCollisionFree $\left(q_{b}\right)$
6: if $\mathrm{ok}_{a}=$ true and $\mathrm{ok}_{b}=$ false then return q_{a}
7: if $\mathrm{ok}_{a}=$ false and $\mathrm{ok}_{b}=$ true then return q_{b}
8: return null

Objective: Increase Sampling Inside/Near Narrow Passages Approach: Move samples in collision outside obstacle boundary

GenerateCollisionFreeConfig
[Amato, Bayazit, Dale, Jones, Vallejo: WAFR 1998]
$q_{a} \leftarrow$ generate config uniformly at random
if IsConfigCollisionFree $\left(q_{a}\right)=$ true then return q_{a}
else
$q_{b} \leftarrow$ generate config uniformly at random
path $\leftarrow \operatorname{GeneratePath}\left(q_{a}, q_{b}\right)$
for $t=\delta$ to \mid path \mid by δ do
if IsConfigCollisionFREE $(\operatorname{path}(t))$ then return path (t)

Objective: Increase Sampling Inside/Near Narrow Passages

 Approach: Create "bridge" between samples in collisionGenerateCollisionFreeConfig
1: $q_{a} \leftarrow$ generate config uniformly at random
2: $q_{b} \leftarrow$ generate config uniformly at random
3: $\mathrm{ok}_{a} \leftarrow$ ISCONFIGCOLLISIONFREE $\left(q_{a}\right)$
4: $\mathrm{ok}_{b} \leftarrow$ IsConfigCollisionFree $\left(q_{b}\right)$
5: if $\mathrm{ok}_{a}=$ false and $\mathrm{ok}_{b}=$ false then
6: \quad path $\leftarrow \operatorname{GeneratePath}\left(q_{a}, q_{b}\right)$
7: $\quad q \leftarrow \operatorname{path}(0.5 \mid$ path $\mid)$
8: if IsConfigCollisionFree(q) then
9: \quad return q
10: return null
[Hsu, Jiang, Reif, Sun: ICRA 2003]

Visibility-based Sampling in PRM

Objective: Capture connectivity of configuration space with few samples Approach: Generate samples that create new components or join existing components GenerateCollisionFreeConfig
[Nisseoux, Simeon, Laumond: Advanced Robotics J 2000]
1: $q \leftarrow$ generate config uniformly at random
2: if IsConfigCollisionFree $(q)=$ true then
3: if q belongs to a new roadmap component then
4: return q
5: if q connects two roadmap components then
6: \quad return q
7: return null

- q_{1} : creates new roadmap component
- q_{2} : creates new roadmap component
- q_{3} : creates new roadmap component
- q_{4} : connects two roadmap components
- q_{5} : connects two roadmap components

Objective: Increase Sampling Inside/Near Narrow Passages
Approach: Improve roadmap connectivity

- Construct roadmap using given sampling strategy
- Identify roadmap nodes that lie in regions that are hard to connect
- Sample more in these regions

Objective: Increase Sampling Inside/Near Narrow Passages

Approach: Improve roadmap connectivity

- Construct roadmap using given sampling strategy
- Identify roadmap nodes that lie in regions that are hard to connect
- Sample more in these regions
- Associate weight $w(q)$ with each configuration q in the roadmap
- Weight $w(q)$ indicates difficulty of region around q

Objective: Increase Sampling Inside/Near Narrow Passages

Approach: Improve roadmap connectivity

- Construct roadmap using given sampling strategy
- Identify roadmap nodes that lie in regions that are hard to connect
- Sample more in these regions
- Associate weight $w(q)$ with each configuration q in the roadmap
- Weight $w(q)$ indicates difficulty of region around q
- $w(q)=\frac{1}{1+\operatorname{deg}(q)}$

■ $w(q)=$ number of times connections from/to q have failed

- combination of different strategies

Objective: Increase Sampling Inside/Near Narrow Passages Approach: Improve roadmap connectivity

- Construct roadmap using given sampling strategy
- Identify roadmap nodes that lie in regions that are hard to connect

■ Sample more in these regions

- Associate weight $w(q)$ with each configuration q in the roadmap
- Weight $w(q)$ indicates difficulty of region around q
- $w(q)=\frac{1}{1+\operatorname{deg}(q)}$
- $w(q)=$ number of times connections from/to q have failed
- combination of different strategies
- Select sample with probability $\frac{w(q)}{\sum_{q^{\prime} \in V^{w}\left(q^{\prime}\right)}}$
- Generate more samples around q

■ Connect new samples to neighboring roadmap nodes

Combine Different Sampling Strategies

- Each sampling strategy has its strengths and weakness
- Objective is to identify the appropriate sampling strategy for a given region

Combine Different Sampling Strategies

- Each sampling strategy has its strengths and weakness
- Objective is to identify the appropriate sampling strategy for a given region
- One common strategy is to assign a weight w_{i} to each sampler S_{i}
- A sampler S_{i} is then selected with probability

$$
\frac{w_{i}}{\sum_{j} w_{j}}
$$

- Sampler weight is updated based on quality of performance

Combine Different Sampling Strategies

- Each sampling strategy has its strengths and weakness
- Objective is to identify the appropriate sampling strategy for a given region
- One common strategy is to assign a weight w_{i} to each sampler S_{i}
- A sampler S_{i} is then selected with probability

$$
\frac{w_{i}}{\sum_{j} w_{j}}
$$

- Sampler weight is updated based on quality of performance
- Balance between being "smart and slow" and "dumb and fast"
- PRM-based planners aim to construct a roadmap that captures the whole connectivity of the configuration space

- PRM-based planners aim to construct a roadmap that captures the whole connectivity of the configuration space

- Good when the objective is to solve multiple queries
- PRM-based planners aim to construct a roadmap that captures the whole connectivity of the configuration space

- Good when the objective is to solve multiple queries
- PRM-based planners aim to construct a roadmap that captures the whole connectivity of the configuration space

- Good when the objective is to solve multiple queries
- PRM-based planners aim to construct a roadmap that captures the whole connectivity of the configuration space

- Good when the objective is to solve multiple queries
- PRM-based planners aim to construct a roadmap that captures the whole connectivity of the configuration space

- Good when the objective is to solve multiple queries
- PRM-based planners aim to construct a roadmap that captures the whole connectivity of the configuration space

- Good when the objective is to solve multiple queries
- Maybe a bit too much when the objective is to solve a single query

Grow a tree in the free configuration space from $q_{\text {init }}$ toward $q_{\text {goal }}$

> TreesearchFramework $\left(q_{\text {init }}, q_{\text {goal }}\right)$
> 1: $\mathcal{T} \leftarrow \operatorname{RootTree}\left(q_{\text {init }}\right)$
> 2: while $q_{\text {goal }}$ has not been reached do
> 3: $\quad q \leftarrow \operatorname{SeLectConfiGFromTreet~}(\mathcal{T})$
> 4: $\quad \operatorname{AdDTreeBranchFromConfig~}(\mathcal{T}, q)$

Critical Issues

- How should a configuration be selected from the tree?
- How should a new branch be added to the tree from the selected configuration?

Pull the tree toward random samples in the configuration space

- RRT relies on nearest neighbors and distance metric $\rho: Q \times Q \leftarrow \mathbb{R} \geq 0$
- RRT adds Voronoi bias to tree growth $\operatorname{RRT}\left(q_{\text {init }}, q_{\text {goal }}\right)$
- initialize tree

1: $\mathcal{T} \leftarrow$ create tree rooted at $q_{\text {init }}$
2: while solution not found do
[LaValle, Kuffner: 1999]

\triangleright select configuration from tree
3: $\quad q_{\text {rand }} \leftarrow$ generate a random sample
4: $\quad q_{\text {near }} \leftarrow$ nearest configuration in \mathcal{T} to $q_{\text {rand }}$ according to distance ρ
\triangle add new branch to tree from selected configuration
5: path \leftarrow generate path (not necessarily collision free) from $q_{\text {near }}$ to $q_{\text {rand }}$
6: if IsSubpathCollisionFree(path, 0 , step) then
7: $\quad q_{\text {new }} \leftarrow$ path(step)
8: add configuration $q_{\text {new }}$ and edge ($q_{\text {near }}, q_{\text {new }}$) to \mathcal{T}
\triangleright check if a solution is found
9: if $\rho\left(q_{\text {new }}, q_{\text {goal }}\right) \approx 0$ then
10: return solution path from root to $q_{\text {new }}$

Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement
Suggested Improvements in the Literature

Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement
■ BasicRRT does not take advantage of $q_{\text {goal }}$

- Tree is pulled towards random directions based on the uniform sampling of Q
- In particular, tree growth is not directed towards $q_{\text {goal }}$

Suggested Improvements in the Literature

Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement
■ BasicRRT does not take advantage of $q_{\text {goal }}$

- Tree is pulled towards random directions based on the uniform sampling of Q
- In particular, tree growth is not directed towards $q_{\text {goal }}$

Suggested Improvements in the Literature

- Introduce goal-bias to tree growth (known as GOALBIASRRT)
- $q_{\text {rand }}$ is selected as $q_{\text {goal }}$ with probability p
- $q_{\text {rand }}$ is selected based on uniform sampling of Q with probability $1-p$
- Probability p is commonly set to ≈ 0.05

Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement

- BASICRRT takes only one small step when adding a new tree branch

- This slows down tree growth

Suggested Improvements in the Literature

Rapidly-exploring Random Tree (RRT) (cont.)

Aspects for Improvement

- BasicRRT takes only one small step when adding a new tree branch

- This slows down tree growth

Suggested Improvements in the Literature

- Take several steps until $q_{\text {rand }}$ is reached or a collision is found (ConNECTRRT)
- Add all the intermediate nodes to the tree

Push the tree frontier in the free configuration space

Expansive-Space Tree (EST)

Push the tree frontier in the free configuration space

[Hsu, Rock, Motwani, Latombe: 1999]
■ EST relies on a probability distribution to guide tree growth

- EST associates a weight $w(q)$ with each tree configuration q
- $w(q)$ is a running estimate on importance of selecting q as the tree configuration from which to add a new tree branch

Expansive-Space Tree (EST)

Push the tree frontier in the free configuration space

■ EST relies on a probability distribution to guide tree growth

- EST associates a weight $w(q)$ with each tree configuration q
- $w(q)$ is a running estimate on importance of selecting q as the tree configuration from which to add a new tree branch
- $w(q)=\frac{1}{1+\operatorname{deg}(q)}$
- $w(q)=1 /(1+$ number of neighbors near $q)$
- combination of different strategies

Expansive-Space Tree (EST)

Push the tree frontier in the free configuration space

- EST relies on a probability distribution to guide tree growth
- EST associates a weight $w(q)$ with each tree configuration q
- $w(q)$ is a running estimate on importance of selecting q as the tree configuration from which to add a new tree branch
- $w(q)=\frac{1}{1+\operatorname{deg}(q)}$
- $w(q)=1 /(1+$ number of neighbors near $q)$
- combination of different strategies

SelectConfigFromTree

- select q in \mathcal{T} with probability $w(q) / \sum_{q^{\prime} \in \mathcal{T}} w\left(q^{\prime}\right)$

Push the tree frontier in the free configuration space

- EST relies on a probability distribution to guide tree growth
- EST associates a weight $w(q)$ with each tree configuration q
- $w(q)$ is a running estimate on importance of selecting q as the tree configuration from which to add a new tree branch
- $w(q)=\frac{1}{1+\operatorname{deg}(q)}$
- $w(q)=1 /(1+$ number of neighbors near $q)$
- combination of different strategies

SelectConfigFromTree

■ select q in \mathcal{T} with probability $w(q) / \sum_{q^{\prime} \in \mathcal{T}} w\left(q^{\prime}\right)$
$\operatorname{AddTreeBranchFromConfig}(\mathcal{T}, q)$

- $q_{\text {near }} \leftarrow$ sample a collision-free configuration near q
- path \leftarrow generate path from q to $q_{\text {near }}$

■ if path is collision-free, then add $q_{\text {near }}$ and $\left(q, q_{\text {near }}\right)$ to \mathcal{T}

Push the tree frontier in the free configuration space

- EST relies on a probability distribution to guide tree growth
- EST associates a weight $w(q)$ with each tree configuration q
- $w(q)$ is a running estimate on importance of selecting q as the tree configuration from which to add a new tree branch
- $w(q)=\frac{1}{1+\operatorname{deg}(q)}$
- $w(q)=1 /(1+$ number of neighbors near $q)$
- combination of different strategies

SelectConfigFromTree

- select q in \mathcal{T} with probability $w(q) / \sum_{q^{\prime} \in \mathcal{T}} w\left(q^{\prime}\right)$
$\operatorname{AddTreeBranchFromConfig}(\mathcal{T}, q)$
- $q_{\text {near }} \leftarrow$ sample a collision-free configuration near q
- path \leftarrow generate path from q to $q_{\text {near }}$

■ if path is collision-free, then add $q_{\text {near }}$ and $\left(q, q_{\text {near }}\right)$ to \mathcal{T}
[play movie]

- Tree generally grows rapidly for the first few thousand iterations
- Tree growth afterwards slows down quite significantly
- Large number of configurations increases computational cost
- It becomes increasingly difficult to guide the tree towards previously unexplored parts of the free configuration space
- Tree generally grows rapidly for the first few thousand iterations
- Tree growth afterwards slows down quite significantly
- Large number of configurations increases computational cost
- It becomes increasingly difficult to guide the tree towards previously unexplored parts of the free configuration space

Possible improvements?

- Bi-directional trees improve computational efficiency compared to a single tree
- Growth slows down significantly later than when using a single tree

■ Fewer configurations in each tree, which imposes less of a computational burden

- Each tree explores a different part of the configuration space
$\operatorname{BiTREE}\left(q_{\text {init }}, q_{\text {goal }}\right)$
1: $\mathcal{T}_{\text {init }} \leftarrow$ create tree rooted at $q_{\text {init }}$
: $\mathcal{T}_{\text {goal }} \leftarrow$ create tree rooted at $q_{\text {goal }}$
3: while solution not found do
4: add new branch to $\mathcal{T}_{\text {init }}$
5: add new branch to $\mathcal{T}_{\text {goal }}$
6: attempt to connect neighboring configurations from the two trees
7: if successful, return path from $q_{\text {init }}$ to $q_{\text {goal }}$
- Bi-directional trees improve computational efficiency compared to a single tree
- Growth slows down significantly later than when using a single tree
- Fewer configurations in each tree, which imposes less of a computational burden
- Each tree explores a different part of the configuration space
$\operatorname{BiTREE}\left(q_{\text {init }}, q_{\text {goal }}\right)$
1: $\mathcal{T}_{\text {init }} \leftarrow$ create tree rooted at $q_{\text {init }}$
2: $\mathcal{T}_{\text {goal }} \leftarrow$ create tree rooted at $q_{\text {goal }}$
3: while solution not found do
4: add new branch to $\mathcal{T}_{\text {init }}$
5: add new branch to $\mathcal{T}_{\text {goal }}$
6: attempt to connect neighboring configurations from the two trees
7: if successful, return path from $q_{\text {init }}$ to $q_{\text {goal }}$
- Different tree planners can be used to grow each of the trees
- E.g., RRT can be used for one tree and EST can be used for the other

High-dimensional Motion Planning

High-dimensional Motion Planning

- PRM provides global sampling of the configuration space

High-dimensional Motion Planning

- PRM provides global sampling of the configuration space
- But, if sampling is sparse, then roadmap is disconnected
- Moreover, dense sampling is impractical in high-dimensional spaces

High-dimensional Motion Planning

- PRM provides global sampling of the configuration space
- But, if sampling is sparse, then roadmap is disconnected
- Moreover, dense sampling is impractical in high-dimensional spaces
- Tree planner provides fast local exploration of area around root

High-dimensional Motion Planning

- PRM provides global sampling of the configuration space
- But, if sampling is sparse, then roadmap is disconnected
- Moreover, dense sampling is impractical in high-dimensional spaces
- Tree planner provides fast local exploration of area around root
- But, tree growth slows down significantly in high-dimensional spaces
- Although bi-directional trees offer some improvements, problems still remain

High-dimensional Motion Planning

- PRM provides global sampling of the configuration space
- But, if sampling is sparse, then roadmap is disconnected
- Moreover, dense sampling is impractical in high-dimensional spaces
- Tree planner provides fast local exploration of area around root
- But, tree growth slows down significantly in high-dimensional spaces
- Although bi-directional trees offer some improvements, problems still remain

Desired Properties for a Motion Planner

- Guides exploration towards goal
- Strikes right balance between breadth and depth of search

Sampling-based Roadmap of Trees (SRT)

High-dimensional Motion Planning
■ PRM provides global sampling of the configuration space

- But, if sampling is sparse, then roadmap is disconnected
- Moreover, dense sampling is impractical in high-dimensional spaces

■ Tree planner provides fast local exploration of area around root

- But, tree growth slows down significantly in high-dimensional spaces
- Although bi-directional trees offer some improvements, problems still remain

Desired Properties for a Motion Planner

- Guides exploration towards goal
- Strikes right balance between breadth and depth of search

Sampling-based Roadmap of Trees (SRT)

- Hierarchical planner
- Top level performs global sampling (PRM-based)
- Bottom level performs local sampling (tree-based, e.g., RRT, EST)

■ Combines advantages of global and local sampling

Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap

1: $V \leftarrow \emptyset ; E \leftarrow \emptyset$
2: while $|V|<n_{\text {trees }}$ do
3: $\quad \mathcal{T} \leftarrow$ create tree rooted at a collision-free configuration
4: use tree planner to grow \mathcal{T} for some time 5: add \mathcal{T} to roadmap vertices V

Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap

1: $V \leftarrow \emptyset ; E \leftarrow \emptyset$
2: while $|V|<n_{\text {trees }}$ do
3: $\quad \mathcal{T} \leftarrow$ create tree rooted at a collision-free configuration
4: use tree planner to grow \mathcal{T} for some time 5: add \mathcal{T} to roadmap vertices V

CreateTreesInRoadmap

1: $V \leftarrow \emptyset ; E \leftarrow \emptyset$
: while $|V|<n_{\text {trees }}$ do
3: $\quad \mathcal{T} \leftarrow$ create tree rooted at a collision-free configuration
4: use tree planner to grow \mathcal{T} for some time
5: add \mathcal{T} to roadmap vertices V

```
SelectWhichTreesToConnect
1: E
2: for each }\mathcal{T}\inV\mathrm{ do
3: }\quad\mp@subsup{S}{\mathrm{ neighs }}{}\leftarrowk\mathrm{ nearest trees in }V\mathrm{ to }\mathcal{T
4: }\quad\mp@subsup{S}{\mathrm{ rand }}{}\leftarrowr\mathrm{ random trees in V
5: }\quad\mp@subsup{E}{\mathrm{ pairs }}{}\leftarrow\mp@subsup{E}{\mathrm{ pairs }}{}\cup{(\mathcal{T},\mp@subsup{\mathcal{T}}{}{\prime}):\mp@subsup{\mathcal{T}}{}{\prime}\in\mp@subsup{S}{\mathrm{ neighs }}{}\cup\mp@subsup{S}{\mathrm{ rand }}{}
```


CreateTreesInRoadmap

1: $V \leftarrow \emptyset ; E \leftarrow \emptyset$
2: while $|V|<n_{\text {trees }}$ do
3: $\quad \mathcal{T} \leftarrow$ create tree rooted at a collision-free configuration
4: use tree planner to grow \mathcal{T} for some time
5: add \mathcal{T} to roadmap vertices V
SelectWhichTreesToConnect
$E_{\text {pairs }} \leftarrow \emptyset$
for each $\mathcal{T} \in V$ do
3: $\quad S_{\text {neighs }} \leftarrow k$ nearest trees in V to \mathcal{T}
4: $\quad S_{\text {rand }} \leftarrow r$ random trees in V
5: $\quad E_{\text {pairs }} \leftarrow E_{\text {pairs }} \cup\left\{\left(\mathcal{T}, \mathcal{T}^{\prime}\right): \mathcal{T}^{\prime} \in S_{\text {neighs }} \cup S_{\text {rand }}\right\}$
Connect TreesinRoadmap
1: for each $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \in E_{\text {pairs }}$ do
if $\operatorname{AreTreesConnected}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=$ false then run bi-directional tree planner to connect \mathcal{T}_{1} to \mathcal{T}_{2} if connection successful then
5: add edge $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ to roadmap

Sampling-based Roadmap of Trees (SRT) (cont.)

CreateTreesInRoadmap

1: $V \leftarrow \emptyset ; E \leftarrow \emptyset$
2: while $|V|<n_{\text {trees }}$ do
3: $\quad \mathcal{T} \leftarrow$ create tree rooted at a collision-free configuration
4: use tree planner to grow \mathcal{T} for some time
5: add \mathcal{T} to roadmap vertices V
SelectWhichTreesToConnect
1: $E_{\text {pairs }} \leftarrow \emptyset$

$$
\text { for each } \mathcal{T} \in V \text { do }
$$

$S_{\text {neighs }} \leftarrow k$ nearest trees in V to \mathcal{T}
$S_{\text {rand }} \leftarrow r$ random trees in V
5: $\quad E_{\text {pairs }} \leftarrow E_{\text {pairs }} \cup\left\{\left(\mathcal{T}, \mathcal{T}^{\prime}\right): \mathcal{T}^{\prime} \in S_{\text {neighs }} \cup S_{\text {rand }}\right\}$
Connect TreesinRoadmap
1: for each $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \in E_{\text {pairs }}$ do
2: if AreTreesConnected $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=$ false then
3: run bi-directional tree planner to connect \mathcal{T}_{1} to \mathcal{T}_{2}
4: if connection successful then
5: add edge $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ to roadmap
$\operatorname{SolveQuery}\left(q_{\text {init }}, q_{\text {goal }}\right)$
1: $\mathcal{T}_{\text {init }} \leftarrow$ create tree rooted at $q_{\text {init }}$
2: $\mathcal{T}_{\text {goal }} \leftarrow$ create tree rooted at $q_{\text {goal }}$
3: connect $\mathcal{T}_{\text {init }}$ and $\mathcal{T}_{\text {goal }}$ to roadmap
4: search roadmap graph for solution

CreateTreesInRoadmap

1: $V \leftarrow \emptyset ; E \leftarrow \emptyset$
2: while $|V|<n_{\text {trees }}$ do
3: $\quad \mathcal{T} \leftarrow$ create tree rooted at a collision-free configuration
4: use tree planner to grow \mathcal{T} for some time
5: add \mathcal{T} to roadmap vertices V

SelectWhichTreesToConnect

$E_{\text {pairs }} \leftarrow \emptyset$
for each $\mathcal{T} \in V$ do
3: $\quad S_{\text {neighs }} \leftarrow k$ nearest trees in V to \mathcal{T}
4: $\quad S_{\text {rand }} \leftarrow r$ random trees in V
5: $\quad E_{\text {pairs }} \leftarrow E_{\text {pairs }} \cup\left\{\left(\mathcal{T}, \mathcal{T}^{\prime}\right): \mathcal{T}^{\prime} \in S_{\text {neighs }} \cup S_{\text {rand }}\right\}$
Connect TreesinRoadmap
1: for each $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \in E_{\text {pairs }}$ do
if $\operatorname{AreTreesConnected}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=$ false then run bi-directional tree planner to connect \mathcal{T}_{1} to \mathcal{T}_{2}
4: if connection successful then
5: add edge $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ to roadmap
SolveQuery $\left(q_{\text {init }}, q_{\text {goal }}\right)$
1: $\mathcal{T}_{\text {init }} \leftarrow$ create tree rooted at $q_{\text {init }}$
2: $\mathcal{T}_{\text {goal }} \leftarrow$ create tree rooted at $q_{\text {goal }}$
3: connect $\mathcal{T}_{\text {init }}$ and $\mathcal{T}_{\text {goal }}$ to roadmap

4: search roadmap graph for solution

CreateTreesInRoadmap

1: $V \leftarrow \emptyset ; E \leftarrow \emptyset$
2: while $|V|<n_{\text {trees }}$ do
3: $\quad \mathcal{T} \leftarrow$ create tree rooted at a collision-free configuration
4: use tree planner to grow \mathcal{T} for some time
5: add \mathcal{T} to roadmap vertices V

SelectWhichTreesToConnect

$E_{\text {pairs }} \leftarrow \emptyset$
for each $\mathcal{T} \in V$ do
3: $\quad S_{\text {neighs }} \leftarrow k$ nearest trees in V to \mathcal{T}
4: $\quad S_{\text {rand }} \leftarrow r$ random trees in V
5: $\quad E_{\text {pairs }} \leftarrow E_{\text {pairs }} \cup\left\{\left(\mathcal{T}, \mathcal{T}^{\prime}\right): \mathcal{T}^{\prime} \in S_{\text {neighs }} \cup S_{\text {rand }}\right\}$
ConnectTreesInRoadmap
1: for each $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \in E_{\text {pairs }}$ do
if $\operatorname{AreTreesConnected}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=$ false then run bi-directional tree planner to connect \mathcal{T}_{1} to \mathcal{T}_{2} if connection successful then add edge $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ to roadmap

SolveQuery $\left(q_{\text {init }}, q_{\text {goal }}\right)$
1: $\mathcal{T}_{\text {init }} \leftarrow$ create tree rooted at $q_{\text {init }}$
2: $\mathcal{T}_{\text {goal }} \leftarrow$ create tree rooted at $q_{\text {goal }}$

3: connect $\mathcal{T}_{\text {init }}$ and $\mathcal{T}_{\text {goal }}$ to roadmap
4: search roadmap graph for solution

CreateTreesInRoadmap

1: $V \leftarrow \emptyset ; E \leftarrow \emptyset$
2: while $|V|<n_{\text {trees }}$ do
3: $\quad \mathcal{T} \leftarrow$ create tree rooted at a collision-free configuration
4: use tree planner to grow \mathcal{T} for some time
5: add \mathcal{T} to roadmap vertices V

SelectWhichTreesToConnect

$E_{\text {pairs }} \leftarrow \emptyset$
for each $\mathcal{T} \in V$ do
3: $\quad S_{\text {neighs }} \leftarrow k$ nearest trees in V to \mathcal{T}
4: $\quad S_{\text {rand }} \leftarrow r$ random trees in V
5: $\quad E_{\text {pairs }} \leftarrow E_{\text {pairs }} \cup\left\{\left(\mathcal{T}, \mathcal{T}^{\prime}\right): \mathcal{T}^{\prime} \in S_{\text {neighs }} \cup S_{\text {rand }}\right\}$
ConnectTreesInRoadmap
1: for each $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \in E_{\text {pairs }}$ do
if $\operatorname{AreTreesConnected}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=$ false then run bi-directional tree planner to connect \mathcal{T}_{1} to \mathcal{T}_{2} if connection successful then add edge $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ to roadmap

SolveQuery $\left(q_{\text {init }}, q_{\text {goal }}\right)$
1: $\mathcal{T}_{\text {init }} \leftarrow$ create tree rooted at $q_{\text {init }}$
2: $\mathcal{T}_{\text {goal }} \leftarrow$ create tree rooted at $q_{\text {goal }}$

3: connect $\mathcal{T}_{\text {init }}$ and $\mathcal{T}_{\text {goal }}$ to roadmap
4: search roadmap graph for solution

CreateTreesInRoadmap

1: $V \leftarrow \emptyset ; E \leftarrow \emptyset$
2: while $|V|<n_{\text {trees }}$ do
3: $\quad \mathcal{T} \leftarrow$ create tree rooted at a collision-free configuration
4: use tree planner to grow \mathcal{T} for some time
5: add \mathcal{T} to roadmap vertices V

SelectWhichTreesToConnect

: $E_{\text {pairs }} \leftarrow \emptyset$
for each $\mathcal{T} \in V$ do
3: $\quad S_{\text {neighs }} \leftarrow k$ nearest trees in V to \mathcal{T}
4: $\quad S_{\text {rand }} \leftarrow r$ random trees in V
5: $\quad E_{\text {pairs }} \leftarrow E_{\text {pairs }} \cup\left\{\left(\mathcal{T}, \mathcal{T}^{\prime}\right): \mathcal{T}^{\prime} \in S_{\text {neighs }} \cup S_{\text {rand }}\right\}$

ConnectTreesInRoadmap

1: for each $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \in E_{\text {pairs }}$ do
if $\operatorname{AreTreesConnected}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=$ false then run bi-directional tree planner to connect \mathcal{T}_{1} to \mathcal{T}_{2} if connection successful then
5: add edge $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ to roadmap
SolveQuery $\left(q_{\text {init }}, q_{\text {goal }}\right)$
1: $\mathcal{T}_{\text {init }} \leftarrow$ create tree rooted at $q_{\text {init }}$
2: $\mathcal{T}_{\text {goal }} \leftarrow$ create tree rooted at $q_{\text {goal }}$
3: connect $\mathcal{T}_{\text {init }}$ and $\mathcal{T}_{\text {goal }}$ to roadmap
4: search roadmap graph for solution

CreateTreesInRoadmap

1: $V \leftarrow \emptyset ; E \leftarrow \emptyset$
2: while $|V|<n_{\text {trees }}$ do
3: $\quad \mathcal{T} \leftarrow$ create tree rooted at a collision-free configuration
4: use tree planner to grow \mathcal{T} for some time
5: add \mathcal{T} to roadmap vertices V

SelectWhichTreesToConnect

: $E_{\text {pairs }} \leftarrow \emptyset$
for each $\mathcal{T} \in V$ do
3: $\quad S_{\text {neighs }} \leftarrow k$ nearest trees in V to \mathcal{T}
4: $\quad S_{\text {rand }} \leftarrow r$ random trees in V
5: $\quad E_{\text {pairs }} \leftarrow E_{\text {pairs }} \cup\left\{\left(\mathcal{T}, \mathcal{T}^{\prime}\right): \mathcal{T}^{\prime} \in S_{\text {neighs }} \cup S_{\text {rand }}\right\}$

ConnectTreesInRoadmap

1: for each $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right) \in E_{\text {pairs }}$ do
2: if AreTreesConnected $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=$ false then
3: run bi-directional tree planner to connect \mathcal{T}_{1} to \mathcal{T}_{2}
4: if connection successful then
5: add edge $\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ to roadmap
SolveQuery $\left(q_{\text {init }}, q_{\text {goal }}\right)$
1: $\mathcal{T}_{\text {init }} \leftarrow$ create tree rooted at $q_{\text {init }}$
2: $\mathcal{T}_{\text {goal }} \leftarrow$ create tree rooted at $q_{\text {goal }}$
3: connect $\mathcal{T}_{\text {init }}$ and $\mathcal{T}_{\text {goal }}$ to roadmap
4: search roadmap graph for solution

Advantages

■ Explores small subset of possibilities by sampling

- Computationally efficient
- Solves high-dimensional problems (with hundreds of DOFs)
- Easy to implement
- Applications in many different areas

Disadvantages

- Does not guarantee completeness (a complete planner always finds a solution if there exists one, or reports that no solution exists)

Is it then just a heuristic approach? No. It's more than that
It offers probabilistic completeness

- When a solution exists, a probabilistically complete planner finds a solution with probability as time goes to infinity.
- When a solution does not exists, a probabilistically complete planner may not be able to determine that a solution does not exist.

Components

- Free configuration space $Q_{\text {free }}$: arbitrary open subset of $[0,1]^{d}$
- Local connector: connects $a, b \in Q_{\text {free }}$ via a straight-line path and succeeds if path lies entirely in $Q_{\text {free }}$
- Collection of roadmap samples from $Q_{\text {free }}$

Components

- Free configuration space $Q_{\text {free }}$: arbitrary open subset of $[0,1]^{d}$
- Local connector: connects $a, b \in Q_{\text {free }}$ via a straight-line path and succeeds if path lies entirely in $Q_{\text {free }}$
- Collection of roadmap samples from $Q_{\text {free }}$

Let $a, b \in Q_{\text {free }}$ such that there exists a path γ between a and b lying in $Q_{\text {free }}$. Then the probability that PRM correctly answers the query (a, b) after generating n collision-free configurations is given by

$$
\operatorname{Pr}[(a, b) \mathrm{SUCCESS}] \geq 1-\left\lceil\frac{2 L}{\rho}\right\rceil e^{-\sigma \rho^{d} n},
$$

where

- L is the length of the path γ
- $\rho=\operatorname{clr}(\gamma)$ is the clearance of path γ from obstacles
- $\sigma=\frac{\mu\left(B_{1}(\cdot)\right)}{2^{d} \mu\left(Q_{\text {free }}\right)}$
- $\mu\left(B_{1}(\cdot)\right)$ is the volume of the unit ball in \mathbb{R}^{d}
- $\mu\left(Q_{\text {free }}\right)$ is the volume of $Q_{\text {free }}$

Basic Idea

- Reduce path to a set of open balls in $Q_{\text {free }}$
- Calculate probability of generating samples in those balls
- Connect samples in different balls via straight-line paths to compute solution path

- Note that clearance $\rho=\operatorname{clr}(\gamma)>0$
- Let $m=\left\lceil\frac{2 L}{\rho}\right\rceil$. Then, γ can be covered with m balls $B_{\rho / 2}\left(q_{i}\right)$ where $a=q_{1}, \ldots, q_{m}=b$
- Let $y_{i} \in B_{\rho / 2}\left(q_{i}\right)$ and $y_{i+1} \in B_{\rho / 2}\left(q_{i+1}\right)$.

Then, the straight-line segment $\overline{y_{i} y_{i+1}} \in Q_{\text {free }}$, since $y_{i}, y_{i+1} \in B_{\rho}\left(q_{i}\right)$

- $I_{i} \stackrel{\text { def }}{=}$ indicator variable that there exists $y \in V$ s.t. $y \in B_{\rho / 2}\left(q_{i}\right)$
- $\operatorname{Pr}[(a, b)$ FAILURE $]=\operatorname{Pr}\left[\bigvee_{i=1}^{m} I_{i}=0\right]=\sum_{i=1}^{m} \operatorname{Pr}\left[l_{i}=0\right]$
- Note that $\operatorname{Pr}\left[I_{i}=0\right]=\left(1-\frac{\mu\left(B_{\rho / 2}\left(q_{i}\right)\right)}{\mu\left(Q_{\text {free }}\right)}\right)^{n}$ i.e., probability that none of the n PRM samples falls in $B_{\rho / 2}\left(q_{i}\right)$
- l_{i} 's are independent because of uniform samling in PRM

Therefore, $\operatorname{Pr}[(a, b)$ FAILURE $]=m\left(1-\frac{\mu\left(B_{\rho / 2}(\cdot)\right)}{\mu\left(Q_{\text {free }}\right)}\right)^{n}$

- $\frac{\mu\left(B_{\rho / 2}(\cdot)\right)}{\mu\left(Q_{\text {free }}\right)}=\frac{\left(\frac{\rho}{2}\right)^{d} \mu\left(B_{1}(\cdot)\right)}{\mu\left(Q_{\text {free }}\right)}=\sigma \rho^{d}$

Therefore, $\operatorname{Pr}[(a, b)$ FAILURE $]=m\left(1-\sigma \rho^{d}\right)^{n} \leq m e^{-\sigma \rho^{d} n}=\left\lceil\frac{2 L}{\rho}\right\rceil e^{-\sigma \rho^{d} n}$

$$
\text { since }(1-x) \leq e^{-x} \quad \forall x \geq 0
$$

