Modeling Uncertainty Recursive Bayes Filtering

CS485 Autonomous Robotics Amarda Shehu

Notes modified from Wolfram Burgard, University of Freiburg

Physical Agents are Inherently Uncertain

- Uncertainty arises from four major factors:
 - Environment stochastic, unpredictable
 - Robot stochastic
 - Sensor limited, noisy
 - Models inaccurate

Example: Museum Tour-Guide Robots

Rhino, 1997

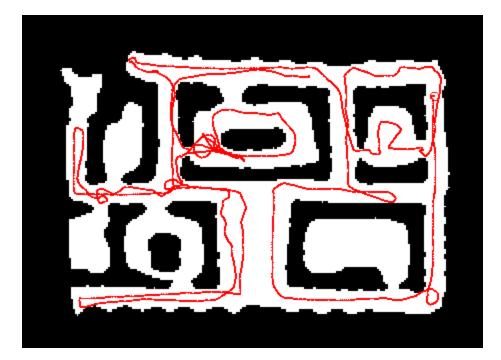
Minerva, **1998**

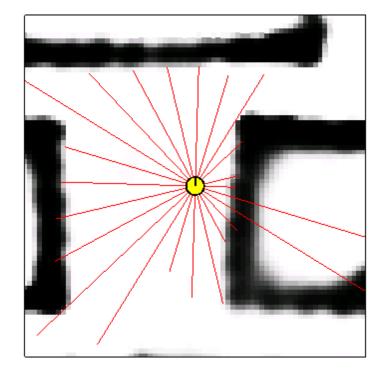
Technical Challenges

Navigation

- Environment crowded, unpredictable
- Environment unmodified
- "Invisible" hazards
- Walking speed or faster
- High failure costs
- Interaction
 - Individuals and crowds
 - Museum visitors' first encounter
 - Age 2 through 99
 - Spend less than 15 minutes

Nature of Sensor Data

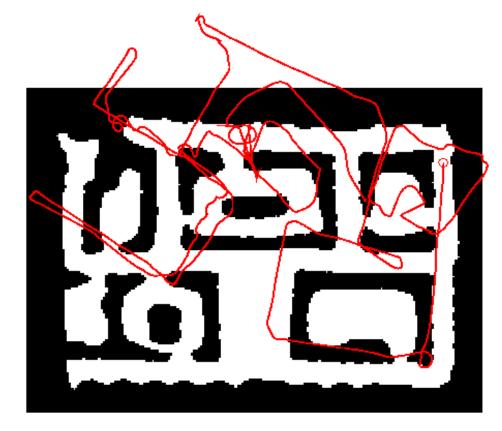


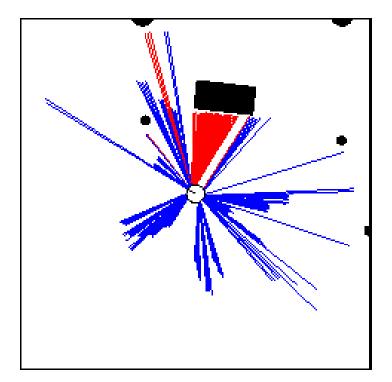


Odometry Data

Range Data

Nature of Sensor Data





Odometry Data

Range Data

Probabilistic Techniques for Physical Agents

Key idea: Explicit representation of uncertainty using the calculus of probability theory

> Perception = state estimation Action = utility optimization

Advantages of Probabilistic Paradigm

- Can accommodate inaccurate models
- Can accommodate imperfect sensors
- Robust in real-world applications
- Best known approach to many hard robotics problems

Pitfalls

- Computationally demanding
- False assumptions
- Approximate

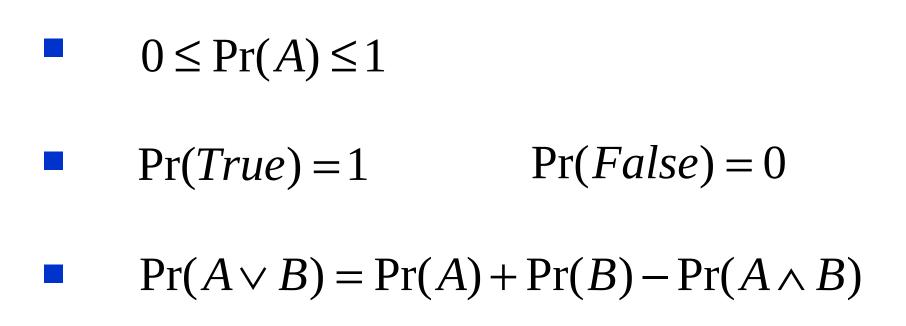
Outline

Introduction

- Probabilistic State Estimation
- Robot Localization
- Probabilistic Decision Making
 - Planning
 - Between MDPs and POMDPs
 - Exploration
- Conclusions

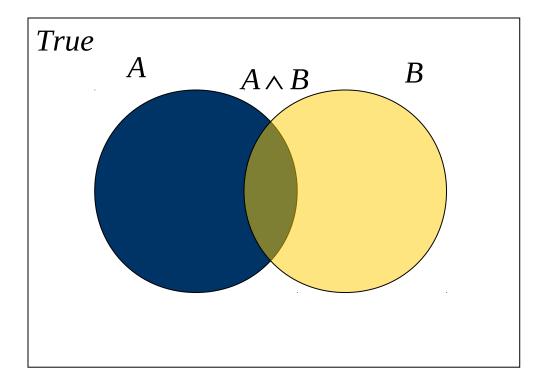
Axioms of Probability Theory

Pr(A) denotes probability that proposition A is true.



A Closer Look at Axiom 3

$Pr(A \lor B) = Pr(A) + Pr(B) - Pr(A \land B)$



Using the Axioms

 $Pr(A \lor \neg A) = Pr(A) + Pr(\neg A) - Pr(A \land \neg A)$ $Pr(True) = Pr(A) + Pr(\neg A) - Pr(False)$ $1 = Pr(A) + Pr(\neg A) - 0$ $Pr(\neg A) = 1 - Pr(A)$

Discrete Random Variables

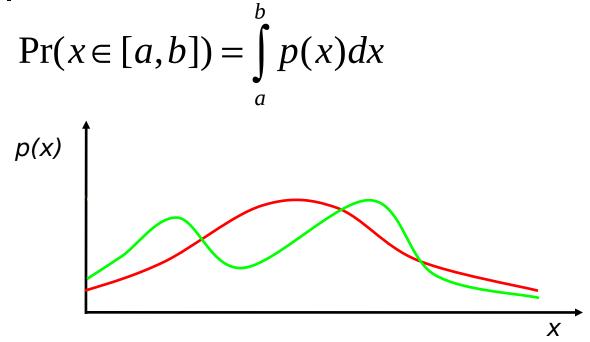
- X denotes a random variable.
- X can take on a finite number of values in {x₁, x₂, ..., x_n}.
- P(X=x), or P(x), is the probability that the random variable X takes on value x.

Continuous Random Variables

X takes on values in the continuum.

E.g.

p(X=x), or p(x), is a probability density function.



Joint and Conditional Probability

•
$$P(X=x \text{ and } Y=y) = P(x,y)$$

P(x | y) is the probability of x given y
$$P(x | y) = P(x,y) / P(y)$$

$$P(x,y) = P(x | y) P(y)$$

If X and Y are independent then
P(x | y) = P(x)

Law of Total Probability, Marginals

Discrete case

Continuous case

 $\sum_{x} P(x) = 1 \qquad \qquad \int p(x) \, dx = 1$

 $P(x) = \sum_{y} P(x, y) \qquad p(x) = \int p(x, y) \, dy$

 $P(x) = \sum_{y} P(x \mid y) P(y) \qquad p(x) = \int p(x \mid y) p(y) \, dy$

Bayes Formula

$P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x)$

 \Rightarrow

$$P(x \mid y) = \frac{P(y \mid x) P(x)}{P(y)} = \frac{\text{likelihood} \cdot \text{prior}}{\text{evidence}}$$

Normalization

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \eta P(y|x) P(x)$$
$$\eta = P(y)^{-1} = \frac{1}{\sum_{x} P(y|x) P(x)}$$

Algorithm:

$$\forall x : \operatorname{aux}_{x|y} = P(y \mid x) \ P(x)$$

$$\eta = \frac{1}{\sum_{x} \operatorname{aux}_{x|y}}$$

$$\forall x : P(x \mid y) = \eta \text{ aux}_{x \mid y}$$

Conditioning

Total probability:

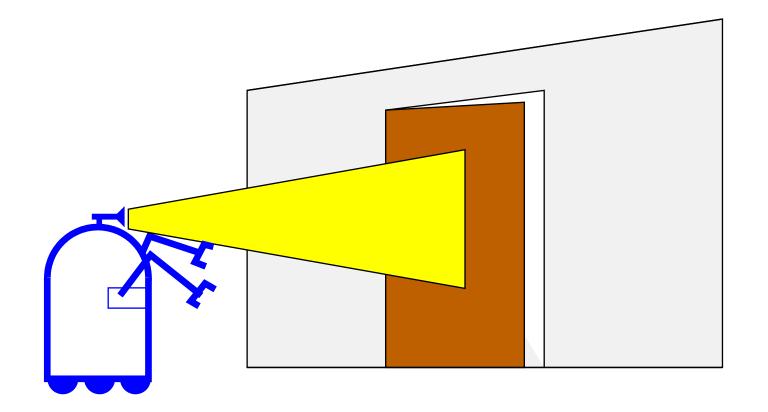
$$P(x|y) = \int P(x|y,z) P(z|y) dz$$

Bayes rule and background knowledge:

$$P(x \mid y, z) = \frac{P(y \mid x, z) P(x \mid z)}{P(y \mid z)}$$

Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is P(open|z)?



Causal vs. Diagnostic Reasoning

- P(open|z) is diagnostic.
- P(z|open) is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Causal vs. Diagnostic Reasoning

- P(open|z) is diagnostic.
- P(z|open) is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to usé causal knowledge:

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z)}$$

Example

P(z|open) = 0.6 $P(z|\neg open) = 0.3$

$$P(open) = P(\neg open) = 0.5$$

P(open | z) = ?

Example

- P(z|open) = 0.6 $P(z|\neg open) = 0.3$
- $P(open) = P(\neg open) = 0.5$

$$P(open \mid z) = \frac{P(z \mid open)P(open)}{P(z \mid open)p(open) + P(z \mid \neg open)p(\neg open)}$$
$$P(open \mid z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67$$

• z raises the probability that the door is open.

Combining Evidence

Suppose our robot obtains another observation z₂.

- How can we integrate this new information?
- More generally, how can we estimate $P(x | z_1...z_n)$?

Recursive Bayesian Updating

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,..., z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Recursive Bayesian Updating

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,..., z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov assumption: z_n is independent of $z_1, ..., z_{n-1}$ if we know x.

Recursive Bayesian Updating

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x, z_1,..., z_{n-1}) P(x \mid z_1,..., z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov assumption: z_n is independent of z_1, \dots, z_{n-1} if we know x.

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

= $\eta P(z_n \mid x) P(x \mid z_1,...,z_{n-1})$
= $\eta_{1...n} \prod_{i=1...n} P(z_i \mid x) P(x)$

Example: Second Measurement

- P($z_2|open) = 0.5$ P($z_2|\neg open) = 0.6$
- $P(open|z_1) = 2/3$

P(open | z2, z1) = ?

Example: Second Measurement

•
$$P(z_2|open) = 0.5$$
 $P(z_2|\neg open) = 0.6$

$$P(open|z_1) = 2/3$$

 $P(open | z_2, z_1) = \frac{P(z_2 | open) P(open | z_1)}{P(z_2 | open) P(open | z_1) + P(z_2 | \neg open) P(\neg open | z_1)}$ $= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3} + \frac{3}{5} \cdot \frac{1}{3}} = \frac{5}{8} = 0.625$

• z_2 lowers the probability that the door is open.

Actions

 Often the world is dynamic since
 actions carried out by the robot,
 actions carried out by other agents,
 or just the time passing by change the world.

How can we incorporate such actions?

Typical Actions

- The robot turns its wheels to move
- The robot uses its manipulator to grasp an object
- Plants grow over time...
- Actions are never carried out with absolute certainty.
- In contrast to measurements, actions generally increase the uncertainty.

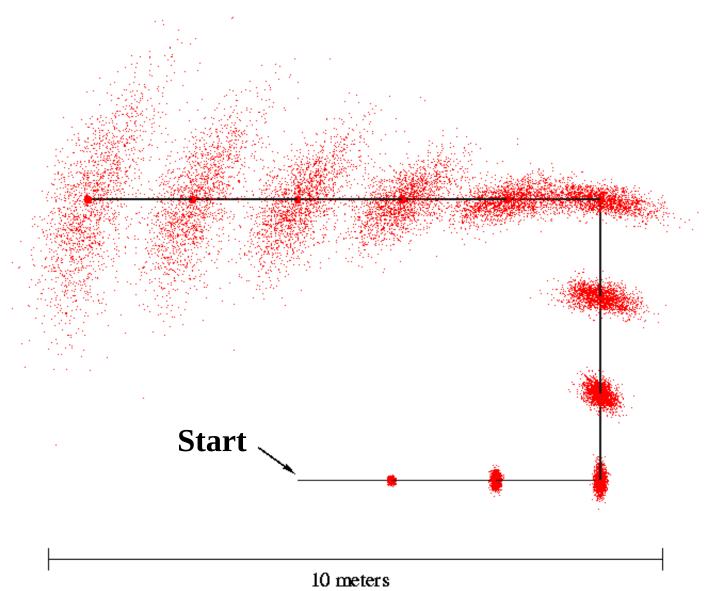
Modeling Actions

To incorporate the outcome of an action u into the current "belief", we use the conditional pdf

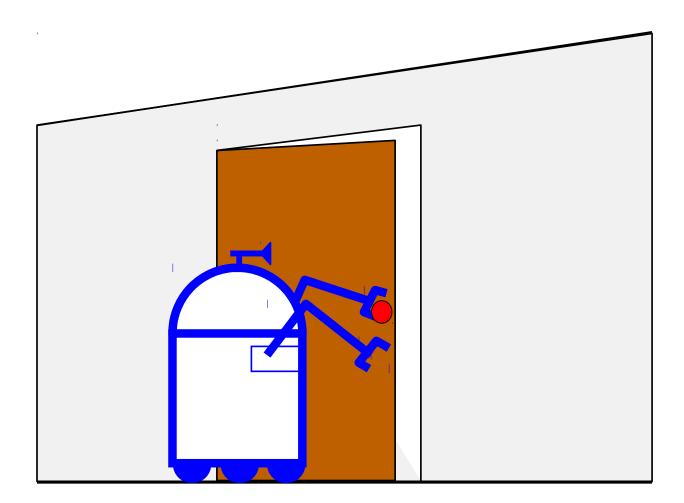
P(x|u,x')

This term specifies the pdf that executing u changes the state from x' to x.

Motion Model $p(x_t | u_{t-1}, x_{t-1})$

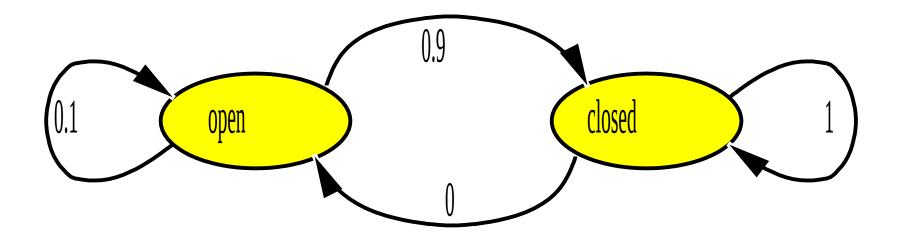


Example: Closing the door



State Transitions

P(x|u,x') for u = "close door":



If the door is open, the action "close door" succeeds in 90% of all cases.

Integrating the Outcome of Actions

Continuous case:

$$P(x|u) = \int P(x|u,x') P(x') dx'$$

Discrete case:

$$P(x|u) = \sum P(x|u,x')P(x')$$

$$P(closed | u) = \sum P(closed | u, x') P(x')$$

=P(closed | u, open) P(open)
+P(closed | u, closed) P(closed)
= $\frac{9}{10} * \frac{5}{8} + \frac{1}{1} * \frac{3}{8} = \frac{15}{16}$
$$P(open | u) = \sum P(open | u, x') P(x')$$

=P(open | u, open) P(open)
+P(open | u, closed) P(closed)
= $\frac{1}{10} * \frac{5}{8} + \frac{0}{1} * \frac{3}{8} = \frac{1}{16}$
=1-P(closed | u)

Bayes Filters: Framework

Given:

Stream of observations z and action data u:

$$d_t = \{u_1, z_2, \dots, u_{t-1}, z_t\}$$

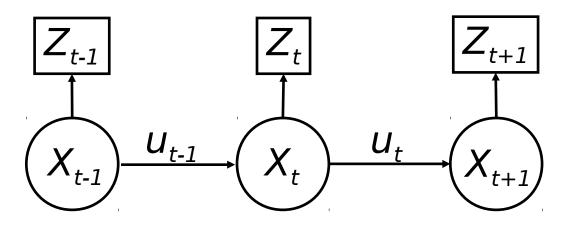
- Sensor model P(z|x).
- Action model P(x|u,x').
- Prior probability of the system state P(x).

Wanted:

- Estimate of the state X of a dynamical system.
- The posterior of the state is also called Belief:

$$Bel(x_t) = P(x_t | u_1, z_2, ..., u_{t-1}, z_t)$$

Markov Assumption



$$p(d_{t}, d_{t-1}, ..., d_{0} | x_{t}, d_{t+1}, d_{t+2}, ...) = p(d_{t}, d_{t-1}, ..., d_{0} | x_{t})$$

$$p(d_{t}, d_{t+1}, ... | x_{t}, d_{1}, d_{2}, ..., d_{t-1}) = p(d_{t}, d_{t+1}, ... | x_{t})$$

$$p(x_{t} | u_{t-1}, x_{t-1}, d_{t-2}, ..., d_{0}) = p(x_{t} | u_{t-1}, x_{t-1})$$

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

z = observation u = action x = state

 $Bel(x_t) = P(x_t | u_1, z_2, ..., u_{t-1}, z_t)$

z = observation u = action x = state

 $Bel(x_t) = P(x_t | u_1, z_2, ..., u_{t-1}, z_t)$

Bayes = $\eta P(z_t | x_t, u_1, z_2, ..., u_{t-1}) P(x_t | u_1, z_2, ..., u_{t-1})$

z = observation u = action x = state

$$Bel(x_t) = P(x_t | u_1, z_2, ..., u_{t-1}, z_t)$$

Bayes =
$$\eta P(z_t | x_t, u_1, z_2, \dots, u_{t-1}) P(x_t | u_1, z_2, \dots, u_{t-1})$$

Markov = $\eta P(z_t | x_t) P(x_t | u_1, z_2, ..., u_{t-1})$

z = observationu = actionx = state

$$Bel(x_t) = P(x_t | u_1, z_2, ..., u_{t-1}, z_t)$$

Bayes = $\eta P(z_t | x_t, u_1, z_2, ..., u_{t-1}) P(x_t | u_1, z_2, ..., u_{t-1})$

Markov =
$$\eta P(z_t | x_t) P(x_t | u_1, z_2, ..., u_{t-1})$$

Total prob. = $\eta P(z_t | x_t) \int P(x_t | u_1, z_2, \dots, u_{t-1}, x_{t-1}) P(x_{t-1} | u_1, z_2, \dots, z_{t-1}) dx_{t-1}$

z = observation u = action x = state

$$Bel(x_{t}) = P(x_{t} | u_{1}, z_{2} ..., u_{t-1}, z_{t})$$
Bayes $= \eta P(z_{t} | x_{t}, u_{1}, z_{2}, ..., u_{t-1}) P(x_{t} | u_{1}, z_{2}, ..., u_{t-1})$
Markov $= \eta P(z_{t} | x_{t}) P(x_{t} | u_{1}, z_{2}, ..., u_{t-1})$
Total prob. $= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{1}, z_{2}, ..., u_{t-1}, x_{t-1}) P(x_{t-1} | u_{1}, z_{2}, ..., z_{t-1}) dx_{t-1}$
Markov $= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{t-1}, x_{t-1}) P(x_{t-1} | u_{1}, z_{2}, ..., z_{t-1}) dx_{t-1}$

z = observation u = action x = state

$$Bel(x_{t}) = P(x_{t} | u_{1}, z_{2} ..., u_{t-1}, z_{t})$$
Bayes $= \eta P(z_{t} | x_{t}, u_{1}, z_{2}, ..., u_{t-1}) P(x_{t} | u_{1}, z_{2}, ..., u_{t-1})$
Markov $= \eta P(z_{t} | x_{t}) P(x_{t} | u_{1}, z_{2}, ..., u_{t-1})$
Total prob. $= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{1}, z_{2}, ..., u_{t-1}, x_{t-1}) P(x_{t-1} | u_{1}, z_{2}, ..., z_{t-1}) dx_{t-1}$
Markov $= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{t-1}, x_{t-1}) P(x_{t-1} | u_{1}, z_{2}, ..., z_{t-1}) dx_{t-1}$
 $= \eta P(z_{t} | x_{t}) \int P(x_{t} | u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$

z = observation u = action x = state

Bayes Filters

$$Bel(x_t) = P(x_t | u_1, z_2, ..., u_{t-1}, z_t)$$

Bayes = $\eta P(z_t | x_t, u_1, z_2, ..., u_{t-1}) P(x_t | u_1, z_2, ..., u_{t-1})$

Markov =
$$\eta P(z_t | x_t) P(x_t | u_1, z_2, ..., u_{t-1})$$

Total prob. =
$$\eta P(z_t | x_t) \int P(x_t | u_1, z_2, \dots, u_{t-1}, x_{t-1}) P(x_{t-1} | u_1, z_2, \dots, z_{t-1}) dx_{t-1}$$

Markov

kov =
$$\eta P(z_t | x_t) \int P(x_t | u_{t-1}, x_{t-1}) P(x_{t-1} | u_1, z_2, \dots z_{t-1}) dx_{t-1}$$

$$= \eta P(z_t | x_t) \int P(x_t | u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Bayes Filter Algorithm

- Algorithm **Bayes_filter**(*Bel(x),d*):
- η=0

•

- if *d* is a perceptual data item *z* then
- For all x do
- $Bel'(x) = P(z \mid x)Bel(x)$

$$\eta = \eta + Bel'(x)$$

• For all *x* do

$$Bel'(x) = \eta^{-1}Bel'(x)$$

- else if *d* is an action data item *u* then
- For all x do

$$Bel'(x) = \int P(x \mid u, x') Bel(x') dx'$$

• return Bel'(x)

$$Bel(x_t) = \eta P(z_t | x_t) \int P(x_t | u_{t-1}, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

Lessons Learned

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.

What is the Right Representation?

- Kalman filters
- Multi-hypothesis tracking
- Grid-based representations
- Topological approaches
- Particle filters

Representations for Bayesian Robot Localization

Al

Discrete approaches ('95)

- Topological representation ('95)
 - uncertainty handling (POMDPs)
 - occas. global localization, recovery
- Grid-based, metric representation ('96)
 - global localization, recovery

Kalman filters (late-80s?)

- Gaussians
- approximately linear models
- position tracking

Robotics

Multi-hypothesis ('00)

- multiple Kalman filters
- global localization, recovery

Particle filters ('99)

- sample-based representation
- global localization, recovery

Gaussians

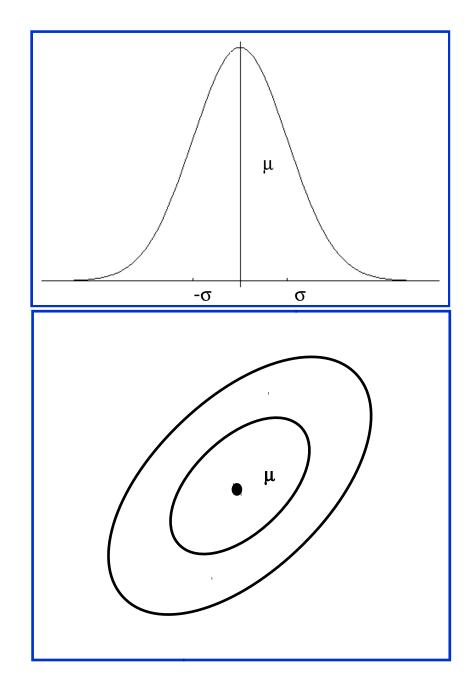
$$p(x) \sim N(\mu, \sigma^2):$$
$$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}}$$

Univariate

$$p(\mathbf{x}) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}):$$

$$p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}$$

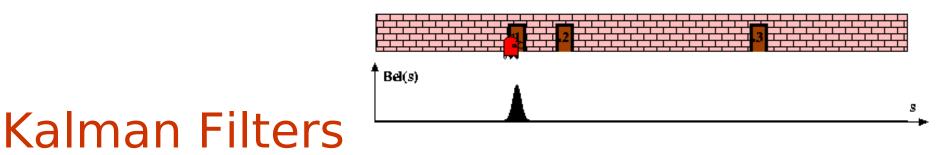
Multivariate

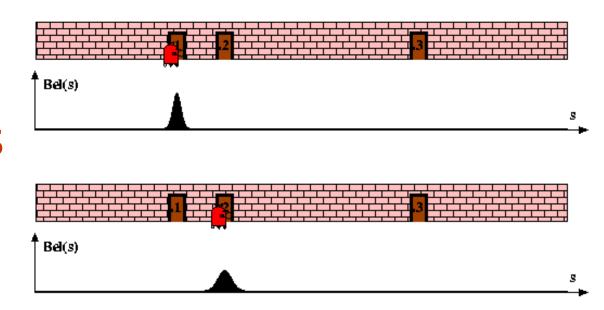


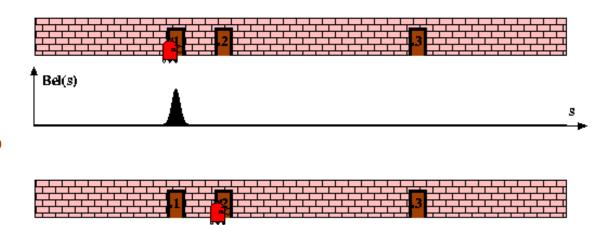
Estimate the state of processes that are governed by the following linear stochastic difference equation.

$$x_{t+1} = Ax_t + Bu_t + v_t$$
$$z_t = Cx_t + w_t$$

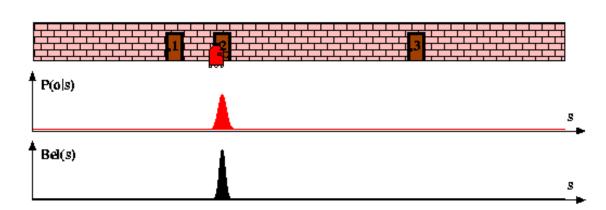
The random variables v_t and w_t represent the process measurement noise and are assumed to be independent, white and with normal probability distributions.



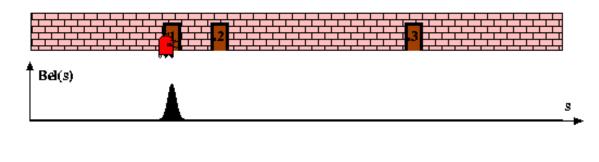




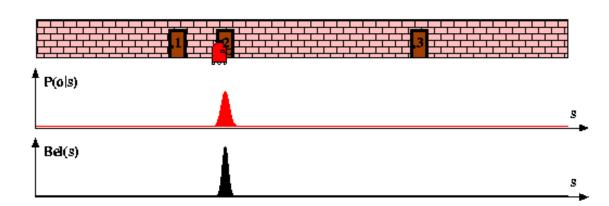
Bel(s)

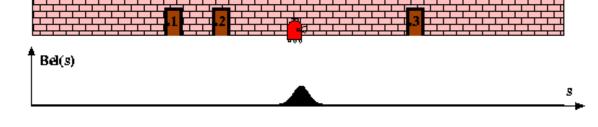


2



Bel(s)





Kalman Filter Algorithm

- Algorithm **Kalman_filter**($<\mu,\Sigma>, d$):
- If *d* is a perceptual data item *z* then
- $K = \Sigma C^T \left(C \Sigma C^T + \Sigma_{obs} \right)^{-1}$

•
$$\mu = \mu + K(z - C\mu)$$

•
$$\Sigma = (I - KC)\Sigma$$

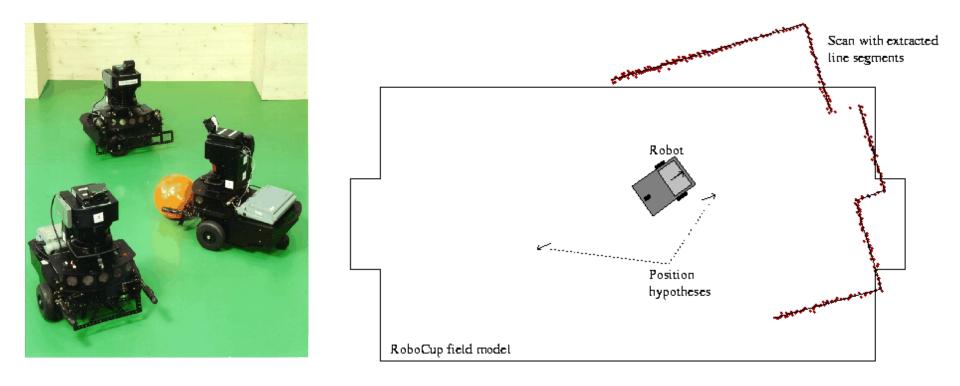
- Else if *d* is an action data item *u* then
- $\mu = A\mu + Bu$
- $\Sigma = A\Sigma A^T + \Sigma_{act}$
- Return $<\mu,\Sigma>$

Non-linear Systems

- Very strong assumptions:
 - Linear state dynamics
 - Observations linear in state
- What can we do if system is not linear?
 Linearize it: EKF
 - Compute the Jacobians of the dynamics and observations at the current state.
 - Extended Kalman filter works surprisingly well even for highly non-linear systems.

Kalman Filter-based Systems (1)

- [Gutmann et al. 96, 98]:
 - Match LRF scans against map
 - Highly successful in RoboCup mid-size league



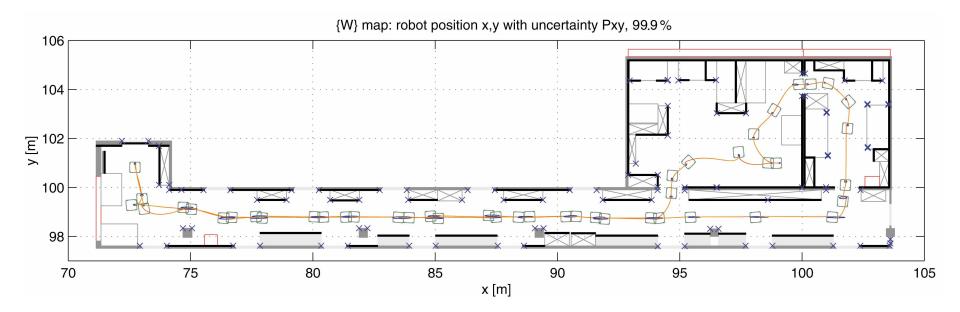
Courtesy of S. Gutmann

Kalman Filter-based Systems (2)

[Arras et al. 98]:

Laser range-finder and vision

High precision (<1cm accuracy)</p>

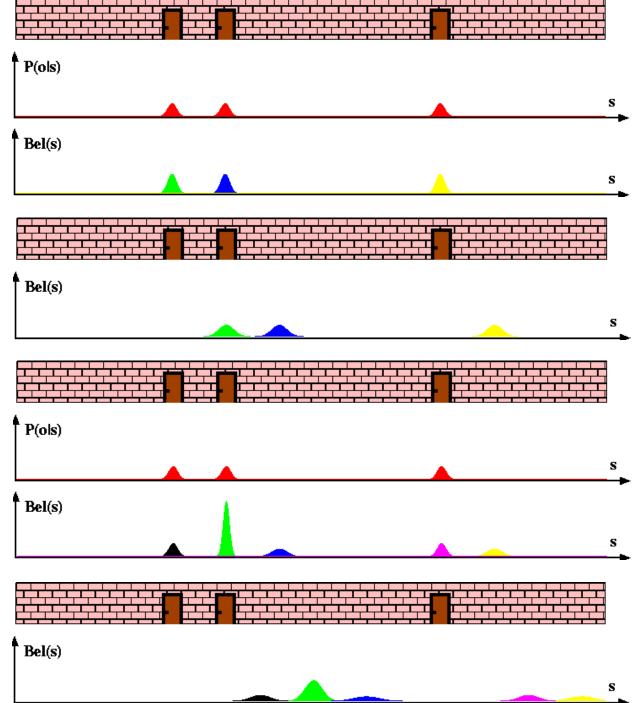


Courtesy of K. Arras

Localization Algorithms - Comparison

Kalman filter Sensors Gaussian Posterior Gaussian Efficiency (memory) ++Efficiency (time) ++Implementation + Accuracy ++Robustness Global No localization

Multihypothesis Tracking



[Cox 92], [Jensfelt, Kristensen 99]

Localization With MHT

- Belief is represented by multiple hypotheses
- Each hypothesis is tracked by a Kalman filter

Additional problems:

- Data association: Which observation corresponds to which hypothesis?
- Hypothesis management: When to add / delete hypotheses?
- Huge body of literature on target tracking, motion correspondence etc.

MHT: Implemented System (1)

[Jensfelt and Kristensen 99,01]

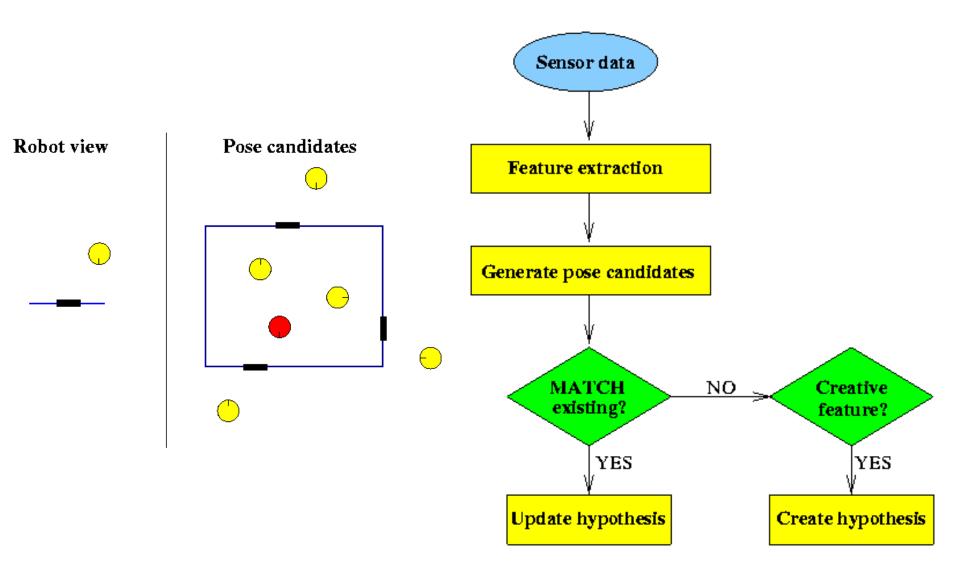
- Hypotheses are extracted from LRF scans
- Each hypothesis has probability of being the correct one:

 $H_i = \{\hat{x}_i, \Sigma_i, P(H_i)\}$

- Hypothesis probability is computed using Bayes' rule $P(H_i | s) = \frac{P(s | H_i)P(H_i)}{P(s)}$
- Hypotheses with low probability are deleted
- New candidates are extracted from LRF scans

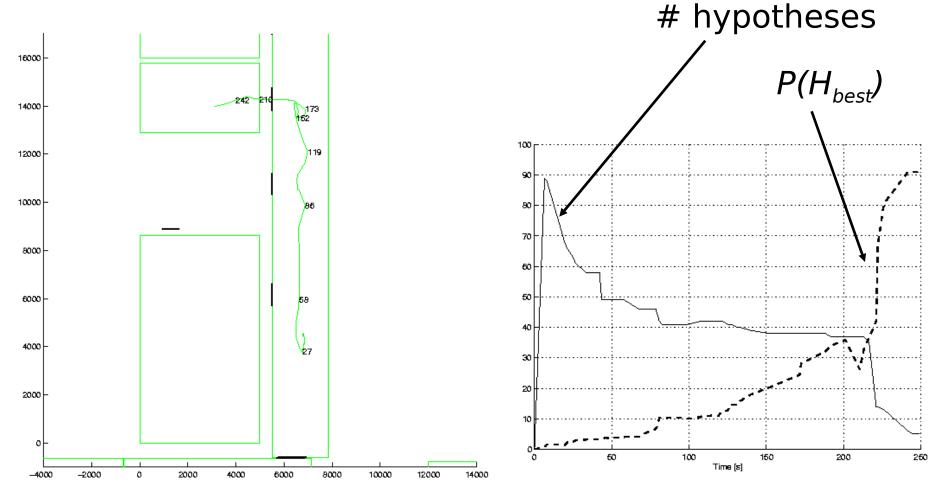
$$C_j = \{z_j, R_j\}$$

MHT: Implemented System (2)



Courtesy of P. Jensfelt and S. Kristensen

MHT: Implemented System (3) Example run



Map and trajectory

Courtesy of P. Jensfelt and S. Kristensen

Hypotheses vs. time

Localization Algorithms - Comparison

	Kalman filter	Multi-hypot hesis tracking
Sensors	Gaussian	Gaussian
Posterior	Gaussian	Multi-modal
Efficiency (memory)	++	++
Efficiency (time)	++	++
Implementation	+	0
Accuracy	++	++
Robustness	-	+
Global localization	No	Yes

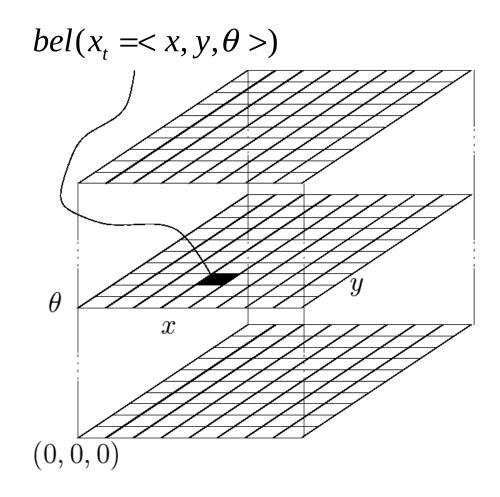
Piecewise Constant

P(o|s) Bel(s) Bel(s) P(o|s)Bel(s) Bel(s)

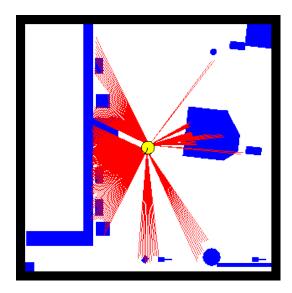
Bel(s)

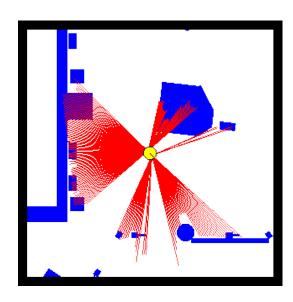
[Burgard et al. 96,98], [Fox et al. 99], [Konolige et al. 99]

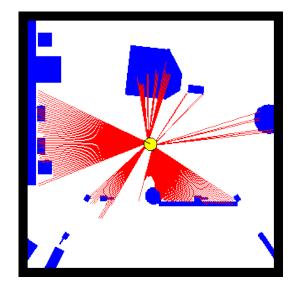
Piecewise Constant Representation

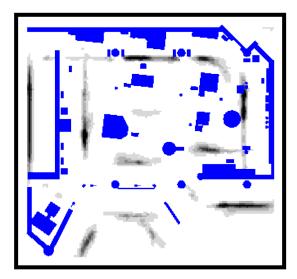


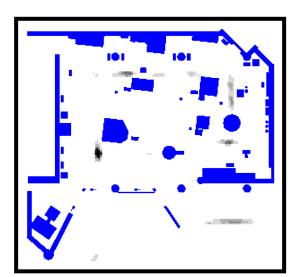
Grid-based Localization

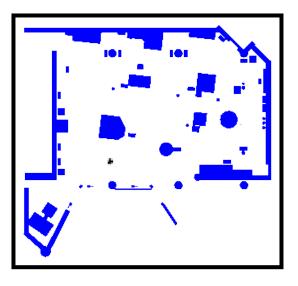






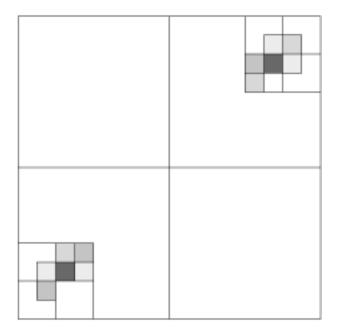






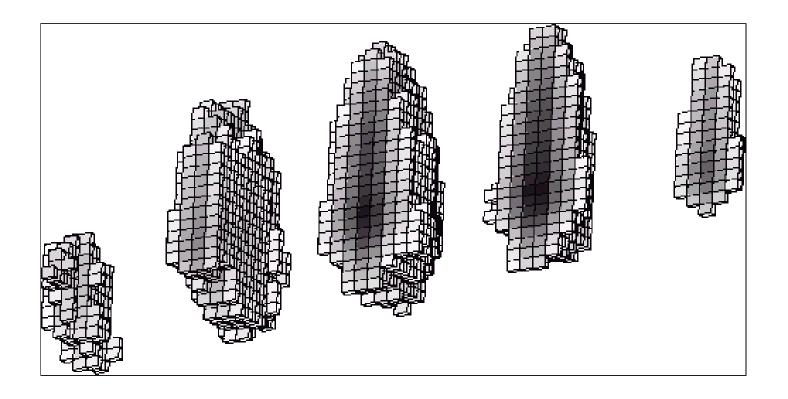
Tree-based Representations (1)

Idea: Represent density using a variant of Octrees



Tree-based Representations (2)

- Efficient in space and time
- Multi-resolution



Localization Algorithms - Comparison

	Kalman filter	Multi-hypot hesis tracking	Grid-based (fixed/variable)
Sensors	Gaussian	Gaussian	Non-Gaussian
Posterior	Gaussian	Multi-modal	Piecewise constant
Efficiency (memory)	++	++	-/+
Efficiency (time)	++	++	o/+
Implementation	+	0	+/o
Accuracy	++	++	+/++
Robustness	-	+	++
Global localization	No	Yes	Yes

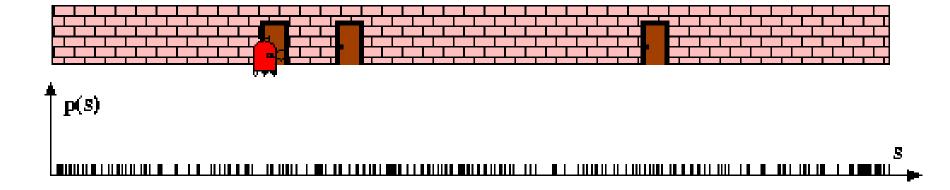
Localization Algorithms - Comparison

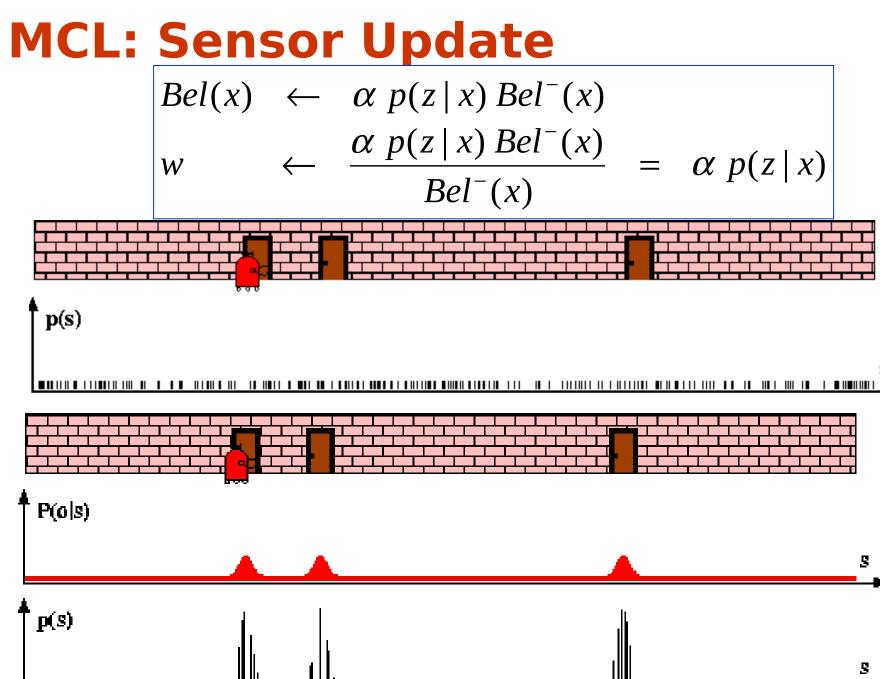
	Kalman filter	Multi-hypot hesis tracking	Grid-based (fixed/variable)	Topological maps
Sensors	Gaussian	Gaussian	Non-Gaussian	Features
Posterior	Gaussian	Multi-modal	Piecewise constant	Piecewise constant
Efficiency (memory)	++	++	-/+	++
Efficiency (time)	++	++	o/+	++
Implementation	+	Ο	+/o	+/o
Accuracy	++	++	+/++	-
Robustness	-	+	++	+
Global localization	No	Yes	Yes	Yes

Particle Filters

- Represent density by random samples
- Estimation of non-Gaussian, nonlinear processes
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter, Particle filter
- Filtering: [Rubin, 88], [Gordon et al., 93], [Kitagawa 96]
- Computer vision: [Isard and Blake 96, 98]
- Dynamic Bayesian Networks: [Kanazawa et al., 95]

MCL: Global Localization

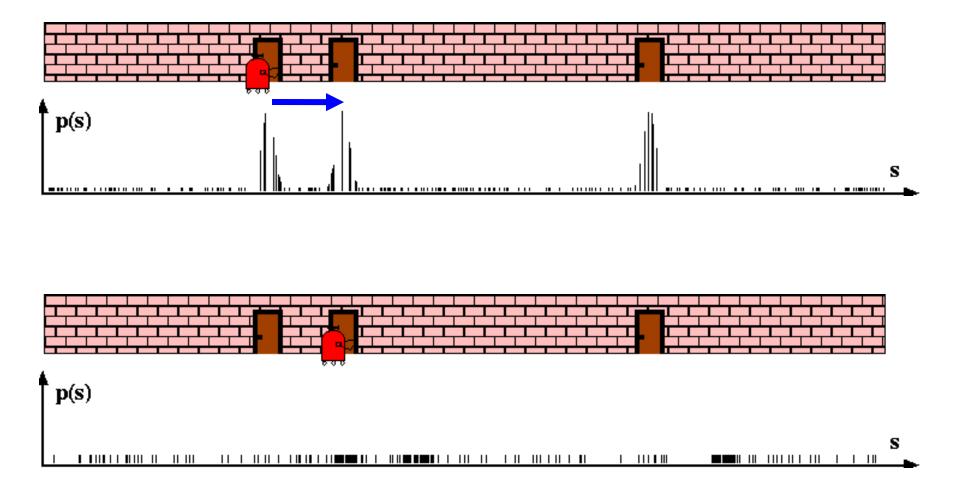




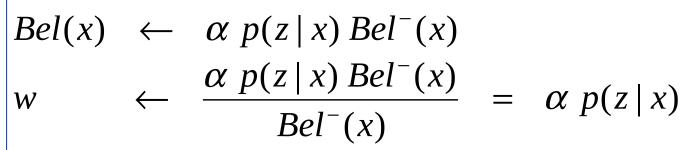
S

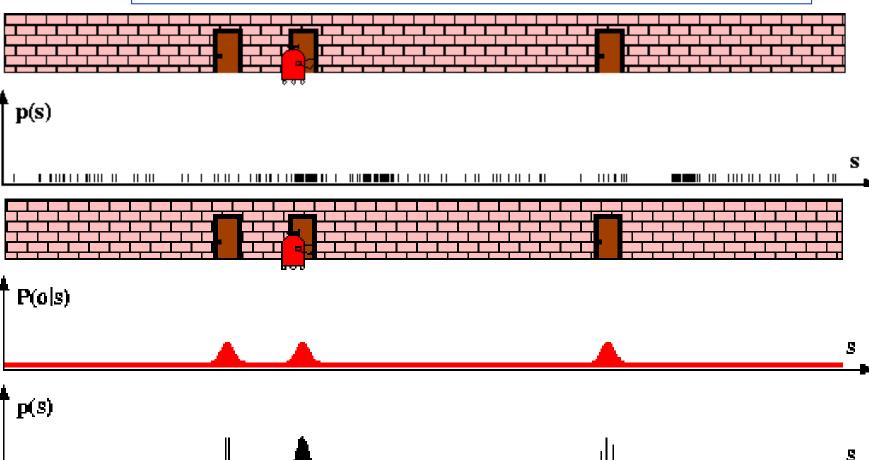
MCL: Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x | u, x') Bel(x') dx'$$

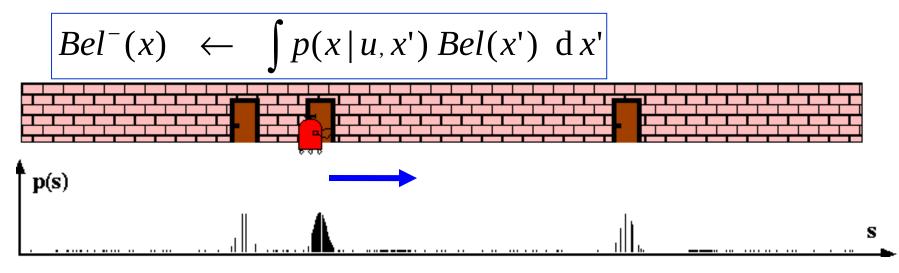


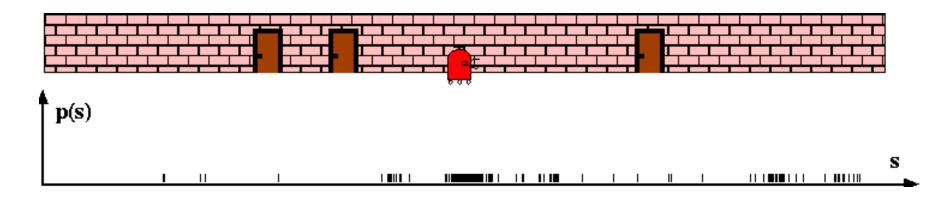
MCL: Sensor Update





MCL: Robot Motion

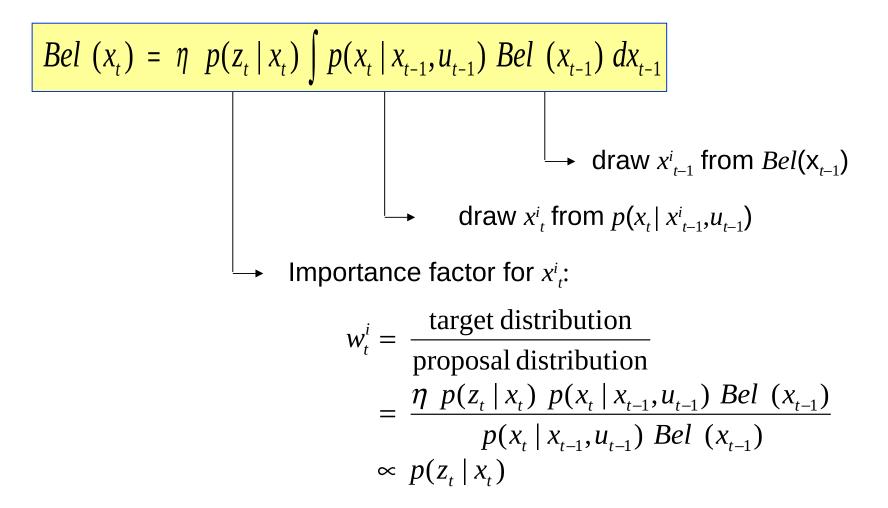




Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , $u_{t-1} z_t$):
- $2. \quad S_t = \emptyset, \quad \eta = 0$
- *3.* For i = 1...n *Generate new samples* Sample index j(i) from the discrete distribution given by w_{t-1}
- 1. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}
- 2. $w_t^i = p(z_t | x_t^i)$ Compute importance weight
- 3. $\eta = \eta + w_t^i$ Update normalization factor 4. $S_t = S_t \cup \{ < x_t^i, w_t^i > \}$ Insert
- **5. For** *i* = 1...*n*
- 6. $w_t^i = w_t^i / \eta$ Normalize weights

Particle Filter Algorithm



Resampling

• **Given**: Set *S* of weighted samples.

Wanted : Random sample, where the probability of drawing x_i is given by w_i.

Typically done n times with replacement to generate new sample set S'.

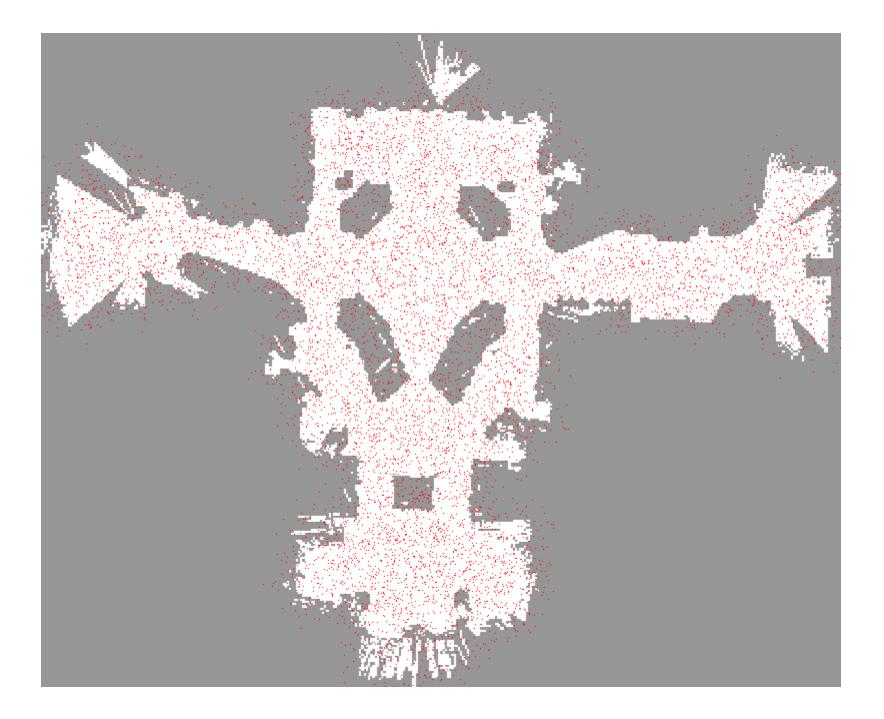
Resampling Algorithm

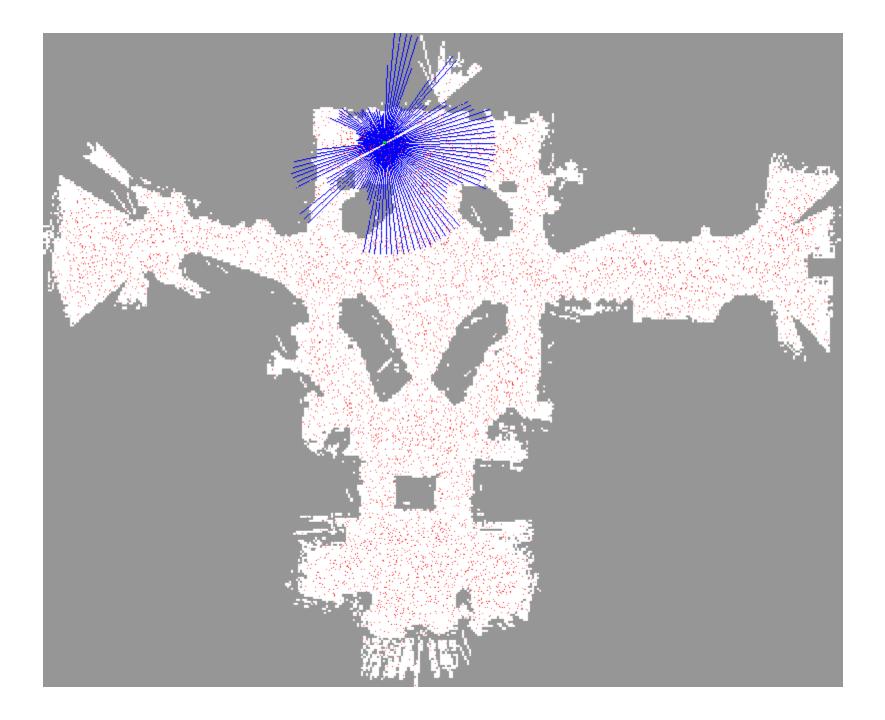
1. Algorithm **systematic_resampling**(*S*,*n*):

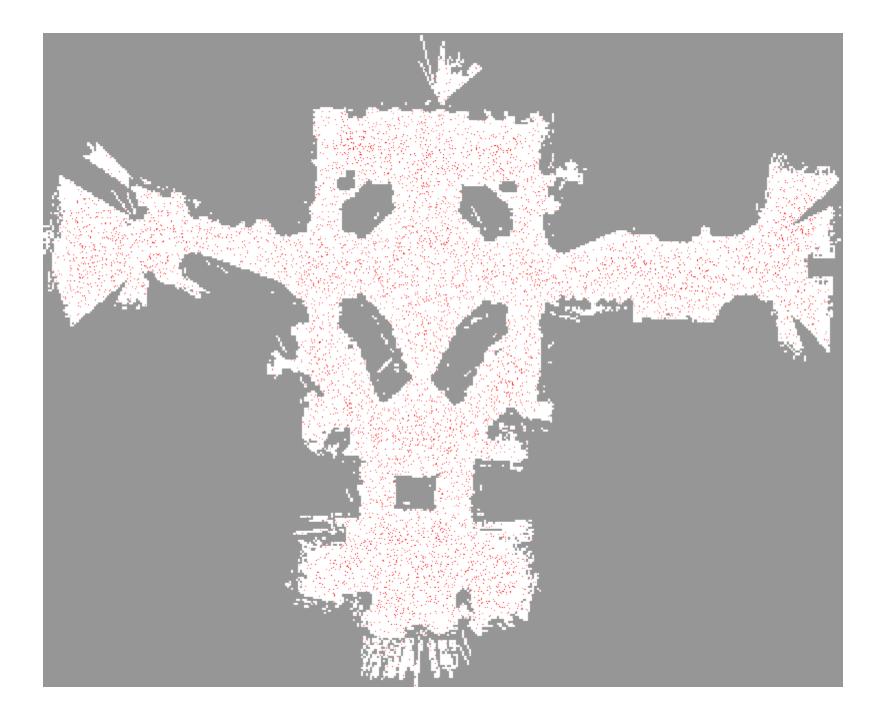
1. $S' = \emptyset, c_1 = w^1$ **2. For** *i* = 2...*n* **Generate cdf** 3. $C_i = C_{i-1} + w^i$ 4. $u_1 \sim U[0, n^{-1}], i = 1$ Initialize threshold **1.** For j = 1...n **Draw samples ...** $u_j = u_1 + n^{-1} \cdot (j-1)$ Advance threshold 2. 3. While $(u_i > c_i)$ Skip until next threshold reached i = i + 14. 5. $S' = S' \cup \{< x^i, n^{-1} >\}$ **Insert**

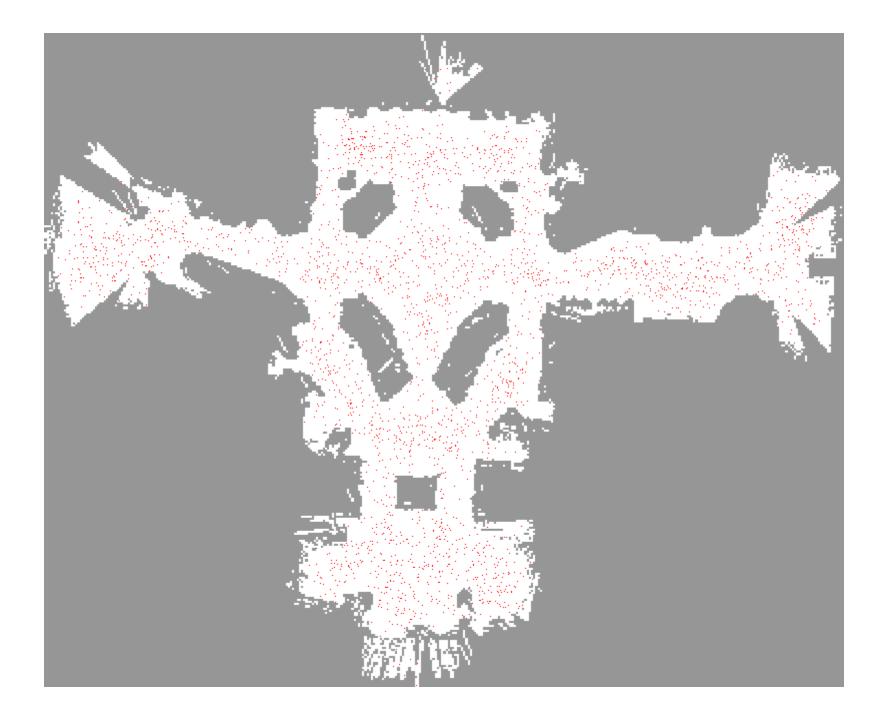
1. **Return** *S*'

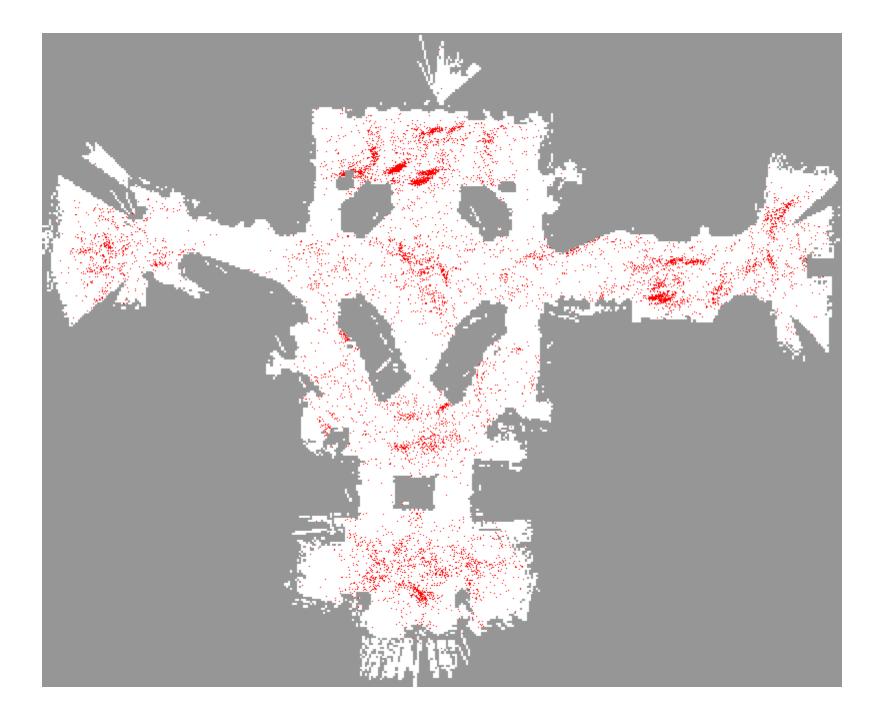
Also called stochastic universal sampling

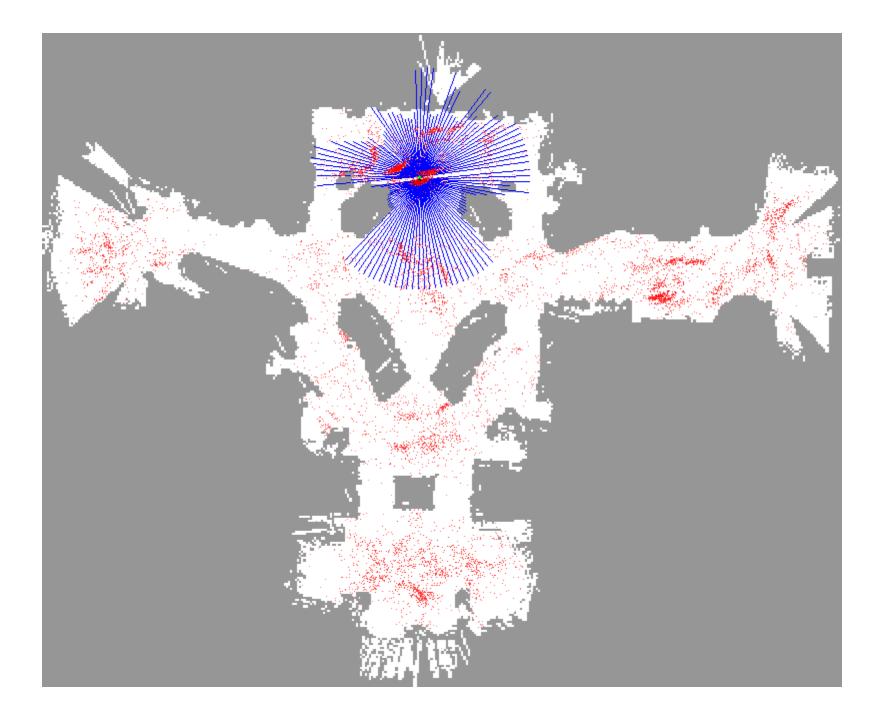


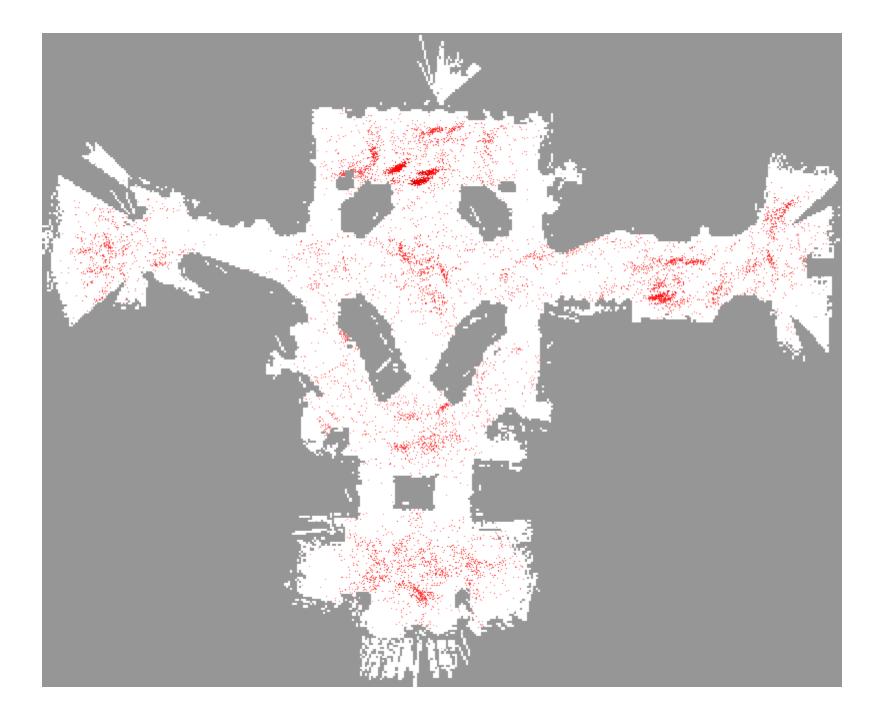


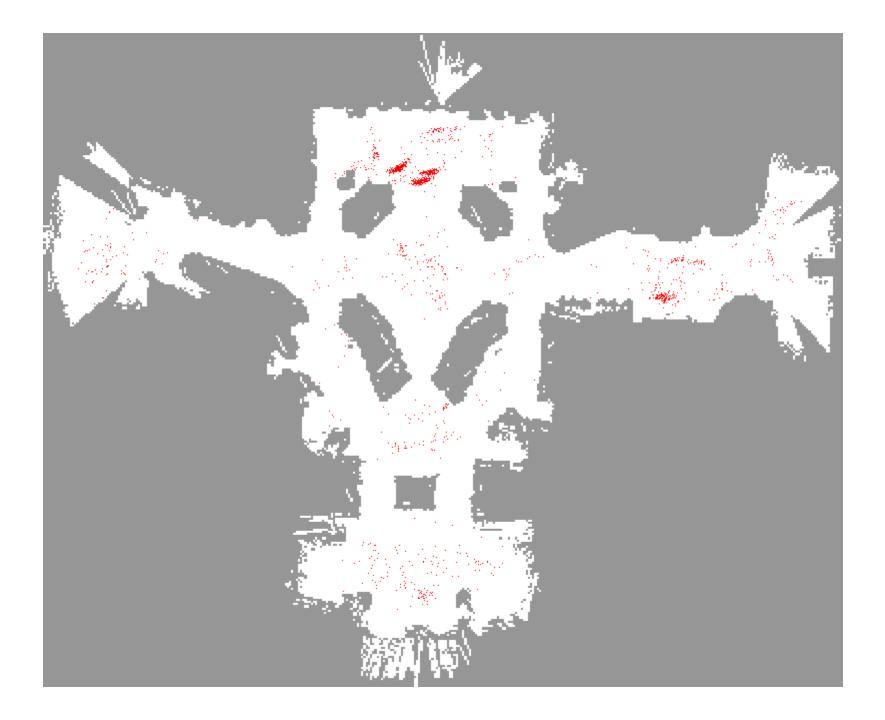


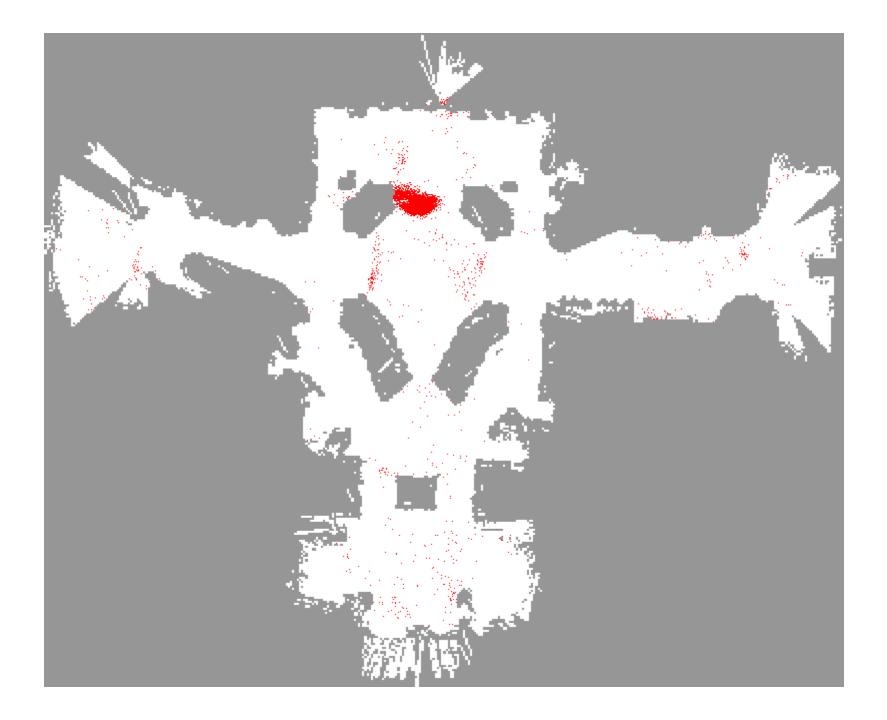


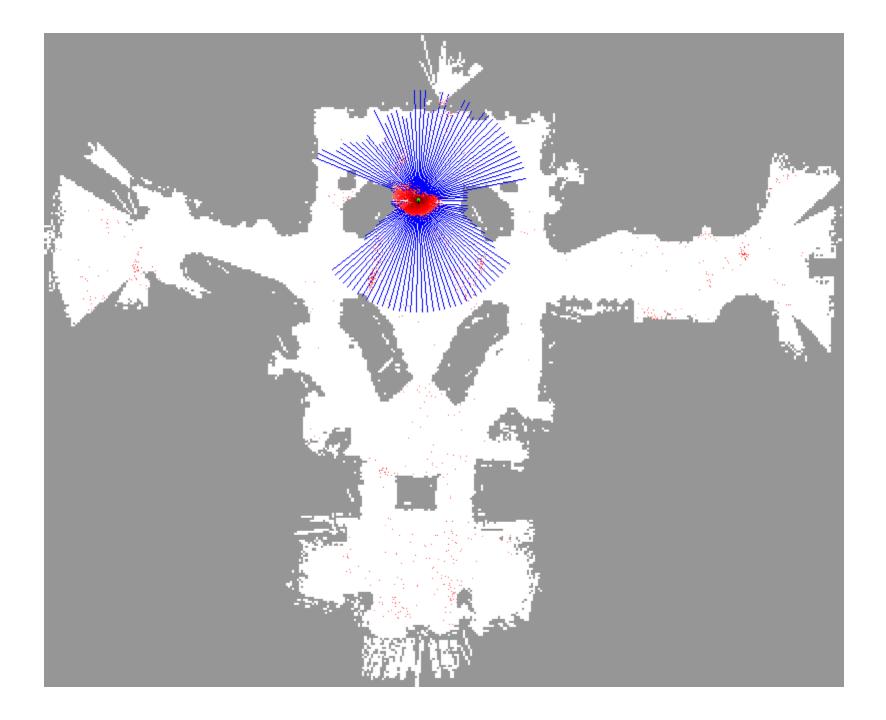


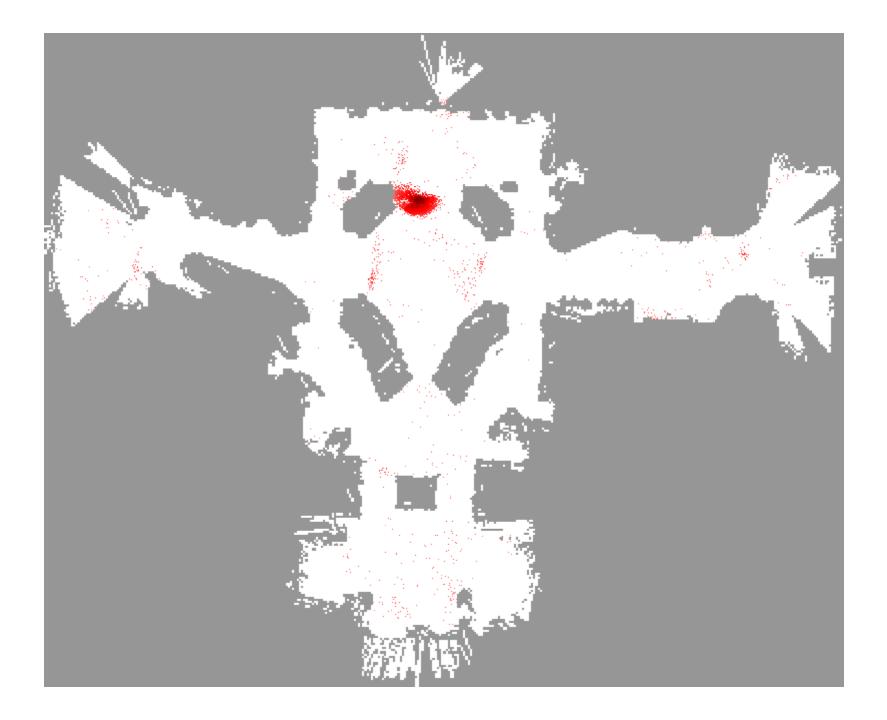


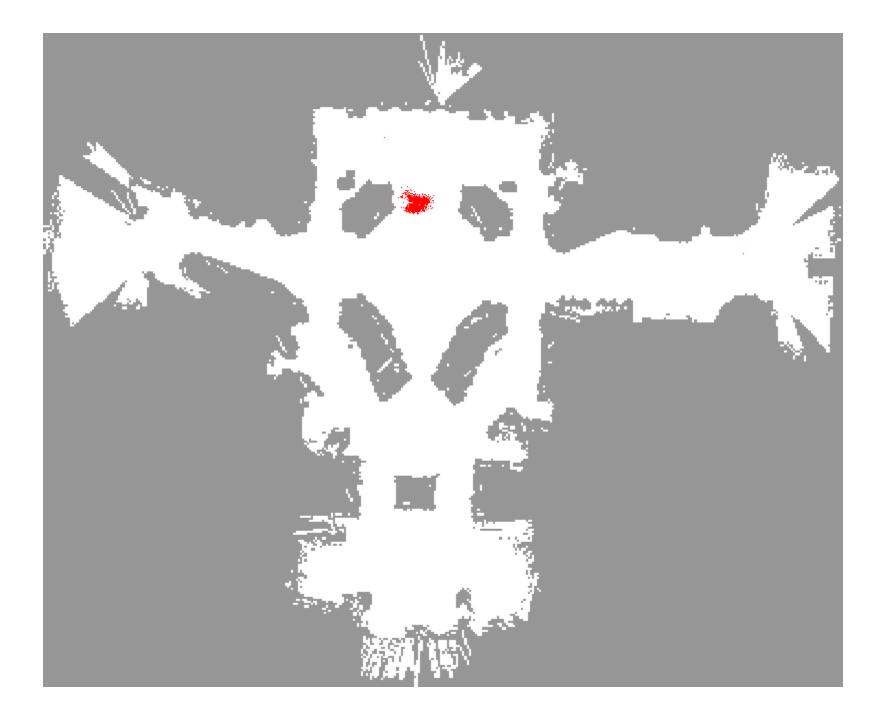


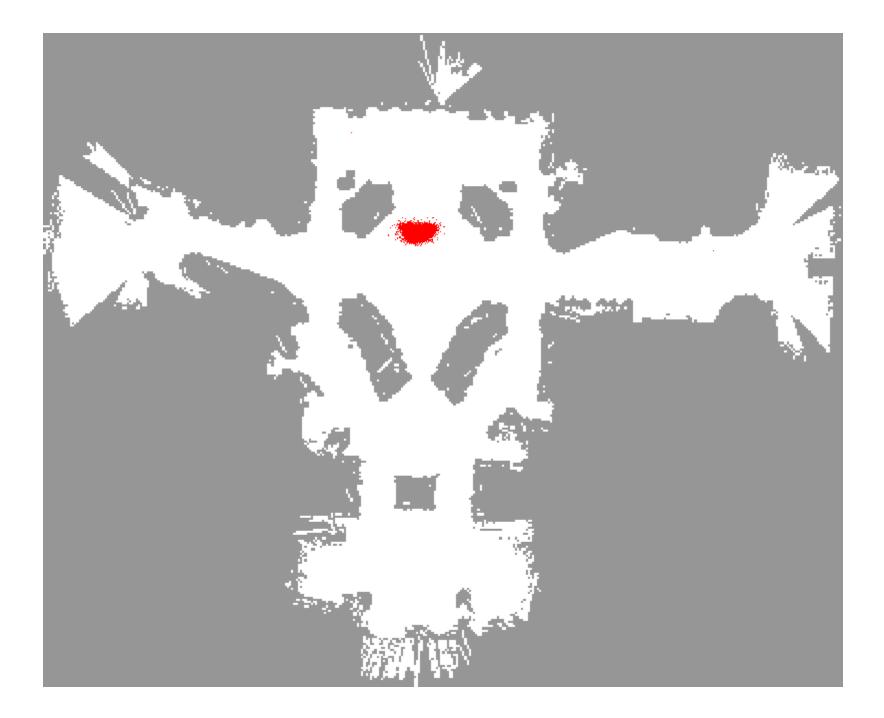


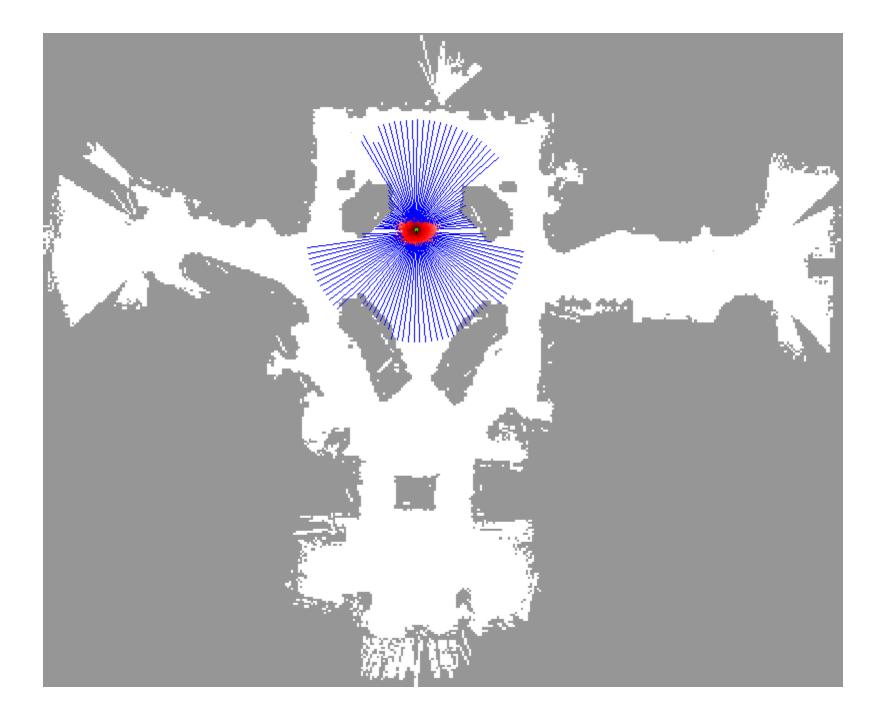


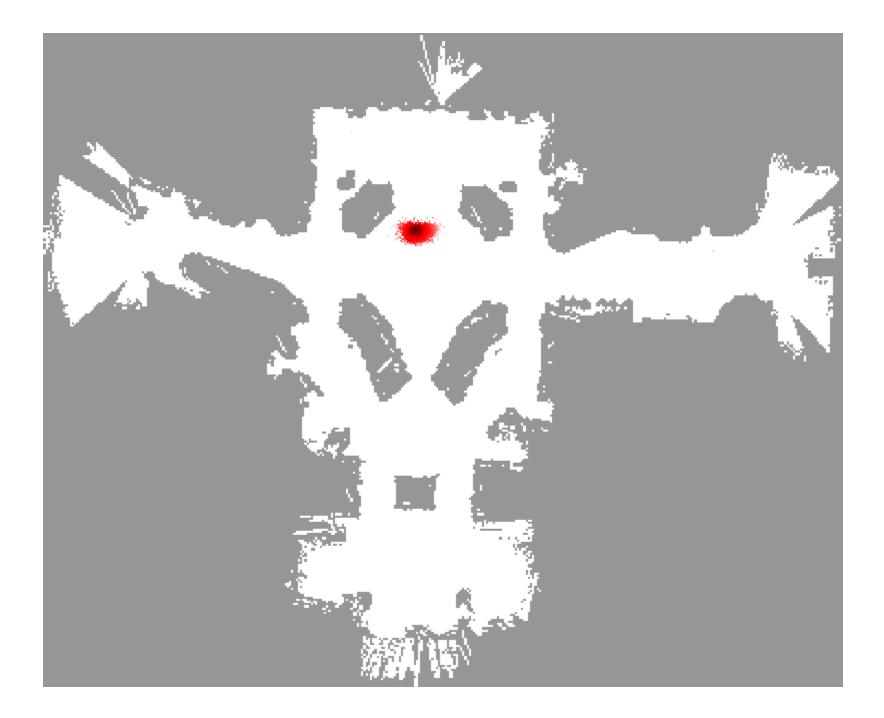


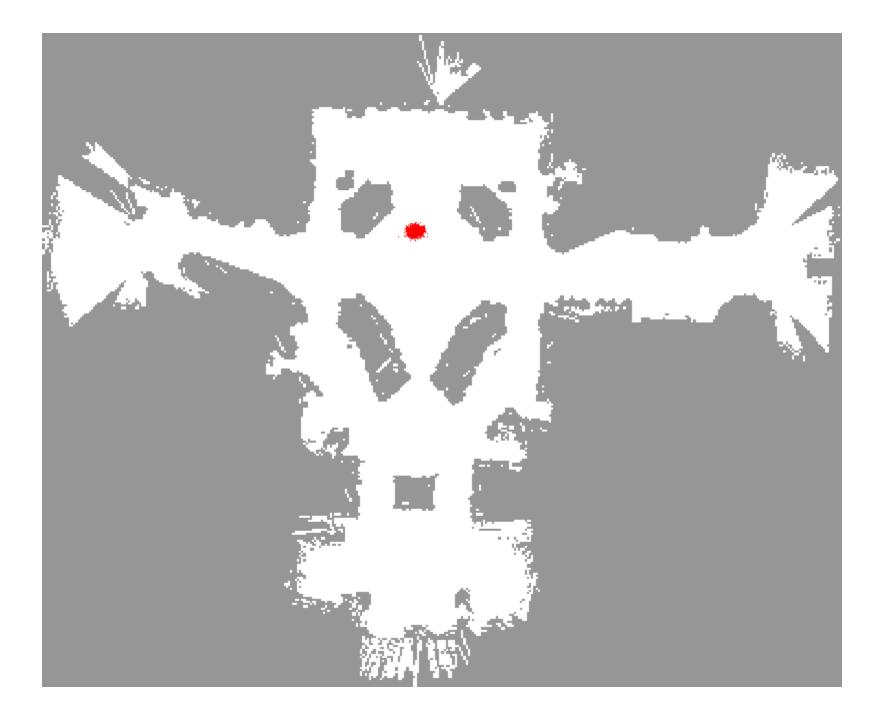


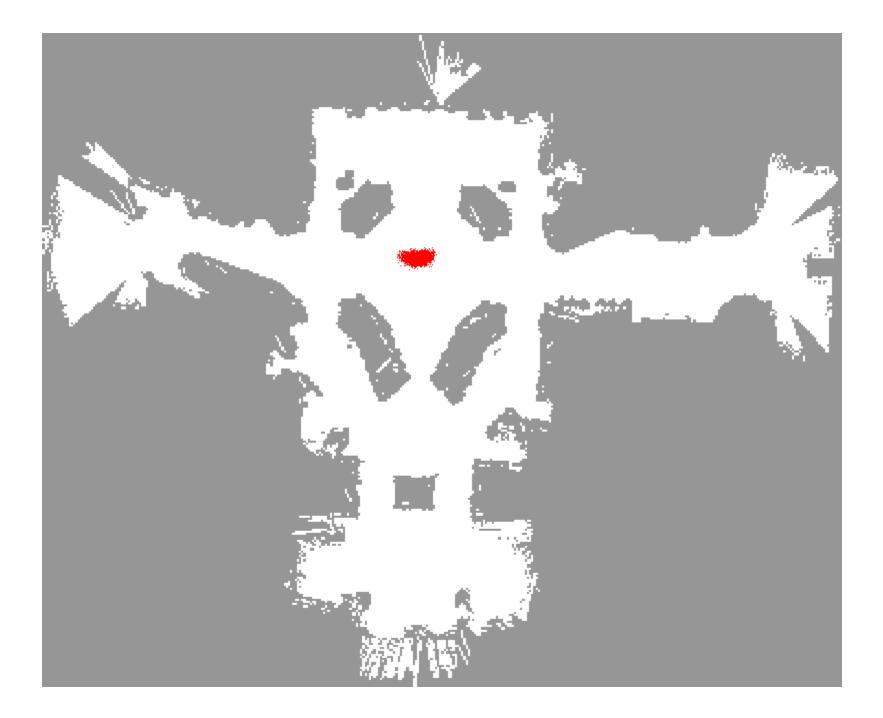


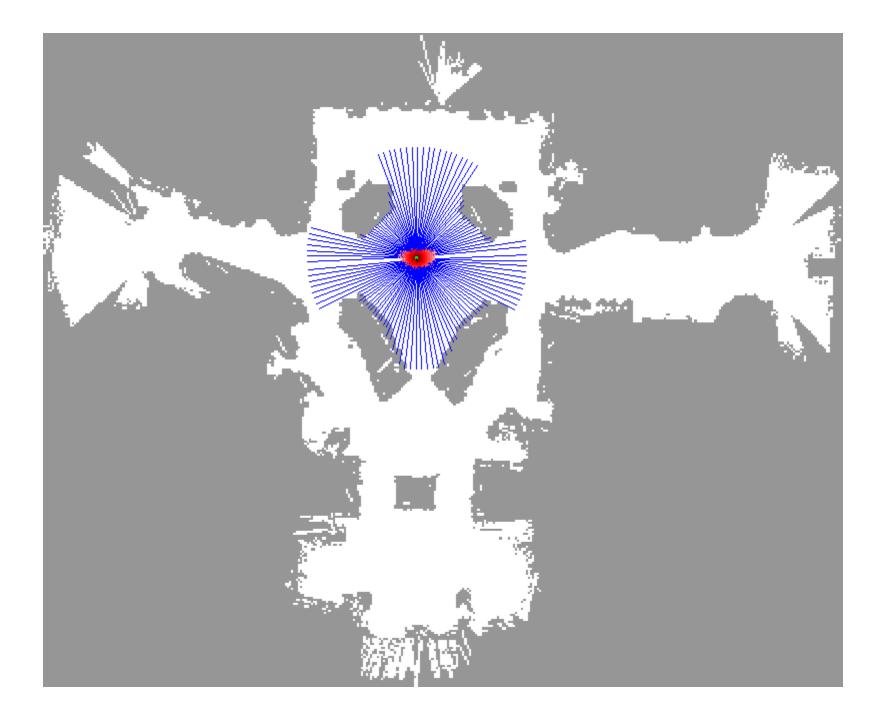


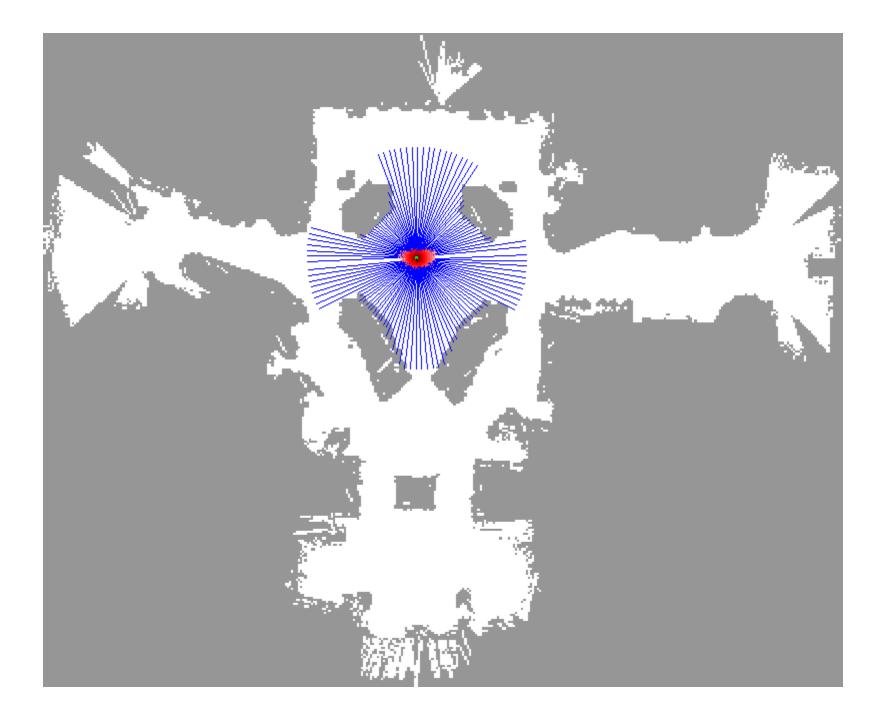












Recovery from Failure

Problem:

Samples are highly concentrated during tracking
 True location is not covered by samples if position gets lost

Solutions:

- Add uniformly distributed samples [Fox et al., 99]
- Draw samples according to observation density [Lenser et al.,00; Thrun et al., 00]

Particle Filters for Robot Localization (Summary)

- Approximate Bayes Estimation/Filtering
 - Full posterior estimation
 - Converges in O($1/\sqrt{#}$ samples) [Tanner'93]
 - Robust: multiple hypotheses with degree of belief
 - Efficient in low-dimensional spaces: focuses computation where needed
 - Any-time: by varying number of samples
 - Easy to implement

Localization Algorithms - Comparison

	Kalman	Multi-hypoth	Topological	Grid-based	Particle
	filter	esis tracking	maps	(fixed/variable)	filter
Sensors	Gaussian		Features	Non-Gaussian	Non-Gaussi an

Posterior	Gaussian	Multi-modal	Piecewise constant	Piecewise constant	Samples
Efficiency (memory)	++	++	++	-/+	+/++
Efficiency (time)	++	++	++	o/+	+/++
Implementation	+	0	+	+/o	++
Accuracy	++	++	-	+/++	++
Robustness	-	+	+	++	+/++
Global localization	No		Yes	Yes	Yes

Bayes Filtering: Lessons Learned

General algorithm for recursively estimating the state of dynamic systems.

Variants:

- Hidden Markov Models
- (Extended) Kalman Filters
- Discrete Filters
- Particle Filters