CS 485 - Autonomous Robotics
 Manipulation Planning

Amarda Shehu

Department of Computer Science
George Mason University
[movie: industrial]
[movie: L-shape]
[movie: industrial]

[movie: L-shape]

What is a manipulator?

[movie: industrial]
[movie: L-shape]

What is a manipulator?

- Body: articulated chain (what are configuration parameters)?
- Tool/grasper/end-effector (what are configuration parameters)?

[movie: industrial]
[movie: L-shape]

What is a manipulator?

- Body: articulated chain (what are configuration parameters)?
- Tool/grasper/end-effector (what are configuration parameters)?

How is manipulation planning a motion planning problem?

- What moves where?

■ Workspace?

- Configuration space?
[movie: industrial]
[movie: L-shape]

What is a manipulator?

- Body: articulated chain (what are configuration parameters)?
- Tool/grasper/end-effector (what are configuration parameters)?

How is manipulation planning a motion planning problem?

- What moves where?
- Workspace?
- Configuration space?

■ Need to keep track of ? and ? moving in workspace?

Given:

- a description of the obstacles
- a description of the robot manipulator
- a description of the object to be manipulated
- a description of the initial and desired placements for the object

Objective:

- compute a sequence of motions where the robot manipulator grasps the object in its initial placement and places it in its desired placement while avoding collisions
- How to grasp the object?
- Is the grasp stable?
- Does the solution require re-grasping?
- When should the robot manipulator release the object and re-grasp it in a different configuration?

PRM-based: Nielsen and Kavraki, IROS 2000.
■ Expands roadmap/graph to manipulation graph.

- Assumes stable robot grasps and object placements pre-computed and provided ahead of time.

RRT-based: Berenson et al., ICRA 2009.

- Approaches it as an inverse kinematics problem.
- Enriches any provided object placements with more and computes new robot grasps.

Assumed: stable object placements necessitating re-grasping provided ahead of time.

Assumed: stable object placements necessitating re-grasping provided ahead of time.
■ How can they be pre-computed?

Assumed: stable robot grasps of given object placements provided ahead of time.

Assumed: stable object placements necessitating re-grasping provided ahead of time.
■ How can they be pre-computed?

Assumed: stable robot grasps of given object placements provided ahead of time.
■ How can they be pre-computed?

Focus: efficient construction of manipulation graph.

Assumed: stable object placements necessitating re-grasping provided ahead of time.
■ How can they be pre-computed?

Assumed: stable robot grasps of given object placements provided ahead of time.
■ How can they be pre-computed?

Focus: efficient construction of manipulation graph.

- Observation on whether motion of robot is with object grasped or not.
- Solution path consists of a sequence of transfer and transit paths
- Transfer path: subpath where object is stably grasped and moved by robot
- Transit path: subpath where object is left in a stable position while robot changes grasp

Each node is a triple ($q_{\mathrm{obj}}, g, q_{\mathrm{rob}}$), where:

Each node is a triple $\left(q_{\mathrm{obj}}, g, q_{\mathrm{rob}}\right)$, where:

- $q_{\text {obj }}$ specifies a stable placement (position and orientation) of the object
- Provided or pre-computed before construction of graph
- g specifies a position and orientation of the robot tool relative to the placement of the object at which the tool is able to grasp the object
- Provided before construction of graph
- $q_{\text {rob }}$ is the configuration of the robot for which the robot tool is able to grasp the object placed at $q_{\text {obj }}$ using the grasp g
- Focus of this approach

Transfer edge: Robot moves with object grasped by tool. What is changing?

Transfer edge: Robot moves with object grasped by tool. What is changing?

- Is robot moving in space?
- Is object moving in space?
- Is tool/grasper moving in space?

Transfer edge: Robot moves with object grasped by tool. What is changing?

- Is robot moving in space?
- Is object moving in space?
- Is tool/grasper moving in space?

An edge $\left(\left(q_{\mathrm{obj}}^{i}, g, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g, q_{\mathrm{rob}}^{j}\right)\right)$ indicates a tranfer (local) path where the object is grasped according to g and the robot moves with the object from configuration $\left(q_{\mathrm{obj}}^{i}, q_{\mathrm{rob}}^{i}\right)$ to $\left(q_{\mathrm{obj}}^{j}, q_{\mathrm{rob}}^{j}\right)$

Transit edge: Robot moves to reposition its end effector/tool for object on ground. What is changing?

Transit edge: Robot moves to reposition its end effector/tool for object on ground. What is changing?

- Is robot moving in space?
- Is object moving in space?
- Is tool/grasper moving in space?

Transit edge: Robot moves to reposition its end effector/tool for object on ground. What is changing?

- Is robot moving in space?
- Is object moving in space?
- Is tool/grasper moving in space?

An edge $\left(\left(q_{\mathrm{obj}}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}, g^{j}, q_{\mathrm{rob}}^{j}\right)\right)$ indicates a transit (local) path where the object is left at a stable placement $q_{\text {obj }}$ while the robot changes grasp from ($g^{i}, q_{\text {rob }}^{i}$) to $\left(g^{j}, q_{\text {rob }}^{j}\right)$

Computing the Manipulation Graph

PRM Approach

- Node Generation:

$$
\text { for } i=1, \ldots, N \text { do sample a node }\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right)
$$

Computing the Manipulation Graph

PRM Approach

■ Node Generation:

$$
\text { for } i=1, \ldots, N \text { do sample a node }\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right)
$$

How is sampling done for each of the components of the configuration?

Computing the Manipulation Graph

PRM Approach

■ Node Generation:

$$
\text { for } i=1, \ldots, N \text { do sample a node }\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right)
$$

How is sampling done for each of the components of the configuration?

■ Edge Generation:
connect neighboring nodes $\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right)\right)$

Computing the Manipulation Graph

PRM Approach

■ Node Generation:

$$
\text { for } i=1, \ldots, N \text { do sample a node }\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right)
$$

How is sampling done for each of the components of the configuration?

■ Edge Generation:
connect neighboring nodes $\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right)\right)$
How is local path generated for transfer or transit edge?

Solid lines represent transit paths, and dotted lines represent transfer paths.

Challenges and Key Idea

Challenges:

- Each edge generation gives rise to a path-planning problem
- Must verify edge validity before adding it to manipulation graph
- Too many edge verifications (since graph could have large number of nodes)

Challenges:

- Each edge generation gives rise to a path-planning problem
- Must verify edge validity before adding it to manipulation graph
- Too many edge verifications (since graph could have large number of nodes)

FuzzyPRM Idea

- Probabilistic edges instead of deterministic edges
- Use a probabilistic path planner to compute edge connections
- Probability associated with an edge e depends on the time spent by probabilistic path planner on e
- From the people that gave you the Lazy PRM...

Manipulation Graph

1: User supplies nodes $\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rbb}}^{i}\right)$, $i=1, \ldots, N$ of the manipulation graph

Manipulation Graph

1: User supplies nodes $\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rbb}}^{i}\right)$, $i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right) \mathrm{do}\right.
$$

Manipulation Graph

1: User supplies nodes ($q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}$), $i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right) \mathrm{do}\right.
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Manipulation Graph

1: User supplies nodes $\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right)$, $i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right) \mathrm{do}\right.
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: \quad if $q_{o b j}^{i}=q_{o b j}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Manipulation Graph

1: User supplies nodes ($q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}$), $i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right)\right. \text { do }
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: \quad if $q_{o b j}^{i}=q_{o b j}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

1: while no solution found do

Manipulation Graph

1: User supplies nodes ($q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}$), $i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right)\right. \text { do }
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

1: while no solution found do
2: $\quad \sigma \leftarrow$ compute most probable path in the manipulation graph

Manipulation Graph

1: User supplies nodes ($q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}$), $i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right)\right. \text { do }
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

1: while no solution found do
2: $\quad \sigma \leftarrow$ compute most probable path in the manipulation graph
3: for each edge $e \in \sigma$ do

Manipulation Graph

1: User supplies nodes ($q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}$), $i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right) \mathrm{do}\right.
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

1: while no solution found do
2: $\quad \sigma \leftarrow$ compute most probable path in the manipulation graph
3: \quad for each edge $e \in \sigma$ do
4: if $\operatorname{prob}(e) \neq 1$ then
5: run low-level fuzzy PRM on efor a short period of time

Manipulation Graph

1: User supplies nodes ($q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}$),
$i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right) \mathrm{do}\right.
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

1: while no solution found do
2: $\quad \sigma \leftarrow$ compute most probable path in the manipulation graph for each edge $e \in \sigma$ do if $\operatorname{prob}(e) \neq 1$ then run low-level fuzzy PRM on e for a short period of time if success then $\operatorname{prob}(e) \leftarrow 1$

Manipulation Graph

1: User supplies nodes ($q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}$),
$i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right)\right. \text { do }
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

while no solution found do $\sigma \leftarrow$ compute most probable path in the manipulation graph for each edge $e \in \sigma$ do if $\operatorname{prob}(e) \neq 1$ then run low-level fuzzy PRM on e for a short period of time if success then $\operatorname{prob}(e) \leftarrow 1$
else

$$
\operatorname{prob}(e) \leftarrow 1-\frac{\text { time }(e)}{\text { total_time }}
$$

Manipulation Graph

1: User supplies nodes $\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rbb}}^{i}\right)$, $i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right)\right. \text { do }
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

while no solution found do $\sigma \leftarrow$ compute most probable path in the manipulation graph for each edge $e \in \sigma$ do if $\operatorname{prob}(e) \neq 1$ then run low-level fuzzy PRM on e for a short period of time if success then $\operatorname{prob}(e) \leftarrow 1$
else

$$
\operatorname{prob}(e) \leftarrow 1-\frac{\text { time }(e)}{\text { total_time }}
$$

Low-Level Fuzzy PRM
1: if mode = "CONSTRUCTION" then
2: add a new sample q to graph G_{e}
3: add an edge $\left(q, q^{\prime}\right)$ to all previous samples
4: $\quad \operatorname{prob}\left(q, q^{\prime}\right) \leftarrow P^{*}(I)$

Manipulation Graph

1: User supplies nodes $\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rbb}}^{i}\right)$,
$i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right) \mathrm{do}\right.
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

while no solution found do

2: $\quad \sigma \leftarrow$ compute most probable path in the manipulation graph
3: \quad for each edge $e \in \sigma$ do
4: \quad if $\operatorname{prob}(e) \neq 1$ then run low-level fuzzy PRM on e for a
5: $\quad \begin{aligned} & \text { run low-level fuzzy P } \\ & \text { short period of time }\end{aligned}$
6: \quad if success then
7: $\quad \operatorname{prob}(e) \leftarrow 1$
8: else

$$
\operatorname{prob}(e) \leftarrow 1-\frac{\text { time }(e)}{\text { total_time }}
$$

9: $\quad \operatorname{prob}(e) \leftarrow 1-\frac{\text { time }(e)}{\text { total_time }}$

Low-Level Fuzzy PRM
1: if mode = "CONSTRUCTION" then
2: add a new sample q to graph G_{e}
3: add an edge $\left(q, q^{\prime}\right)$ to all previous samples
4: $\quad \operatorname{prob}\left(q, q^{\prime}\right) \leftarrow P^{*}(I)$
5: if mode = "QUERY" then

Manipulation Graph

1: User supplies nodes $\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rbb}}^{i}\right)$,
$i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right) \mathrm{do}\right.
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

while no solution found do
2: $\quad \sigma \leftarrow$ compute most probable path in the manipulation graph
3: for each edge $e \in \sigma$ do
4: \quad if $\operatorname{prob}(e) \neq 1$ then run low-level fuzzy PRM on e for a
5: $\quad \begin{aligned} & \text { run low-level fuzzy P } \\ & \text { short period of time }\end{aligned}$
6: \quad if success then
7: $\quad \operatorname{prob}(e) \leftarrow 1$
8: else

$$
\operatorname{prob}(e) \leftarrow 1-\frac{\text { time }(e)}{\text { total_time }}
$$

9:

Low-Level Fuzzy PRM
1: if mode = "CONSTRUCTION" then
2: add a new sample q to graph G_{e}
3: add an edge $\left(q, q^{\prime}\right)$ to all previous samples
4: $\quad \operatorname{prob}\left(q, q^{\prime}\right) \leftarrow P^{*}(I)$
5: if mode = "QUERY" then
6: $\quad \phi \leftarrow$ compute most probable path in G_{e}

Manipulation Graph

1: User supplies nodes $\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rbb}}^{i}\right)$,
$i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right) \mathrm{do}\right.
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

while no solution found do $\sigma \leftarrow$ compute most probable path in the manipulation graph for each edge $e \in \sigma$ do
if $\operatorname{prob}(e) \neq 1$ then
run low-level fuzzy PRM on e for a short period of time if success then $\operatorname{prob}(e) \leftarrow 1$
else

$$
\operatorname{prob}(e) \leftarrow 1-\frac{\text { time }(e)}{\text { total_time }}
$$

Low-Level Fuzzy PRM
1: if mode = "CONSTRUCTION" then add a new sample q to graph G_{e} add an edge $\left(q, q^{\prime}\right)$ to all previous samples $\operatorname{prob}\left(q, q^{\prime}\right) \leftarrow P^{*}(I)$
if mode = "QUERY" then
$\phi \leftarrow$ compute most probable path in G_{e} repeat
$\left(q^{\prime}, q^{\prime \prime}\right) \leftarrow$ edge in ϕ with lowest probability

Manipulation Graph

1: User supplies nodes $\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rbb}}^{i}\right)$,
$i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right)\right. \text { do }
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

while no solution found do $\sigma \leftarrow$ compute most probable path in the manipulation graph
for each edge $e \in \sigma$ do
if $\operatorname{prob}(e) \neq 1$ then
run low-level fuzzy PRM on e for a short period of time if success then $\operatorname{prob}(e) \leftarrow 1$
else

$$
\operatorname{prob}(e) \leftarrow 1-\frac{\text { time }(e)}{\text { total_time }}
$$

Low-Level Fuzzy PRM
1: if mode = "CONSTRUCTION" then
2: add a new sample q to graph G_{e}
3: add an edge $\left(q, q^{\prime}\right)$ to all previous samples
4: $\quad \operatorname{prob}\left(q, q^{\prime}\right) \leftarrow P^{*}(I)$
5: if mode = "QUERY" then
6: $\quad \phi \leftarrow$ compute most probable path in G_{e} 7: repeat
$\left(q^{\prime}, q^{\prime \prime}\right) \leftarrow$ edge in ϕ with lowest probability
if $\operatorname{prob}\left(q^{\prime}, q^{\prime \prime}\right) \neq 1$ then
run subdivision collision checking to validate $\left(q^{\prime}, q^{\prime \prime}\right)$ at resolution $\ell\left(q^{\prime}, q^{\prime \prime}\right)$
11: increment $\ell\left(q^{\prime}, q^{\prime \prime}\right)$

Manipulation Graph

1: User supplies nodes $\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rbb}}^{i}\right)$, $i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right)\right. \text { do }
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

while no solution found do $\sigma \leftarrow$ compute most probable path in the manipulation graph for each edge $e \in \sigma$ do
if $\operatorname{prob}(e) \neq 1$ then
run low-level fuzzy PRM on e for a short period of time if success then $\operatorname{prob}(e) \leftarrow 1$
else

$$
\operatorname{prob}(e) \leftarrow 1-\frac{\text { time }(e)}{\text { total_time }}
$$

Low-Level Fuzzy PRM
1: if mode = "CONSTRUCTION" then add a new sample q to graph G_{e} add an edge $\left(q, q^{\prime}\right)$ to all previous samples $\operatorname{prob}\left(q, q^{\prime}\right) \leftarrow P^{*}(I)$
if mode = "QUERY" then $\phi \leftarrow$ compute most probable path in G_{e} repeat
$\left(q^{\prime}, q^{\prime \prime}\right) \leftarrow$ edge in ϕ with lowest probability
if $\operatorname{prob}\left(q^{\prime}, q^{\prime \prime}\right) \neq 1$ then
run subdivision collision checking to validate ($q^{\prime}, q^{\prime \prime}$) at resolution $\ell\left(q^{\prime}, q^{\prime \prime}\right)$
increment $\ell\left(q^{\prime}, q^{\prime \prime}\right)$
if collision then
remove ($q^{\prime}, q^{\prime \prime}$) from G_{e} and return failure

Manipulation Graph

1: User supplies nodes $\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rbb}}^{i}\right)$, $i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right) \mathrm{do}\right.
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

while no solution found do $\sigma \leftarrow$ compute most probable path in the manipulation graph for each edge $e \in \sigma$ do
if $\operatorname{prob}(e) \neq 1$ then
run low-level fuzzy PRM on e for a short period of time if success then $\operatorname{prob}(e) \leftarrow 1$
else

$$
\operatorname{prob}(e) \leftarrow 1-\frac{\text { time }(e)}{\text { total_time }}
$$

Low-Level Fuzzy PRM
1: if mode = "CONSTRUCTION" then add a new sample q to graph G_{e} add an edge $\left(q, q^{\prime}\right)$ to all previous samples $\operatorname{prob}\left(q, q^{\prime}\right) \leftarrow P^{*}(I)$
if mode = "QUERY" then $\phi \leftarrow$ compute most probable path in G_{e} repeat
$\left(q^{\prime}, q^{\prime \prime}\right) \leftarrow$ edge in ϕ with lowest probability
if $\operatorname{prob}\left(q^{\prime}, q^{\prime \prime}\right) \neq 1$ then
run subdivision collision checking to validate ($q^{\prime}, q^{\prime \prime}$) at resolution $\ell\left(q^{\prime}, q^{\prime \prime}\right)$
increment $\ell\left(q^{\prime}, q^{\prime \prime}\right)$
if collision then
remove ($q^{\prime}, q^{\prime \prime}$) from G_{e} and return failure
else
update $\operatorname{prob}\left(q^{\prime}, q^{\prime \prime}\right)$ based on collision resolution $\ell\left(q^{\prime}, q^{\prime \prime}\right)$

Manipulation Graph

1: User supplies nodes $\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rbb}}^{i}\right)$, $i=1, \ldots, N$ of the manipulation graph
2: for each pair of nodes

$$
e=\left(\left(q_{\mathrm{obj}}^{i}, g^{i}, q_{\mathrm{rob}}^{i}\right),\left(q_{\mathrm{obj}}^{j}, g^{j}, q_{\mathrm{rob}}^{j}\right)\right. \text { do }
$$

3: \quad if $g^{i}=g^{j}$ then add e as a transfer edge and set $\operatorname{prob}(e) \leftarrow 0.9999$
4: if $q_{\mathrm{obj}}^{i}=q_{\mathrm{obj}}^{j}$ then add e as a transit edge and set $\operatorname{prob}(e) \leftarrow 0.9999$

Query Stage

while no solution found do $\sigma \leftarrow$ compute most probable path in the manipulation graph for each edge $e \in \sigma$ do
if $\operatorname{prob}(e) \neq 1$ then
run low-level fuzzy PRM on e for a short period of time if success then $\operatorname{prob}(e) \leftarrow 1$ else

$$
\operatorname{prob}(e) \leftarrow 1-\frac{\text { time }(e)}{\text { total_time }}
$$

Low-Level Fuzzy PRM
1: if mode = "CONSTRUCTION" then add a new sample q to graph G_{e} add an edge $\left(q, q^{\prime}\right)$ to all previous samples $\operatorname{prob}\left(q, q^{\prime}\right) \leftarrow P^{*}(I)$
if mode = "QUERY" then
$\phi \leftarrow$ compute most probable path in G_{e} repeat
$\left(q^{\prime}, q^{\prime \prime}\right) \leftarrow$ edge in ϕ with lowest probability
if $\operatorname{prob}\left(q^{\prime}, q^{\prime \prime}\right) \neq 1$ then
run subdivision collision checking to validate ($q^{\prime}, q^{\prime \prime}$) at resolution $\ell\left(q^{\prime}, q^{\prime \prime}\right)$
increment $\ell\left(q^{\prime}, q^{\prime \prime}\right)$
if collision then
remove ($q^{\prime}, q^{\prime \prime}$) from G_{e} and return failure
else
update $\operatorname{prob}\left(q^{\prime}, q^{\prime \prime}\right)$ based on collision resolution $\ell\left(q^{\prime}, q^{\prime \prime}\right)$
until all edges in ϕ have prob 1
return success

- Manipulation planners often require specification of a set of stable grasp configurations

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]

- Manipulation planners often require specification of a set of stable grasp configurations
- This forces the planner to use only these configurations as goals
- If the chosen goal configurations are unreachable, the planner will fail
- Even when reachable, it may take the planner a long time to find solutions to these goal configurations

Manipulation Planning with Workspace Goal Regions

[Berenson, Srinivasa, Ferguson, Collet, Kuffner: ICRA 2009]

Proposed Approach

- Introduce concept of Workspace Goal Regions (WGRs)
- WGR allows the specification of continuous regions in the six-dimensional workspace of end-effector poses as goals for the planner

- Two WGRs describe grasping a soda can

■ Bounds allow rotation around z axis of w

- Reference frame w attached at object specifying pre-computed grasp pose
■ Workspace bounds B^{ω} specifying flexibility around target grasp w: $\left[\left(x_{\min } x_{\max }\right),\left(y_{\min }, y_{\max }\right),\left(z_{\min }, z_{\max }\right)\right.$, $\left.\left(\psi_{\min }, \psi_{\max }\right),\left(\theta_{\min }, \theta_{\max }\right),\left(\phi_{\min }, \phi_{\max }\right)\right]$

- To allow offset for end-effector, transform T_{e}^{w} specifies end-effector pose relative to the (w) reference frame of the desired grasp
- Simple operations can be done: $T_{w}^{0} T_{e}^{w}$ now specifies a target pose of end effector in world coordinate frame
- One can sample alternative pose for end effector from B^{w}, and then convert to world coordinate frame to provide an end-effector goal pose to IK solver
- Sampling from B^{w} (in the provided range for each of the 6 coordinates that specify the pose of target, pre-specified grasp) gives alternative grasper pose in (w/object's) coordinate frame.
- Sample can be converted into new, sampled goal pose for end-effector.
- IK can be used to steer manipulator towards sampled goal end-effector pose.
- All encapsulated in an IK bi-directional RRT (IKBiRRT) so as to deal with the usual get-stuck (subptimal) behavior of gradient-descent type methods for IK.
- A distance measure can be specified to give a sense of how far or near two end-effector configurations are for RRT.
- $d_{\text {sample }}^{w} \leftarrow$ sample a random value between each of the bounds defined by B^{w} with uniform probability
■ convert $d_{\text {sample }}^{w}$ into a transformation matrix $T_{\text {sample }}^{w}$, which specifies the sampled grasper pose relative to the coordinate frame w of the target grasp.
■ convert the sampled grasper pose into a sampled pose for the end-effector, still in the coordinate frame of w (target grasp pose)

$$
T_{\text {sample }}^{w} \cdot T_{e}^{w}
$$

- convert the sampled end-effector pose in world coordinates

$$
T_{\text {sample }^{\prime}}^{0}=T_{w}^{0} T_{\text {sample }}^{w} T_{e}^{w}
$$

- $T_{\text {sample, }}^{0}$ is passed to an IK solver to generate solution(a)s, which are checked for collisions. Only collision-free solutions are added to the RRT.

■ use FK to get end-effector pose at current q_{s} configuration: T_{s}^{0} is pose of end-effector in world coordinates.

■ get pose of grasp, if object held there, in world coordinates

$$
T_{s^{\prime}}^{0}=T_{s}^{0}\left(T_{e}^{w}\right)^{-1}
$$

■ convert it from world to coordinates of w

$$
T_{s^{\prime}}^{w}=\left(T_{w}^{0}\right)^{-1} T_{s^{\prime}}^{0}
$$

■ convert $T_{s^{\prime}}^{w}$ into a 6×1 displacement vector from origin of w frame

$$
d^{w}=\left[\begin{array}{c}
t_{s^{\prime}}^{w} \\
\arctan 2\left(R_{s_{32}}^{w}, R_{s_{33}^{\prime}}^{w}\right) \\
-\arcsin \left(R_{s_{31}^{\prime}}^{w}\right)^{w} \\
\arctan 2\left(R_{s_{21}^{\prime}}^{w}, R_{s_{11}^{\prime}}^{w}\right)
\end{array}\right]
$$

- take into account bounds B^{w} to get 6×1 displacement vector Δx from d^{w}

$$
\Delta x_{i}= \begin{cases}d_{i}^{w}-B_{i, 1}^{w} & \text { if } d_{i}^{w}<B_{i, 1}^{w} \\ d_{i}^{w}-B_{i, 2}^{w} & \text { if } d_{i}^{w}>B_{i, 2}^{w} \\ 0 & \text { otherwise }\end{cases}
$$

$$
d\left(q_{s}, W G R\right)=\|\Delta x\|
$$

Distance to WGRs: $d\left(q_{s}, W G R\right)$

- Grows one tree from start and one tree from goal configuration.
- At each iteration chooses between one of two modes: exploration through standard BiRRT and sampling from the set of WGRs W. The probability of choosing the mode is controlled by the parameter $P_{\text {sample }}$.
- Goal configurations sampled from a WGR are injected into the backwards tree that grows from goal.
- Termination when both trees meet at some configuration.


```
\(T_{a} \cdot \operatorname{Init}\left(q_{s}\right) ; T_{b} \cdot \operatorname{Init}(N U L L)\)
while TimeRemaining() do
    \(T_{\text {goal }} \leftarrow \operatorname{GetBackwardTree}\left(T_{a}, T_{b}\right)\)
    if \(T_{\text {goal }} \cdot \operatorname{size}()=0\) or \(\operatorname{rand}(0,1)<P_{\text {sample }}\) then
        AddIKSolutions( \(T_{\text {goal }}\) )
    else
\(q_{\text {rand }} \leftarrow\) RandConfig()
\(q_{\text {near }}^{a} \leftarrow \operatorname{NEAREStNEighbor}\left(T_{a}, q_{\text {rand }}\right)\)
\(q_{\text {reached }}^{a} \leftarrow \operatorname{ExtendTree}\left(T_{a}, q_{\text {near }}^{a}, q_{\text {rand }}\right)\)
\(q_{\text {near }}^{b} \leftarrow \operatorname{NEARESTNEIGHBOR}\left(T_{b}, q_{\text {rand }}\right)\)
\(q_{\text {reached }}^{b} \leftarrow \operatorname{ExtendTree}\left(T_{b}, q_{\text {near }}^{b}, q_{\text {rand }}\right)\)
if \(q_{\text {reached }}^{a}=q_{\text {reached }}^{b}\) then
return ExtractPath \(\left(T_{a}, q_{\text {reached }}^{a}, T_{b}, q_{\text {reached }}^{b}\right)\)
else
\(\operatorname{Swap}\left(T_{a}, T_{b}\right)\)
```

