CS485 - Autonomous Robotics Motion Planning with Kinematics and Dynamics

Amarda Shehu

Department of Computer Science George Mason University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Beyond Motion Planning with Geometric Constraints

 Geometric constraints are generally not sufficient to adequately express robot motions

[movie: Moving Car 1]

Beyond Motion Planning with Geometric Constraints

 Geometric constraints are generally not sufficient to adequately express robot motions

[movie: Moving Car 1]

- Are the motions realistic?
- What is missing?

Motion Planning with Kinematic Constraints

 Actual car steering and constraints on velocity may make planned motions more realistic.

[movie: Moving Car 2]

Motion Planning with Kinematic Constraints

 Actual car steering and constraints on velocity may make planned motions more realistic.

[movie: Moving Car 2]

- Are the motions more realistic?
- Can they be made more realistic?
- How?

Motion Planning with Kinematic and Dynamic Constraints

- Geometric constraints are generally not sufficient to adequately express robot motions
- Constraints on velocity, forces, torques, accelerations are needed for better representations

[movie: Moving Car 1 - Geometric] [movie: Moving Car 1 - Kinematics] [movie: Moving Car 3 - Dynamics] Illustration:

• C-space = $\mathbb{R}^2 = \{q = (x, y) \in \mathbb{R}^2\}$

• Velocity
$$\frac{dq}{dt} = \dot{q} = (\dot{x}, \dot{y})$$

- Each (x, y) is an element of the tangent space T_q(ℝ²), which is a 2D vector space at every (x, y)
- At each q ∈ ℝ², restricting the set of velocities yields some set U(q) ⊂ T_q(ℝ²)
- Think about the kinds of constraints imposed on velocity

Kinematics Constraints == Constraints on Velocity

Kinematics Constraints == Constraints on Velocity

Eamples of interesting yet simple constraints:

■ *ẋ* > 0:

• $\dot{x} > 0$: Paddling boat on river flowing in positive x direction.

Kinematics Constraints == Constraints on Velocity

- $\dot{x} > 0$: Paddling boat on river flowing in positive x direction.
- x ≥ 0:

- $\dot{x} > 0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \ge 0$: Allows to stop in x direction; e.g. following velocity in y.

- $\dot{x} > 0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \ge 0$: Allows to stop in x direction; e.g. following velocity in y.
- $\dot{x} = 0$:

- $\dot{x} > 0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \ge 0$: Allows to stop in x direction; e.g. following velocity in y.
- $\dot{x} = 0$: No motion in x direction; $(0, \dot{y})$ allowed.

- $\dot{x} > 0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \ge 0$: Allows to stop in x direction; e.g. following velocity in y.
- $\dot{x} = 0$: No motion in x direction; $(0, \dot{y})$ allowed.
- $\bullet \dot{x} + \dot{y} \le 1:$

(*) *) *) *)

- $\dot{x} > 0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \ge 0$: Allows to stop in x direction; e.g. following velocity in y.
- $\dot{x} = 0$: No motion in x direction; $(0, \dot{y})$ allowed.
- $\dot{x} + \dot{y} \le 1$: Constraint enforces maximum speed.

- $\dot{x} > 0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \ge 0$: Allows to stop in x direction; e.g. following velocity in y.
- $\dot{x} = 0$: No motion in x direction; $(0, \dot{y})$ allowed.
- $\dot{x} + \dot{y} \le 1$: Constraint enforces maximum speed.
- $\bullet \dot{x} + \dot{y} \ge 1:$

同下 イヨト イヨト ニヨ

- $\dot{x} > 0$: Paddling boat on river flowing in positive x direction.
- $\dot{x} \ge 0$: Allows to stop in x direction; e.g. following velocity in y.
- $\dot{x} = 0$: No motion in x direction; $(0, \dot{y})$ allowed.
- $\dot{x} + \dot{y} \le 1$: Constraint enforces maximum speed.
- $\dot{x} + \dot{y} \ge 1$: Impossible to stop or slow down.

Implicit vs. Parametric Kinematics Constraints

Implicit and parametric representations are alternative ways to express $U(q) \quad orall q \in \mathbb{R}^2.$

- Implicit (indirect) representation: expresses velocities that are not allowed.
- Parametric (direct) representation: expresses velocities that are <u>allowed</u>.

Implicit Velocity Constraints

Implicit velocity constraints express velocities that are $\underline{not \ allowed}$ and are of the form:

 $g(q,\dot{q})\bowtie 0$

where

- $g(q,\dot{q})$ is some function $g:Q imes\dot{Q}
 ightarrow\mathbb{R}$
- \blacksquare \bowtie can be any of the symbols $=,<,>,\leq,\geq$

Implicit Velocity Constraints

Implicit velocity constraints express velocities that are <u>not allowed</u> and are of the form:

 $g(q,\dot{q})\bowtie 0$

where

- $g(q,\dot{q})$ is some function $g:Q imes\dot{Q}
 ightarrow\mathbb{R}$
- $\blacksquare\,\bowtie\,$ can be any of the symbols $=,<,>,\leq,\geq$

Example of point in plane

- configuration: $q = (x, y) \in \mathbb{R}^2$
- velocity: $\frac{dq}{dt} = \dot{q} = (\dot{x}, \dot{y})$

Implicit velocity constraints express velocities that are <u>not allowed</u> and are of the form:

 $g(q,\dot{q})\bowtie 0$

where

- $g(q,\dot{q})$ is some function $g:Q imes\dot{Q}
 ightarrow\mathbb{R}$
- $\blacksquare\,\bowtie\,$ can be any of the symbols $=,<,>,\leq,\geq$

Example of point in plane

- configuration: $q = (x, y) \in \mathbb{R}^2$
- velocity: $\frac{dq}{dt} = \dot{q} = (\dot{x}, \dot{y})$

Examples of implicit velocity constraints

•
$$\dot{x} > 0$$
, $\dot{x} = 0$, $\dot{x}^2 + \dot{y}^2 \le 1$, $x = \dot{x}$, etc.

Parametric velocity constraints express velocities that are <u>allowed</u> and are of the form:

$$\dot{q} = f(q, u)$$

where

• f(q, u) is some function $f: Q \times U \rightarrow \dot{Q}$ that expresses a set of differential equations.

f is referred to as the configuration transition equation

- u is an input control/action.
- So, *T_q(Q)* is *parameterized* through *u*: Given a (sampled?) control/action, one can obtain an *allowed* velocity.

Parametric velocity constraints express velocities that are <u>allowed</u> and are of the form:

$$\dot{q}=f(q,u)$$

where

f(q, u) is some function f : Q × U → Q that expresses a set of differential equations. Why a set?

f is referred to as the configuration transition equation

- u is an input control/action.
- So, *T_q(Q)* is *parameterized* through *u*: Given a (sampled?) control/action, one can obtain an *allowed* velocity.

Parametric velocity constraints express velocities that are <u>allowed</u> and are of the form:

$$\dot{q} = f(q, u)$$

where

f(q, u) is some function f : Q × U → Q that expresses a set of differential equations. Why a set?

f is referred to as the configuration transition equation

- u is an input control/action.
- So, *T_q(Q)* is *parameterized* through *u*: Given a (sampled?) control/action, one can obtain an *allowed* velocity.

Let's work out the *kinematics* of some simple *wheeled* systems.

Kinematics for Wheeled Systems

- Objective 1: Derive configuration transition equation (*do the kinematics*) for wheeled systems (car, differential drive, and unicycle).
 Constrain velocities for more realistic motions.
- Objective 2: Proceed with dynamics after working out kinematics.
 Constrain accelerations for even more realistic motions.

a simple car as opposed to other car variations

Objective: Obtain f as in $\dot{q} = f(q, u)$.

- Car cannot drive sideways because
- Parallel parking would be trivial
- Complicated maneuvers arise due to rolling constraints.

a simple car as opposed to other car variations

Objective: Obtain f as in $\dot{q} = f(q, u)$.

- Car cannot drive sideways because back wheels roll instead of slide (which is why parallel parking is challenging).
- Parallel parking would be trivial
- Complicated maneuvers arise due to rolling constraints.

a simple car as opposed to other car variations

Objective: Obtain f as in $\dot{q} = f(q, u)$.

- Car cannot drive sideways because back wheels roll instead of slide (which is why parallel parking is challenging).
- Parallel parking would be trivial if all four wheels could simultaneously be turned towards the curb.
- Complicated maneuvers arise due to rolling constraints.

a simple car as opposed to other car variations

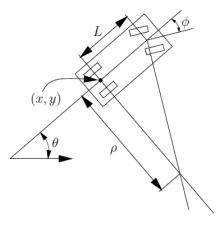
Objective: Obtain f as in $\dot{q} = f(q, u)$.

- Car cannot drive sideways because back wheels roll instead of slide (which is why parallel parking is challenging).
- Parallel parking would be trivial if all four wheels could simultaneously be turned towards the curb.
- Complicated maneuvers arise due to rolling constraints.
- Need: model for car

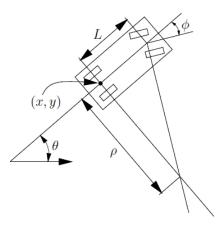
a simple car as opposed to other car variations

Objective: Obtain f as in $\dot{q} = f(q, u)$.

- Car cannot drive sideways because back wheels roll instead of slide (which is why parallel parking is challenging).
- Parallel parking would be trivial if all four wheels could simultaneously be turned towards the curb.
- Complicated maneuvers arise due to rolling constraints.
- Need: model for car
- Need: understand way car moves (what do we control?)



- Car: rigid body that moves in plane.
- Car configuration: $q = (x, y, \theta) \in \mathbb{R} \times S^1$
- Body frame:
 - Origin is at the center of rear axle
 - x-axis points along main axis of the car
- Velocity (signed speed in x direction of body frame): s
- Steering angle: ϕ
- Distance between front and rear axles: L



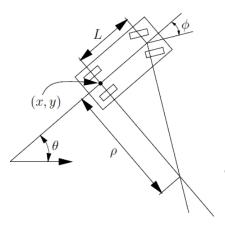
How does the car move?

- If steering angle *φ* is kept fixed, car travels in circular motion.
- Center of circle: intersection between normals to steering axis and car axis.

 \blacksquare Radius of circle: ρ

Need : Express car motions as a set of differential equations

$$\dot{x} = f_1(q, u)$$
$$\dot{y} = f_2(q, u)$$
$$\dot{\theta} = f_3(q, u)$$



How does the car move?

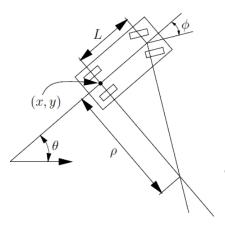
- If steering angle *φ* is kept fixed, car travels in circular motion.
- Center of circle: intersection between normals to steering axis and car axis.

Radius of circle: ρ

Need : Express car motions as a set of differential equations

•
$$\dot{x} = f_1(q, u) = f_1(x, y, \theta, s, \phi)$$

• $\dot{y} = f_2(q, u)$
• $\dot{\theta} = f_3(q, u)$



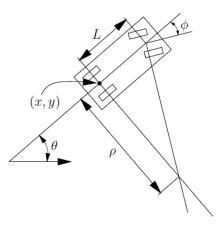
How does the car move?

- If steering angle *φ* is kept fixed, car travels in circular motion.
- Center of circle: intersection between normals to steering axis and car axis.

Radius of circle: ρ

Need : Express car motions as a set of differential equations

• $\dot{x} = f_1(q, u) = f_1(x, y, \theta, s, \phi)$ • $\dot{y} = f_2(q, u) = f_2(x, y, \theta, s, \phi)$ • $\dot{\theta} = f_3(q, u)$



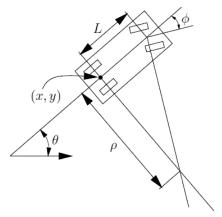
How does the car move?

- If steering angle *φ* is kept fixed, car travels in circular motion.
- Center of circle: intersection between normals to steering axis and car axis.

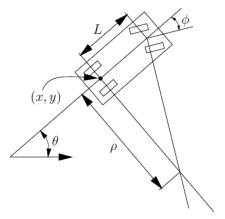
Radius of circle: ρ

Need : Express car motions as a set of differential equations

• $\dot{x} = f_1(q, u) = f_1(x, y, \theta, s, \phi)$ • $\dot{y} = f_2(q, u) = f_2(x, y, \theta, s, \phi)$ • $\dot{\theta} = f_3(q, u) = f_3(x, y, \theta, s, \phi)$

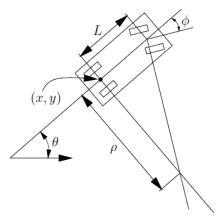


How does the car move?



How does the car move?

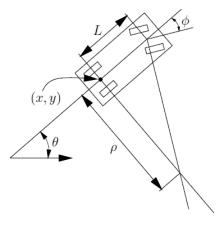
 In small time interval Δt, car must move approximately in direction rear wheels are pointing



How does the car move?

 In small time interval Δt, car must move approximately in direction rear wheels are pointing

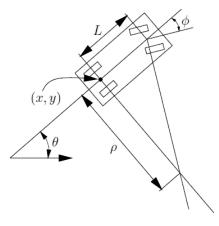
In the limit, as
$$\Delta t \rightarrow 0$$
, then
 $\frac{dy}{dx} = \tan \theta$, i.e.,
 $-\dot{x} \sin \theta + \dot{y} \cos \theta = 0$



How does the car move?

- In small time interval Δt, car must move approximately in direction rear wheels are pointing
- In the limit, as $\Delta t \rightarrow 0$, then $\frac{dy}{dx} = \tan \theta$, i.e., $-\dot{x} \sin \theta + \dot{y} \cos \theta = 0$
- Solution is of the form x
 s cos θ

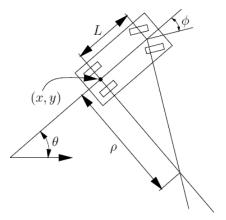
 and y
 s sin θ



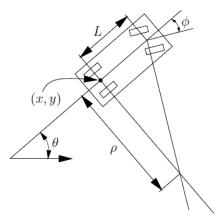
How does the car move?

- In small time interval Δt, car must move approximately in direction rear wheels are pointing
- In the limit, as $\Delta t \rightarrow 0$, then $\frac{dy}{dx} = \tan \theta$, i.e., $-\dot{x} \sin \theta + \dot{y} \cos \theta = 0$
- Solution is of the form x
 s cos θ

 and y
 s sin θ
- What about θ?

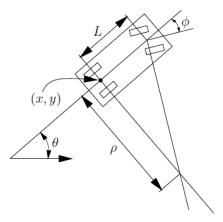


■ Need to put car at consecutive configs on circle to see Δθ as Δt → 0.

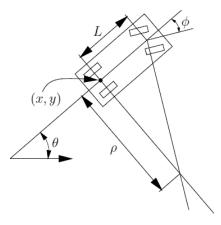


Need to put car at consecutive configs on circle to see Δθ as Δt → 0.

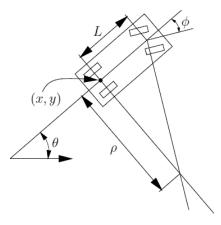
• $L/\rho = tan(\phi)$ [angle relations]



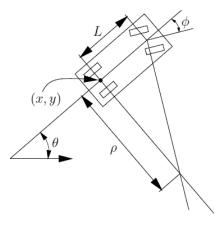
- Need to put car at consecutive configs on circle to see Δθ as Δt → 0.
- $L/\rho = tan(\phi)$ [angle relations]
- Let *w* be distance traveled on circle



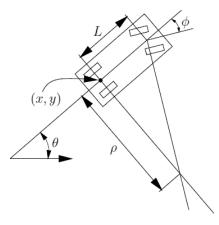
- Need to put car at consecutive configs on circle to see Δθ as Δt → 0.
- $L/\rho = tan(\phi)$ [angle relations]
- Let *w* be distance traveled on circle
- What is translational velocity *dw* relative to *s*?



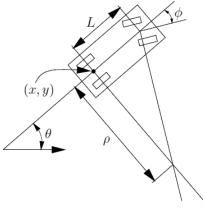
- Need to put car at consecutive configs on circle to see Δθ as Δt → 0.
- $L/\rho = tan(\phi)$ [angle relations]
- Let *w* be distance traveled on circle
- What is translational velocity *dw* relative to *s*? *dw* = *s*.



- Need to put car at consecutive configs on circle to see Δθ as Δt → 0.
- $L/\rho = tan(\phi)$ [angle relations]
- Let *w* be distance traveled on circle
- What is translational velocity *dw* relative to *s*? *dw* = *s*.
- How does translational velocity dw
 s relate to angular velocity dθ?



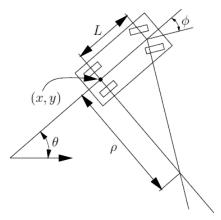
- Need to put car at consecutive configs on circle to see Δθ as Δt → 0.
- $L/\rho = tan(\phi)$ [angle relations]
- Let *w* be distance traveled on circle
- What is translational velocity *dw* relative to *s*? *dw* = *s*.
- How does translational velocity dw
 s relate to angular velocity dθ?
 dw = ρdθ [cord length]



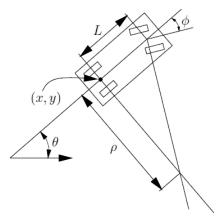
So, putting it all together:

- Need to put car at consecutive configs on circle to see Δθ as Δt → 0.
- $L/\rho = tan(\phi)$ [angle relations]
- Let *w* be distance traveled on circle
- What is translational velocity *dw* relative to *s*? *dw* = *s*.
- How does translational velocity dw = s relate to angular velocity $d\theta$?
 $dw = \rho d\theta$ [cord length]

$$d\theta = \frac{\tan \phi}{L} dw = \frac{\tan \phi}{L} s \Rightarrow \dot{\theta} = \frac{s}{L} \tan \phi$$



What we have so far on configuration transition equations:

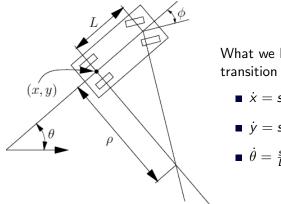


What we have so far on configuration transition equations:

•
$$\dot{x} = s \cdot cos(\theta)$$

•
$$\dot{y} = s \cdot sin(\theta)$$

$$\bullet \dot{\theta} = \frac{s}{L} \tan \phi$$



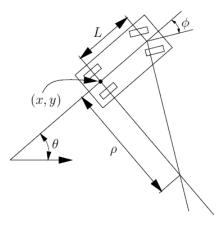
What we have so far on configuration transition equations:

•
$$\dot{x} = s \cdot cos(\theta)$$

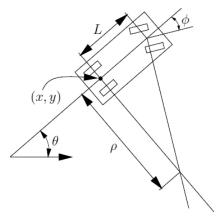
•
$$\dot{y} = s \cdot sin(\theta)$$

$$\bullet \dot{\theta} = \frac{s}{L} \tan \phi$$

How should we control the car? Where are our controls/actions?

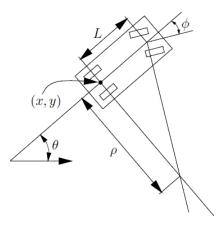


How should we control the car?



How should we control the car?

- Setting the speed s, i.e., $u_s = s$
- Setting the steering angle ϕ , i.e., $u_{\phi} = \phi$



How should we control the car?

- Setting the speed s, i.e., $u_s = s$
- Setting the steering angle ϕ , i.e., $u_{\phi} = \phi$

Putting it all together:

- Input controls: *u_s* (speed) and *u_φ* (steering angle)
- CTE:

$$\dot{x} = u_s \cos \theta \\ \dot{y} = u_s \sin \theta \\ \dot{\theta} = \frac{u_s}{I} \tan u_{\phi}$$

Problem formulation when only worrying about geometric constraints:

■ Standing at configuration *q* = (*x*, *y*, *θ*), what are the workspace coordinates of the control points?

Problem formulation when only worrying about geometric constraints:

- Standing at configuration *q* = (*x*, *y*, *θ*), what are the workspace coordinates of the control points?
- Approach: treat car as rigid-body in 2D workspace, use combination of rotation by θ followed by translation by center point (x, y).

Problem formulation when only worrying about geometric constraints:

- Standing at configuration q = (x, y, θ), what are the workspace coordinates of the control points?
- Approach: treat car as rigid-body in 2D workspace, use combination of rotation by θ followed by translation by center point (x, y).

New problem formulation under kinematic constraints:

- Standing at configuration q = (x, y, θ) at time t, determine configuration q' = (x', y', θ') at time t + δt given controls u_s, u_φ
- Approach: use CTE to obtain \dot{q}

■ Update
$$q^{'} = q + \delta t \cdot \dot{q}$$
 [movie: Traj]

Problem formulation when only worrying about geometric constraints:

- Standing at configuration *q* = (*x*, *y*, *θ*), what are the workspace coordinates of the control points?
- Approach: treat car as rigid-body in 2D workspace, use combination of rotation by θ followed by translation by center point (x, y).

New problem formulation under kinematic constraints:

- Standing at configuration q = (x, y, θ) at time t, determine configuration q' = (x', y', θ') at time t + δt given controls u_s, u_φ
- Approach: use CTE to obtain *q*

■ Update
$$q^{'} = q + \delta t \cdot \dot{q}$$
 [movie: Traj]

How can I generate a random path in configuration space?

Problem formulation when only worrying about geometric constraints:

- Standing at configuration *q* = (*x*, *y*, *θ*), what are the workspace coordinates of the control points?
- Approach: treat car as rigid-body in 2D workspace, use combination of rotation by θ followed by translation by center point (x, y).

New problem formulation under kinematic constraints:

- Standing at configuration q = (x, y, θ) at time t, determine configuration q' = (x', y', θ') at time t + δt given controls u_s, u_φ
- Approach: use CTE to obtain *q*

Update
$$q' = q + \delta t \cdot \dot{q}$$
 [movie: Traj]

How can I generate a random path in configuration space? Sample values for controls.

Problem formulation when only worrying about geometric constraints:

- Standing at configuration *q* = (*x*, *y*, *θ*), what are the workspace coordinates of the control points?
- Approach: treat car as rigid-body in 2D workspace, use combination of rotation by θ followed by translation by center point (x, y).

New problem formulation under kinematic constraints:

- Standing at configuration q = (x, y, θ) at time t, determine configuration q' = (x', y', θ') at time t + δt given controls u_s, u_φ
- Approach: use CTE to obtain \dot{q}

• Update
$$q^{'} = q + \delta t \cdot \dot{q}$$
 [movie: Traj

How can I generate a random path in configuration space? Sample values for controls. Should there be bounds?

- Input controls: u_s (speed) and u_ϕ (steering angle)
- CTE: $\dot{x} = u_s \cos \theta$, $\dot{y} = u_s \sin \theta$, $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$
 - What are bounds on steering angle and speed? Why bound speed?

- Input controls: u_s (speed) and u_ϕ (steering angle)
- CTE: $\dot{x} = u_s \cos \theta$, $\dot{y} = u_s \sin \theta$, $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$ What are bounds on steering angle and speed? Why bound speed?

Tricycle

• $u_s \in [-1, 1]$ and $u_\phi \in [-\pi/2, \pi/2]$.

- Input controls: u_s (speed) and u_ϕ (steering angle)
- CTE: $\dot{x} = u_s \cos \theta$, $\dot{y} = u_s \sin \theta$, $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$ What are bounds on steering angle and speed? Why bound speed?

Tricycle

• $u_s \in [-1,1]$ and $u_\phi \in [-\pi/2,\pi/2]$. Can it rotate in place?

- Input controls: u_s (speed) and u_ϕ (steering angle)
- CTE: $\dot{x} = u_s \cos \theta$, $\dot{y} = u_s \sin \theta$, $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$ What are bounds on steering angle and speed? Why bound speed?

Tricycle

•
$$u_s \in [-1,1]$$
 and $u_\phi \in [-\pi/2,\pi/2]$. Can it rotate in place?

Standard simple car

•
$$u_s \in [-1, 1]$$
 and $u_\phi \in (-\phi_{\max}, \phi_{\max})$ for some $\phi_{\max} < \pi/2$.

- Input controls: u_s (speed) and u_ϕ (steering angle)
- CTE: $\dot{x} = u_s \cos \theta$, $\dot{y} = u_s \sin \theta$, $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$ What are bounds on steering angle and speed? Why bound speed?

Tricycle

• $u_s \in [-1,1]$ and $u_\phi \in [-\pi/2,\pi/2]$. Can it rotate in place?

Standard simple car

• $u_s \in [-1, 1]$ and $u_{\phi} \in (-\phi_{\max}, \phi_{\max})$ for some $\phi_{\max} < \pi/2$. What happens at $\pi/2$ and $-\pi/2$?

- Input controls: u_s (speed) and u_ϕ (steering angle)
- CTE: $\dot{x} = u_s \cos \theta$, $\dot{y} = u_s \sin \theta$, $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$ What are bounds on steering angle and speed? Why bound speed?

Tricycle

• $u_s \in [-1,1]$ and $u_\phi \in [-\pi/2,\pi/2]$. Can it rotate in place?

Standard simple car

• $u_s \in [-1, 1]$ and $u_{\phi} \in (-\phi_{\max}, \phi_{\max})$ for some $\phi_{\max} < \pi/2$. What happens at $\pi/2$ and $-\pi/2$?

Reeds-Shepp car

• Variation: $u_s \in \{-1, 0, 1\}$ (i.e., "reverse", "park", "forward")

- Input controls: u_s (speed) and u_ϕ (steering angle)
- CTE: $\dot{x} = u_s \cos \theta$, $\dot{y} = u_s \sin \theta$, $\dot{\theta} = \frac{u_s}{L} \tan u_{\phi}$ What are bounds on steering angle and speed? Why bound speed?

Tricycle

• $u_s \in [-1,1]$ and $u_\phi \in [-\pi/2,\pi/2]$. Can it rotate in place?

Standard simple car

• $u_s \in [-1, 1]$ and $u_{\phi} \in (-\phi_{\max}, \phi_{\max})$ for some $\phi_{\max} < \pi/2$. What happens at $\pi/2$ and $-\pi/2$?

Reeds-Shepp car

• Variation: $u_s \in \{-1, 0, 1\}$ (i.e., "reverse", "park", "forward")

Dubins car

• Variation: $u_s \in \{0,1\}$ (i.e., "park", "forward")

Fundamental question:

Is any configuration reachable from a given configuration in wheeled systems?

Fundamental question:

- Is any configuration reachable from a given configuration in wheeled systems?
- Most often, no. A car cannot move sideways. Specifying an arbitrary goal configuration does not mean that one can always find instataneous controls/one set of velocities.

Fundamental question:

- Is any configuration reachable from a given configuration in wheeled systems?
- Most often, no. A car cannot move sideways. Specifying an arbitrary goal configuration does not mean that one can always find instataneous controls/one set of velocities.
- We say a car is not instantaneously controllable (non-holonomic) but series of maneuvers may exist (small time locally controllable).

Fundamental question:

- Is any configuration reachable from a given configuration in wheeled systems?
- Most often, no. A car cannot move sideways. Specifying an arbitrary goal configuration does not mean that one can always find instataneous controls/one set of velocities.
- We say a car is not instantaneously controllable (non-holonomic) but series of maneuvers may exist (small time locally controllable).
- We have issue of constrained mobility (no instantaneous controls).

Problem formulation:

■ Standing at configuration q_{start} = (x_{start}, y_{start}, θ_{start}) at time t find path that places robot at q_{goal} = (x_{goal}, y_{goal}, θ_{goal}) at time t + δt.

Problem formulation:

- Standing at configuration q_{start} = (x_{start}, y_{start}, θ_{start}) at time t find path that places robot at q_{goal} = (x_{goal}, y_{goal}, θ_{goal}) at time t + δt.
- How can we increase constrained mobility in non-holonomic systems? Allow a sequence of maneuvers/different velocities. Look for a path rather than a single edge.

Problem formulation:

- Standing at configuration q_{start} = (x_{start}, y_{start}, θ_{start}) at time t find path that places robot at q_{goal} = (x_{goal}, y_{goal}, θ_{goal}) at time t + δt.
- How can we increase constrained mobility in non-holonomic systems? Allow a sequence of maneuvers/different velocities. Look for a path rather than a single edge.
- If path exists, we say system is small-time locally controllable (maneuvers exist).

Problem formulation:

- Standing at configuration q_{start} = (x_{start}, y_{start}, θ_{start}) at time t find path that places robot at q_{goal} = (x_{goal}, y_{goal}, θ_{goal}) at time t + δt.
- How can we increase constrained mobility in non-holonomic systems? Allow a sequence of maneuvers/different velocities. Look for a path rather than a single edge.
- If path exists, we say system is small-time locally controllable (maneuvers exist).

New problem formulation: Find series of controls to get to goal.

 Motion planning with kinematic constraints to find *feasible* series of maneuvers.

Simple Car is under-actuated: only 2 controls, but C-space has 3 dimensions.

A robot is non-holonomic if its motion is constrained by a non-integrable equation of the form $f(q, \dot{q}) = 0$.

- Simple Car is non-holonomic because $-\dot{x}sin\theta + \dot{y}cos\theta = 0$.
- Reeds-Shepp car can be maneuvered into an arbitrarily small parking space, provided that a small amount of clearance exists.
 Property called small-time locally controllable (STLC).
- Dubins car is non-holonomic but not small-time controllable.

Simple Car is under-actuated: only 2 controls, but C-space has 3 dimensions.

A robot is non-holonomic if its motion is constrained by a non-integrable equation of the form $f(q, \dot{q}) = 0$.

- Simple Car is non-holonomic because $-\dot{x}sin\theta + \dot{y}cos\theta = 0$.
- Reeds-Shepp car can be maneuvered into an arbitrarily small parking space, provided that a small amount of clearance exists.
 Property called small-time locally controllable (STLC).
- Dubins car is non-holonomic but not small-time controllable. Why?

Simple Car is under-actuated: only 2 controls, but C-space has 3 dimensions.

A robot is non-holonomic if its motion is constrained by a non-integrable equation of the form $f(q, \dot{q}) = 0$.

- Simple Car is non-holonomic because $-\dot{x}sin\theta + \dot{y}cos\theta = 0$.
- Reeds-Shepp car can be maneuvered into an arbitrarily small parking space, provided that a small amount of clearance exists.
 Property called small-time locally controllable (STLC).
- Dubins car is non-holonomic but not small-time controllable. Why? Try to parallel park with no reverse gear!

Simple Car is under-actuated: only 2 controls, but C-space has 3 dimensions.

A robot is non-holonomic if its motion is constrained by a non-integrable equation of the form $f(q, \dot{q}) = 0$.

- Simple Car is non-holonomic because $-\dot{x}sin\theta + \dot{y}cos\theta = 0$.
- Reeds-Shepp car can be maneuvered into an arbitrarily small parking space, provided that a small amount of clearance exists.
 Property called small-time locally controllable (STLC).
- Dubins car is non-holonomic but not small-time controllable. Why? Try to parallel park with no reverse gear! Can do it in an infinitely-large parking lot with no obstacles.

同下 イヨト イヨト

Kinematics for Other Wheeled Systems

Other non-holonomic wheeled systems:

- Differential drive
- Unicycle
- Tractor trailer

Objective 1: Derive CTE for each of them

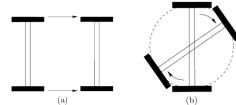
Objective 2: Move on to dynamic constraints

Put it all together for sampling-based motion planning.

- Most indoor robots are modeled after ddrives.
- Two main wheels, each attached to its own motor.
- Third invisible (caster) wheel in rear to passively roll and prevent falling over.
- Wheels move at same or different angular velocity.
- As a result, ddrive moves ahead or on circle.

Differential drives





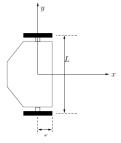
Body frame:

- Origin at center of axle
- x-axis perpendicular to axle
- L: distance between wheels.
- r: wheel radius

(a) Pure translation when both wheels move at same angular velocity

(b) pure rotation when wheels move at opposite velocities.

That is why origin placed at center of axle, so ddrive rotates in place in (b).

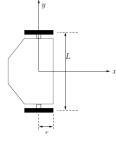


Input controls $v = (v_\ell, v_r)$

- v_{ℓ} : angular velocity of left wheel
- v_r : angular velocity of right wheel

Body frame:

- Origin at center of axle
- x-axis perpendicular to axle
- L: distance between wheels.
- r: wheel radius



Body frame:

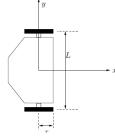
- Origin at center of axle
- x-axis perpendicular to axle
- L: distance between wheels.
- r: wheel radius

Input controls $v = (v_\ell, v_r)$

- v_{ℓ} : angular velocity of left wheel
- v_r : angular velocity of right wheel

How does the ddrive move?

• $v_{\ell} = v_r \Rightarrow$ moves in direction wheels are pointing



Body frame:

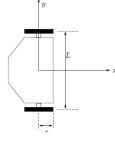
- Origin at center of axle
- x-axis perpendicular to axle
- L: distance between wheels.
- r: wheel radius

Input controls $v = (v_\ell, v_r)$

- v_{ℓ} : angular velocity of left wheel
- v_r : angular velocity of right wheel

How does the ddrive move?

- $v_{\ell} = v_r \Rightarrow$ moves in direction wheels are pointing
- $v_{\ell} = -v_r \Rightarrow$ rotates in place



Body frame:

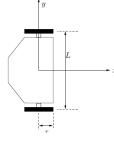
- Origin at center of axle
- x-axis perpendicular to axle
- L: distance between wheels.
- r: wheel radius

Input controls $v = (v_\ell, v_r)$

- v_{ℓ} : angular velocity of left wheel
- v_r : angular velocity of right wheel

How does the ddrive move?

- $v_{\ell} = v_r \Rightarrow$ moves in direction wheels are pointing
- $v_{\ell} = -v_r \Rightarrow$ rotates in place
- CTE for ddrive?



Body frame:

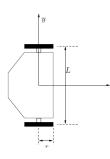
- Origin at center of axle
- x-axis perpendicular to axle
- L: distance between wheels.
- r: wheel radius

Input controls $v = (v_\ell, v_r)$

- v_{ℓ} : angular velocity of left wheel
- v_r : angular velocity of right wheel

How does the ddrive move?

- v_ℓ = v_r ⇒ moves in direction wheels are pointing
- $v_{\ell} = -v_r \Rightarrow$ rotates in place
- CTE for ddrive?
- Variant of car, but need to introduce concept of ICC



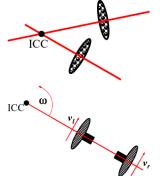
Ddrive is variant of simple car:

 $\bullet \dot{x} = s(v_{\ell}, v_r) \cos \theta$

•
$$\dot{y} = s(v_{\ell}, v_r) \sin \theta$$

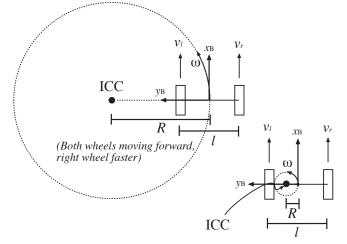
$$\bullet \ \theta = f(v_{\ell}, v_r)$$

There must be a point that lies along common left and right wheel axis, known as ICC – Instantaneous Center of Curvature.

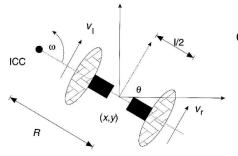


For ddrive, ICC exists as long as $v_{\ell} \neq v_r$. Ddrive rotates around ICC.

ICC location on wheel axis changes as v_{ℓ} and v_r change.



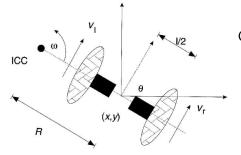
(left wheel moving backwards, right wheel forward and faster)



Observations to obtain CTE:

$$\bullet \dot{x} = s(v_{\ell}, v_r) \cos \theta$$

- $\dot{y} = s(v_{\ell}, v_r) \sin \theta$
- $\bullet \dot{\theta} = f(v_{\ell}, v_r)$
- s := translational velocity
- $\theta := \text{angular velocity}$

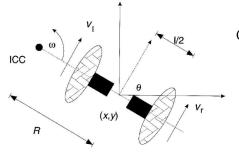


Observations to obtain CTE:

Ddrive rotates around ICC.

•
$$\dot{x} = s(v_{\ell}, v_r) \cos \theta$$

- $\dot{y} = s(v_{\ell}, v_r) \sin \theta$ $\bullet \dot{\theta} = f(v_{\ell}, v_{r})$
- s := translational velocity
- $\theta :=$ angular velocity

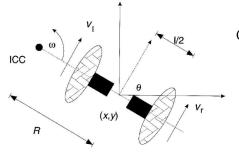


Ddrive is variant of simple car:

- $\bullet \dot{x} = s(v_{\ell}, v_r) \cos \theta$
- $\dot{y} = s(v_{\ell}, v_{r}) \sin \theta$ • $\dot{\theta} = f(v_{\ell}, v_{r})$
- s := translational velocity
- $\theta := \text{angular velocity}$

Observations to obtain CTE:

- Ddrive rotates around ICC
- Center and wheels rotate on concentric circles with radii R, R - L/2 (left), and R + L/2 (right), respectively.

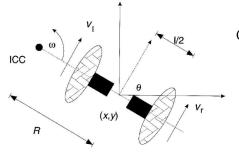


Ddrive is variant of simple car:

- $\bullet \dot{x} = s(v_{\ell}, v_r) \cos \theta$
- $\dot{y} = s(v_{\ell}, v_r) \sin \theta$ • $\dot{\theta} = f(v_{\ell}, v_r)$
- s := translational velocity
- $\theta := \text{angular velocity}$

Observations to obtain CTE:

- Ddrive rotates around ICC
- Center and wheels rotate on concentric circles with radii R, R - L/2 (left), and R + L/2 (right), respectively.
- \blacksquare Let ω be angular vel. around ICC



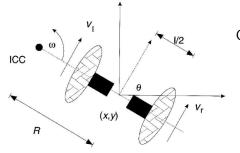
Ddrive is variant of simple car:

- $\dot{x} = s(v_{\ell}, v_r) \cos \theta$
- $\bullet \dot{y} = s(v_{\ell}, v_r) \sin \theta$
- $\bullet \dot{\theta} = f(v_{\ell}, v_r)$
- s := translational velocity
- $\theta := angular \ velocity$

Observations to obtain CTE:

- Ddrive rotates around ICC
- Center and wheels rotate on concentric circles with radii R, R - L/2 (left), and R + L/2 (right), respectively.
- \blacksquare Let ω be angular vel. around ICC

•
$$w \cdot (R - L/2)$$



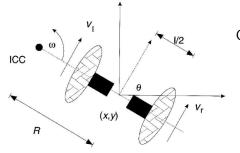
Ddrive is variant of simple car:

- $\dot{x} = s(v_{\ell}, v_r) \cos \theta$
- $\dot{y} = s(v_{\ell}, v_r) \sin \theta$
- $\bullet \dot{\theta} = f(v_{\ell}, v_r)$
- s := translational velocity
- $\theta := angular \ velocity$

Observations to obtain CTE:

- Ddrive rotates around ICC
- Center and wheels rotate on concentric circles with radii R, R - L/2 (left), and R + L/2 (right), respectively.
- \blacksquare Let ω be angular vel. around ICC

•
$$w \cdot (R - L/2) = v_{\ell} \cdot r$$



Ddrive is variant of simple car:

- $\dot{x} = s(v_{\ell}, v_r) \cos \theta$
- $\dot{y} = s(v_{\ell}, v_r) \sin \theta$
- $\bullet \dot{\theta} = f(v_{\ell}, v_r)$
- s := translational velocity
- $\theta := angular \ velocity$

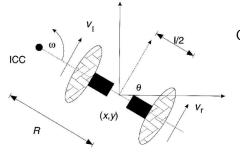
Observations to obtain CTE:

- Ddrive rotates around ICC
- Center and wheels rotate on concentric circles with radii R, R - L/2 (left), and R + L/2 (right), respectively.
- \blacksquare Let ω be angular vel. around ICC

Arclengths traveled per unit of time by left and right wheel:

•
$$w \cdot (R - L/2) = v_{\ell} \cdot r$$

• $w \cdot (R + L/2)$



Ddrive is variant of simple car:

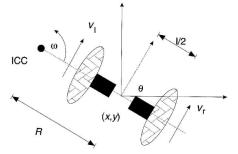
- $\bullet \dot{x} = s(v_{\ell}, v_r) \cos \theta$
- $\dot{y} = s(v_{\ell}, v_r) \sin \theta$
- $\bullet \dot{\theta} = f(v_{\ell}, v_r)$
- s := translational velocity
- $\theta := angular \ velocity$

Observations to obtain CTE:

- Ddrive rotates around ICC
- Center and wheels rotate on concentric circles with radii R, R - L/2 (left), and R + L/2 (right), respectively.
- \blacksquare Let ω be angular vel. around ICC

•
$$w \cdot (R - L/2) = v_{\ell} \cdot r$$

•
$$w \cdot (R + L/2) = v_r \cdot r$$



Ddrive is variant of simple car:

$$\bullet \dot{x} = s(v_{\ell}, v_r) \cos \theta$$

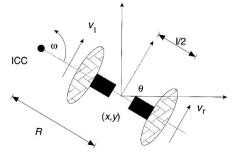
•
$$\dot{y} = s(v_{\ell}, v_r) \sin \theta$$

• $\dot{\theta} = f(v_{\ell}, v_r)$

- s := translational velocity
- $\theta := \text{angular velocity}$

•
$$w \cdot (R - L/2) = v_{\ell} \cdot r$$

• $w \cdot (R + L/2) = v_{r} \cdot r$



Arclengths traveled per unit of time by left and right wheel:

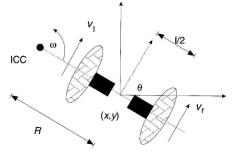
•
$$w \cdot (R - L/2) = v_{\ell} \cdot r$$

• $w \cdot (R + L/2) = v_r \cdot r$

Solving for w and R, we obtain:

$$\bullet \dot{x} = s(v_{\ell}, v_r) \cos \theta$$

- $\dot{y} = s(v_{\ell}, v_r) \sin \theta$ • $\dot{\theta} = f(v_{\ell}, v_r)$
- s := translational velocity
- $\theta := \text{angular velocity}$



Arclengths traveled per unit of time by left and right wheel:

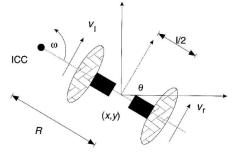
• $w \cdot (R - L/2) = v_{\ell} \cdot r$ • $w \cdot (R + L/2) = v_r \cdot r$

Solving for w and R, we obtain:

•
$$w = r/L \cdot (v_r - v_\ell)$$

$$\dot{x} = s(v_{\ell}, v_r) \cos \theta$$

- $\dot{y} = s(v_{\ell}, v_r) \sin \theta$ • $\dot{\theta} = f(v_{\ell}, v_r)$
- s := translational velocity
- $\theta := \text{angular velocity}$



Ddrive is variant of simple car:

$$\bullet \dot{x} = s(v_{\ell}, v_r) \cos \theta$$

•
$$\dot{y} = s(v_{\ell}, v_r) \sin \theta$$

• $\dot{\theta} = f(v_{\ell}, v_r)$

- s := translational velocity
- $\theta := \text{angular velocity}$

Arclengths traveled per unit of time by left and right wheel:

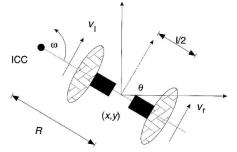
• $w \cdot (R - L/2) = v_{\ell} \cdot r$ • $w \cdot (R + L/2) = v_r \cdot r$

Solving for w and R, we obtain:

•
$$w = r/L \cdot (v_r - v_\ell)$$

• $R = L/2 \cdot \frac{v_\ell + v_r}{v_r - v_\ell} r$

Question: how does ω relate to $\dot{\theta}$?



Ddrive is variant of simple car:

•
$$\dot{x} = s(v_{\ell}, v_r) \cos \theta$$

•
$$\dot{y} = s(v_{\ell}, v_r) \sin \theta$$

- $\bullet \ \theta = t(v_{\ell}, v_r)$
- s := translational velocity
- $\theta := angular \ velocity$

Arclengths traveled per unit of time by left and right wheel:

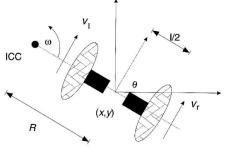
• $w \cdot (R - L/2) = v_{\ell} \cdot r$ • $w \cdot (R + L/2) = v_{r} \cdot r$

Solving for w and R, we obtain:

•
$$w = r/L \cdot (v_r - v_\ell)$$

• $R = L/2 \cdot \frac{v_\ell + v_r}{v_r - v_\ell} r$

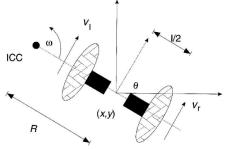
Question: how does ω relate to θ ? Answer: They are one and the same.



- So: $\dot{\theta} = r/L \cdot (v_r - v_\ell)$
 - What about *s*?
- s is translational velocity

$$\bullet \dot{x} = s(v_{\ell}, v_r) \cos \theta$$

- $\dot{y} = s(v_{\ell}, v_r) \sin \theta$ • $\dot{\theta} = f(v_{\ell}, v_r)$
- s := translational velocity
- $\theta := \text{angular velocity}$

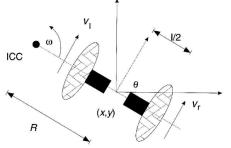


$$\bullet \dot{x} = s(v_{\ell}, v_r) \cos \theta$$

- $\dot{y} = s(v_{\ell}, v_r) \sin \theta$ • $\dot{\theta} = f(v_{\ell}, v_r)$
- s := translational velocity
- $\theta := angular \ velocity$

- So: $\dot{\theta} = r/L \cdot (v_r - v_\ell)$
 - What about *s*?
- s is translational velocity (of center of axle)
 - When v_l = v_r, ddrive moves forward but not at twice the speed: suggests:

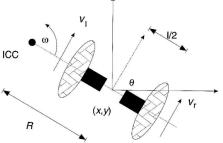
$$s = r/2 \cdot (v_{\ell} + v_r)$$



- $\bullet \dot{x} = s(v_{\ell}, v_r) \cos \theta$
- $\dot{y} = s(v_{\ell}, v_r) \sin \theta$
- $\bullet \dot{\theta} = f(v_{\ell}, v_r)$
- s := translational velocity
- $\theta := angular velocity$

- So: $\dot{\theta} = r/L \cdot (v_r - v_\ell)$
 - What about *s*?
- s is translational velocity (of center of axle)
 - When v_l = v_r, ddrive moves forward but not at twice the speed: suggests: s = r/2 ⋅ (v_ℓ + v_r)

$$\bullet s = R \cdot \omega \Rightarrow s = r/2 \cdot (v_{\ell} + v_r)$$



CTE (using u_{ℓ} and u_r for controls on wheel (angular) velocities:

$$\dot{x} = \frac{r}{2}(u_{\ell} + u_r)\cos\theta$$

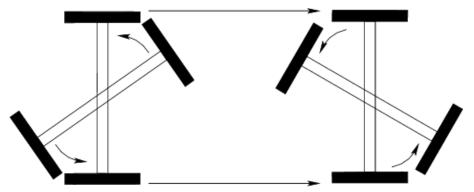
$$\dot{y} = \frac{r}{2}(u_{\ell} + u_r)\sin\theta$$

$$\bullet \ \dot{\theta} = \frac{r}{L}(u_r - u_\ell)$$

Interesting questions:

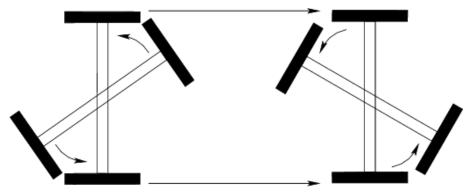
- What happens when either u_{ℓ} or u_r (not both) are set to 0?
- Can ddrive simulate motions of simple car?
- Is ddrive non-holonomic?
- Is it STLC?

Can ddrive move between any two configurations?



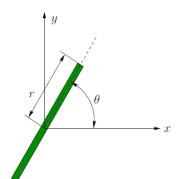
Kinematics for Wheeled Systems – Differential Drive

Can ddrive move between any two configurations?



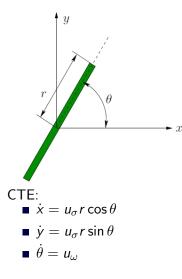
Point wheels as in destination. Translate. Rotate to desired orientation.

Kinematics for Wheeled Systems – Unicycle



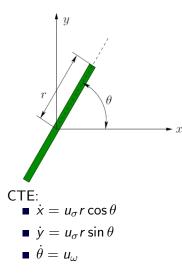
- Rider can set pedaling speed and orientation of the wheel with respect to the z-axis
- r: wheel radius
- σ : pedaling angular velocity
- $s = r\sigma$: speed of unicycle
- ω: rotational velocity in the xy plane controlled directly.

Kinematics for Wheeled Systems – Unicycle



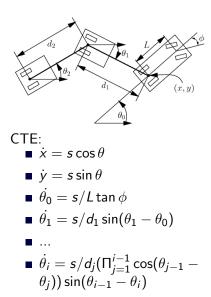
- Rider can set pedaling speed and orientation of the wheel with respect to the z-axis
- r: wheel radius
- σ : pedaling angular velocity
- $s = r\sigma$: speed of unicycle
- ω: rotational velocity in the xy plane controlled directly.
- Note: ddrive with L = 1, $u_s = ru_\sigma$

Kinematics for Wheeled Systems – Unicycle



- Rider can set pedaling speed and orientation of the wheel with respect to the z-axis
- r: wheel radius
- σ : pedaling angular velocity
- $s = r\sigma$: speed of unicycle
- ω: rotational velocity in the xy plane controlled directly.
- Note: ddrive with L = 1, $u_s = ru_\sigma$
- Ddrive can simulate a unicycle.
 Unicycle can simulate simple car.
 Unicycle == tricycle.

Tractor Trailer



- Simple car pulling k trailers, each attached to rear axle of body in front of it.
- New: hitch length, d_i, distance from center of rear axle of trailer *i* to point at which trailer is hitched to next body.
- Car itself contributes ℝ² × S¹ to C, and each trailer contributes an S¹.
 So, |C| = k + 1.
- Configuration transition equation is hard to get right. Shown one here is adapted from Murray, Sastry, IEEE Trans Autom Control, 1993.

movie: strailer4

Beyond Kinematics: Dynamical Systems

- Involve acceleration \ddot{q} in addition to velocity \dot{q} and configuration q
- Control acceleration directly
- Implicit constraints:

$$g(\ddot{q},\dot{q},q)=0$$

Parametric constraints:

$$\ddot{q} = f(\dot{q}, q, u)$$

Example: $y \in \mathbb{R}$ is a scalar variable and

$$\ddot{y} - 3\dot{y} + y = 0 \tag{1}$$

Example: $y \in \mathbb{R}$ is a scalar variable and

$$\ddot{y} - 3\dot{y} + y = 0 \tag{1}$$

Let $x = (x_1, x_2)$ denote a state vector, where $x_1 = y$ and $x_2 = \dot{y}$.

A B + A B +

Example: $y \in \mathbb{R}$ is a scalar variable and

$$\ddot{y} - 3\dot{y} + y = 0 \tag{1}$$

Let $x = (x_1, x_2)$ denote a state vector, where $x_1 = y$ and $x_2 = \dot{y}$. Then:

$$\dot{x}_2 - 3x_2 + x_1 = 0 \tag{2}$$

Are (1) and (2) equivalent?

A B F A B F

Example: $y \in \mathbb{R}$ is a scalar variable and

$$\ddot{y} - 3\dot{y} + y = 0 \tag{1}$$

Let $x = (x_1, x_2)$ denote a state vector, where $x_1 = y$ and $x_2 = \dot{y}$. Then:

$$\dot{x}_2 - 3x_2 + x_1 = 0 \tag{2}$$

Are (1) and (2) equivalent?

• Yes, if we also add the constraint $x_2 = \dot{x}_1$.

Example: $y \in \mathbb{R}$ is a scalar variable and

$$\ddot{y} - 3\dot{y} + y = 0 \tag{1}$$

Let $x = (x_1, x_2)$ denote a state vector, where $x_1 = y$ and $x_2 = \dot{y}$. Then:

$$\dot{x}_2 - 3x_2 + x_1 = 0 \tag{2}$$

Are (1) and (2) equivalent?

• Yes, if we also add the constraint $x_2 = \dot{x}_1$.

Thus, (1) can be rewritten as two constraints

$$\bullet \dot{x}_1 = x_2$$

$$\bullet \ \dot{x}_2 = 3x_2 - x_1$$

→ ∃ → < ∃ →</p>

Suppose equations of motions are given as:

$$\dot{x} = f(x, u)$$

Suppose equations of motions are given as:

 $\dot{x} = f(x, u)$

Let *n* denote the dimension. Then:

1 Select an input control u_i

Suppose equations of motions are given as:

 $\dot{x} = f(x, u)$

- **1** Select an input control u_i
- **2** Rename the input control as a new state variable $x_{n+1} = u_i$

Suppose equations of motions are given as:

 $\dot{x} = f(x, u)$

- **1** Select an input control u_i
- **2** Rename the input control as a new state variable $x_{n+1} = u_i$
- **3** Define a new input control u'_i that takes the place of u_i

Suppose equations of motions are given as:

 $\dot{x} = f(x, u)$

- 1 Select an input control *u_i*
- **2** Rename the input control as a new state variable $x_{n+1} = u_i$
- **3** Define a new input control u'_i that takes the place of u_i
- 4 Extend the equations of motions by one dimension by introducing $\dot{x}_{n+1} = u'_i$

Suppose equations of motions are given as:

 $\dot{x} = f(x, u)$

Let n denote the dimension. Then:

- 1 Select an input control *u_i*
- **2** Rename the input control as a new state variable $x_{n+1} = u_i$
- **3** Define a new input control u'_i that takes the place of u_i
- 4 Extend the equations of motions by one dimension by introducing $\dot{x}_{n+1} = u'_i$

Procedure referred to as placing an integrator in front of u_i

Kinematic (first-order) model

Dynamics (second-order) model

- Config $q = (x, y, \theta)$ Position $(x, y) \in \mathbb{R}^2$
 - Orientation $\theta \in S^1$

Control inputs $u = (u_s, u_\phi)$

- Signed speed $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

CTE $\dot{q} = f(q, u)$:

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{L} \tan u_\phi \end{bmatrix}$$

Kinematic (first-order) model

Config
$$q = (x, y, \theta)$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$

Control inputs $u = (u_s, u_\phi)$

- Signed speed $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

CTE $\dot{q} = f(q, u)$:

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{L} \tan u_\phi \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, \sigma, \phi)$$

- \blacksquare Signed speed $\sigma \in \mathbb{R}$
- \blacksquare Steering angle $\phi \in \mathbb{R}$

Kinematic (first-order) model

Config
$$q = (x, y, \theta)$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$

Control inputs $u = (u_s, u_\phi)$

- Signed speed $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$
- CTE $\dot{q} = f(q, u)$:

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{L} \tan u_\phi \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, \sigma, \phi)$$

- \blacksquare Signed speed $\sigma \in \mathbb{R}$
- \blacksquare Steering angle $\phi \in \mathbb{R}$
- Control inputs $u = (u_1, u_2)$
 - Transl. accel. $u_1 \in \mathbb{R}$
 - Steering rotational vel. $u_2 \in \mathbb{R}$

Kinematic (first-order) model

Config
$$q = (x, y, \theta)$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$

Control inputs $u = (u_s, u_\phi)$

- Signed speed $u_s \in \mathbb{R}$
- Steering angle $u_{\phi} \in \mathbb{R}$

CTE $\dot{q} = f(q, u)$:

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_s \cos \theta \\ u_s \sin \theta \\ \frac{u_s}{L} \tan u_\phi \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, \sigma, \phi)$$

- \blacksquare Signed speed $\sigma \in \mathbb{R}$
- \blacksquare Steering angle $\phi \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

 \blacksquare Transl. accel. $\mathit{u}_1 \in \mathbb{R}$

• Steering rotational vel. $u_2 \in \mathbb{R}$ CTE $\dot{s} = f(s, u)$:

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\sigma} \\ \dot{\phi} \end{bmatrix} = \begin{bmatrix} \sigma \cos \theta \\ \sigma \sin \theta \\ \frac{\sigma}{L} \tan \phi \\ u_1 \\ u_2 \end{bmatrix}$$

Kinematic (first-order) model

- Config. $q = (x, y, \theta)$
 - Position $(x, y) \in \mathbb{R}^2$
 - Orientation $\theta \in S^1$
- Control inputs $u = (u_{\ell}, u_r)$
 - Angular velocities $u_\ell, u_r \in \mathbb{R}$

CTE $\dot{q} = f(q, u)$:

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(u_{\ell} + u_{r})\cos\theta \\ \frac{r}{2}(u_{\ell} + u_{r})\sin\theta \\ \frac{r}{L}(u_{r} - u_{\ell}) \end{bmatrix}$$

Dynamics (second-order) model

Kinematic (first-order) model

Config.
$$q = (x, y, \theta)$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$

Control inputs $u = (u_{\ell}, u_r)$

• Angular velocities $u_\ell, u_r \in \mathbb{R}$

CTE $\dot{q} = f(q, u)$:

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(u_{\ell} + u_{r})\cos\theta \\ \frac{r}{2}(u_{\ell} + u_{r})\sin\theta \\ \frac{r}{L}(u_{r} - u_{\ell}) \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, v_{\ell}, v_{r})$$

• Angular velocities $v_\ell, v_r \in \mathbb{R}$

Kinematic (first-order) model

Config.
$$q = (x, y, \theta)$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$

Control inputs $u = (u_\ell, u_r)$

• Angular velocities $u_\ell, u_r \in \mathbb{R}$

CTE
$$\dot{q} = f(q, u)$$
:

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(u_{\ell} + u_{r})\cos\theta \\ \frac{r}{2}(u_{\ell} + u_{r})\sin\theta \\ \frac{r}{L}(u_{r} - u_{\ell}) \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, v_{\ell}, v_{r})$$

• Angular velocities $v_\ell, v_r \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

- \blacksquare Left wheel ang. accel. $\mathit{u}_1 \in \mathbb{R}$
- **•** Right wheel ang. accel. $u_2 \in \mathbb{R}$

Kinematic (first-order) model

Config.
$$q = (x, y, \theta)$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$

Control inputs $u = (u_\ell, u_r)$

• Angular velocities $u_\ell, u_r \in \mathbb{R}$

CTE
$$\dot{q} = f(q, u)$$
:

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(u_{\ell} + u_{r})\cos\theta \\ \frac{r}{2}(u_{\ell} + u_{r})\sin\theta \\ \frac{r}{L}(u_{r} - u_{\ell}) \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, v_{\ell}, v_{r})$$

• Angular velocities $v_\ell, v_r \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

 \blacksquare Left wheel ang. accel. $\mathit{u}_1 \in \mathbb{R}$

■ Right wheel ang. accel. $u_2 \in \mathbb{R}$ CTE $\dot{s} = f(s, u)$:

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{v}_{\ell} \\ \dot{v}_{r} \end{bmatrix} = \begin{bmatrix} \frac{r}{2}(v_{\ell} + v_{r})\cos\theta \\ \frac{r}{2}(v_{\ell} + v_{r})\sin\theta \\ \frac{r}{L}(v_{r} - v_{\ell}) \\ u_{1} \\ u_{2} \end{bmatrix}$$
[movie: SDDrive]

Kinematic (first-order) model

- Config. $q = (x, y, \theta)$
 - Position $(x, y) \in \mathbb{R}^2$
 - Orientation $\theta \in S^1$

Control inputs $u = (u_{\sigma}, u_{\omega})$

- Translational velocity $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_\omega \in \mathbb{R}$

CTE $\dot{q} = f(q, u)$:

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_{\sigma} r \cos \theta \\ u_{\sigma} r \sin \theta \\ u_{\omega} \end{bmatrix}$$

Dynamics (second-order) model

Kinematic (first-order) model

Config.
$$q = (x, y, \theta)$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$

Control inputs $u = (u_{\sigma}, u_{\omega})$

- Translational velocity $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_\omega \in \mathbb{R}$

CTE $\dot{q} = f(q, u)$:

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_{\sigma} r \cos \theta \\ u_{\sigma} r \sin \theta \\ u_{\omega} \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, \sigma, \omega)$$

 \blacksquare Translational velocity $\sigma \in \mathbb{R}$

• Rotational velocity
$$\omega \in \mathbb{R}$$

Kinematic (first-order) model

Config.
$$q = (x, y, \theta)$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$

Control inputs $u = (u_{\sigma}, u_{\omega})$

- Translational velocity $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_{\omega} \in \mathbb{R}$ CTE $\dot{q} = f(q, u)$:

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_{\sigma} r \cos \theta \\ u_{\sigma} r \sin \theta \\ u_{\omega} \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, \sigma, \omega)$$

- \blacksquare Translational velocity $\sigma \in \mathbb{R}$
- Rotational velocity $\omega \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

- Translat. accel. $u_1 \in \mathbb{R}$
- Rotational accel. $u_2 \in \mathbb{R}$

Kinematic (first-order) model

Config.
$$q = (x, y, \theta)$$

- Position $(x, y) \in \mathbb{R}^2$
- Orientation $\theta \in S^1$

Control inputs $u = (u_{\sigma}, u_{\omega})$

- Translational velocity $u_{\sigma} \in \mathbb{R}$
- Rotational velocity $u_{\omega} \in \mathbb{R}$ CTE $\dot{q} = f(q, u)$:

$$\dot{q} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} u_{\sigma} r \cos \theta \\ u_{\sigma} r \sin \theta \\ u_{\omega} \end{bmatrix}$$

Dynamics (second-order) model

State
$$s = (x, y, \theta, \sigma, \omega)$$

- \blacksquare Translational velocity $\sigma \in \mathbb{R}$
- \blacksquare Rotational velocity $\omega \in \mathbb{R}$

Control inputs $u = (u_1, u_2)$

- \blacksquare Translat. accel. $\mathit{u}_1 \in \mathbb{R}$
- Rotational accel. $u_2 \in \mathbb{R}$ CTE $\dot{s} = f(s, u)$:

$$\dot{s} = \begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \\ \dot{\sigma} \\ \dot{\omega} \end{bmatrix} = \begin{bmatrix} \sigma r \cos \theta \\ \sigma r \sin \theta \\ \omega \\ u_1 \\ u_2 \end{bmatrix}$$

Generating Motions

Robot motions obtained by applying input controls and integrating equations of motions

Consider

- a starting state s₀
- an input control u
- motion equations $\dot{s} = f(s, u)$

Let s(t) denote the state at time t. Then,

$$s(t) = s_0 + \int_{h=0}^{h=t} f(s(h), u) dh$$

Generating Motions

Robot motions obtained by applying input controls and integrating equations of motions

Consider

- a starting state s₀
- an input control u
- motion equations $\dot{s} = f(s, u)$

Let s(t) denote the state at time t. Then,

$$s(t) = s_0 + \int_{h=0}^{h=t} f(s(h), u) dh$$

Computation can be carried out by

- Closed-form integration when available or
- Numerical integration

Numerical Integration – Euler Method

Let Δt denote a small time step. We would like to compute $s(\Delta t)$ as

$$s(\Delta t) = s(0) + \int_{h=0}^{h=\Delta t} f(s(h), u) dh$$

Euler Approximation

$$f(s(t), u) = \dot{s}(t) = rac{ds(t)}{dt} pprox rac{s(\Delta t) - s(0)}{\Delta t}$$

Therefore,

$$s(\Delta t) \approx s(0) + \Delta t f(s(t), u)$$

For example, Euler integration of the kinematic model of unicycle yields:

$$s(\Delta t) \approx \begin{bmatrix} x_0 \\ y_0 \\ \theta_0 \end{bmatrix} + \Delta t \begin{bmatrix} u_\sigma r \cos \theta \\ u_\sigma r \sin \theta \\ u_\omega \end{bmatrix}$$

- Advantage: Simple and efficient
- Disadvantage: Not very accurate (first-order approximation)

Numerical Integration - Runge-Kutta Method

Let Δt denote a small time step. We would like to compute $s(\Delta t)$ as

$$s(\Delta t) = s(0) + \int_{h=0}^{h=\Delta t} f(s(h), u) dh$$

Fourth-order Runge-Kutta integration:

$$s(\Delta t) pprox s(0) + rac{\Delta t}{6} (w_1 + w_2 + w_3 + w_4)$$

where

$$w_{1} = f(s(0), u)$$

$$w_{2} = f(s(0) + \frac{\Delta t}{2} w_{1}, u)$$

$$w_{3} = f(s(0) + \frac{\Delta t}{2} w_{2}, u)$$

$$w_{4} = f(s(0) + \Delta t w_{3}, u)$$

Given

- State space *S*
- Control space U
- Equations of motions as differential equations $f: S \times U \rightarrow \dot{S}$
- State-validity function VALID : $S \rightarrow \{\texttt{true}, \texttt{false}\}$ for collisions
- Goal function GOAL : $S \rightarrow \{\texttt{true}, \texttt{false}\}$
- Initial state s₀

Compute a control trajectory $u : [0, T] \rightarrow U$ so resulting state trajectory $s : [0, T] \rightarrow S$ obtained by integration is valid and reaches the goal, i.e.,

$$s(t) = s_0 + \int_{h=0}^{h=t} f(s(t), u(t)) dh$$
 (1)

$$\forall t \in [0, T] : \text{VALID}(s(t)) = \text{true}$$
 (2)

 $\exists t \in [0, T] : GOAL(s(t)) = true$ (3)

Motion-Planning Methods for Systems with Kinodynamics

Decoupled approach

- **1** Compute a geometric solution path ignoring differential constraints
- **2** Transform the geometric path into a trajectory that satisfies the differential constraints

Sampling-based Motion Planning

Take the differential constraints into account during motion planning

Sampling-based Motion Planning with Kinodynamics

Roadmap Approaches

0. Initialization

add s_{init} and s_{goal} to roadmap vertex set V

1. Sampling

repeat several times

 $s \leftarrow \text{STATESAMPLE}()$ if ISSTATEVALID(s) = trueadd s to roadmap vertex set V



Sampling-based Motion Planning with Kinodynamics

Roadmap Approaches

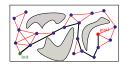
2. Connect Samples

for each pair of neighboring samples $(s_a, s_b) \in V \times V$ $\lambda \leftarrow \text{GENERATELOCALTRAJECTORY}(s_a, s_b)$

if IsTRAJECTORYVALID $(\lambda) = \texttt{true}$ add (s_a, s_b) to roadmap edge set E

3. Graph Search

search graph (V, E) for path from s_{init} to s_{goal}



Implementation of Roadmap Approaches

- $s \leftarrow \text{StateSample}()$
 - generate random values for all the state components
- ISSTATEVALID(s)
 - place the robot in the configuration specified by the position and orientation components of the state
 - check if the robot collides with the obstacles
 - check if velocity and other state components are within bounds

IsTrajectoryValid(λ)

use subdivision or incremental approach to check intermediate states

Implementation of Roadmap Approaches

- $\lambda \leftarrow \text{GENERATELOCALTRAJECTORY}(s_a, s_b)$
 - linear interpolation between s_a and s_b won't work as it does not respect underlying differential constraints
 - need to find control function u : [0, T] → U such that trajectory obtained by applying u to s_a for T time units ends at s_b
 - known as two-point boundary value problem: cannot always be solved analytically, and numerical solutions increase computational cost

Tree Approaches with Differential Constraints

RRT

- 1: $\mathcal{T} \leftarrow \mathsf{create} \ \mathsf{tree} \ \mathsf{rooted} \ \mathsf{at} \ \textit{s}_{\mathrm{init}}$
- 2: while solution not found \boldsymbol{do}

>select state from tree

- 3: $s_{rand} \leftarrow STATESAMPLE()$
- $\mathsf{4:} \quad \mathsf{s}_{\mathrm{near}} \gets \mathsf{nearest} \text{ configuration in } \mathcal{T} \text{ to } \mathsf{q}_{\mathrm{rand}} \text{ according to distance } \rho$

 \triangleright add new branch to tree from selected configuration

- 5: $\lambda \leftarrow \text{GenerateLocalTrajectory}(s_{\text{near}}, s_{\text{rand}})$
- 6: if IsSubTrajectoryValid($\lambda, 0, \text{step}$) then
- 7: $s_{\text{new}} \leftarrow \lambda(\texttt{step})$
- 8: add configuration $s_{\rm new}$ and edge $(s_{\rm near}, s_{\rm new})$ to ${\cal T}$

⊳check if a solution is found

- 9: if $\rho(s_{\rm new}, s_{\rm goal}) \approx 0$ then
- 10: return solution trajectory from root to s_{new}

Tree Approaches with Differential Constraints

✓ STATESAMPLE(): random values for state components ✓ $\rho : S \times S \rightarrow \mathbb{R}^{\geq 0}$: distance metric between states ✓ ISSUBTRAJECTORYVALID($\lambda, 0, \text{step}$): incremental approach

 $\lambda \leftarrow \text{GenerateLocalTrajectory}(s_{\text{near}}, s_{\text{rand}})$

- will it not create the same two-boundary value problems as in PRM?
- is it necessary to connect to s_{rand} ?
- would it suffice to just come close to s_{rand} ?

Avoiding Two-Boundary Value Problem

Rather than computing a trajectory from $s_{\rm near}$ to $s_{\rm rand}$ compute a trajectory that starts at $s_{\rm near}$ and extends toward $s_{\rm rand}$

Approach 1 - extend according to random control

- Sample random control u in U
- Integrate equations of motions when applying *u* to s_{near} for Δt units of time, i.e.,

$$\lambda \rightarrow s(t) = s_{\text{near}} + \int_{h=0}^{h=\Delta t} f(s(t), u) dh$$

Approach 2 – find the best-out-of-many random controls 1 for i = 1, ..., m do 1 $u_i \leftarrow$ sample random control in U2 $\lambda_i \rightarrow s(t) = s_{\text{near}} + \int_{h=0}^{h=\Delta t} f(s(t), u_i) dh$ 3 $d_i \leftarrow \rho(s_{\text{rand}}, \lambda_i(\Delta t))$ 2 return λ_i with minimum d_i

Sampling-based Motion Planning and Physics

Tree approaches require only the ability to simulate robot motions

- Physics engines can be used to simulate robot motions
- Physics engines provide greater simulation accuracy
- Physics engines can take into account friction, gravity, and interactions of the robot with objects in the evironment

[movie: PhysicsTricycle] [movie: PhysicsBug]