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Analyzing Average Case Time Complexity

Definition

Let T (n) denote the average case time complexity used by an
algorithm to solve a problem on an input size n. Then:

T (n) =
∑
I∈Dn

P(I ) ◦ t(I )

Dn is the set of all input instances of size n

I denotes instance I taking values over sample space Dn

P(I ) denotes the probability with which I occurs

t(I ) denotes time it takes to solve problem on input instance I∑
I∈Dn

P(I ) = 1 for correct analysis
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Light Exercise: Average Case Analysis of Insertion Sort

?

Need a bit of a refresher on expected values and random variables
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Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable XH to track this number

E [XH ] = 1 ·P(XH = 1)+0 ·P(XH = 0) = 1 · (1/2)+0 · (1/2) = 1/2

Expected number of H’s from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in n tosses of a coin?

Let X =
∑n

i=1 XH,i be the total number of H’s in n tosses.

Then: E [X ] = E [
∑n

i=1 XH,i ] =
∑n

i=1 E [XH ]
=

∑n
i=1 1/2 = n/2

Expected number of H’s from n tosses of a fair coin is 1/2.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Probabilistic Analysis Average Case Analysis of Insertion Sort

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable XH to track this number

E [XH ] = 1 ·P(XH = 1)+0 ·P(XH = 0) = 1 · (1/2)+0 · (1/2) = 1/2
Expected number of H’s from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in n tosses of a coin?

Let X =
∑n

i=1 XH,i be the total number of H’s in n tosses.

Then: E [X ] = E [
∑n

i=1 XH,i ] =
∑n

i=1 E [XH ]
=

∑n
i=1 1/2 = n/2

Expected number of H’s from n tosses of a fair coin is 1/2.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Probabilistic Analysis Average Case Analysis of Insertion Sort

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable XH to track this number

E [XH ] = 1 ·P(XH = 1)+0 ·P(XH = 0) = 1 · (1/2)+0 · (1/2) = 1/2
Expected number of H’s from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in n tosses of a coin?

Let X =
∑n

i=1 XH,i be the total number of H’s in n tosses.

Then: E [X ] = E [
∑n

i=1 XH,i ] =
∑n

i=1 E [XH ]
=

∑n
i=1 1/2 = n/2

Expected number of H’s from n tosses of a fair coin is 1/2.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Probabilistic Analysis Average Case Analysis of Insertion Sort

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable XH to track this number

E [XH ] = 1 ·P(XH = 1)+0 ·P(XH = 0) = 1 · (1/2)+0 · (1/2) = 1/2
Expected number of H’s from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in n tosses of a coin?

Let X =
∑n

i=1 XH,i be the total number of H’s in n tosses.

Then: E [X ] = E [
∑n

i=1 XH,i ] =
∑n

i=1 E [XH ]
=

∑n
i=1 1/2 = n/2

Expected number of H’s from n tosses of a fair coin is 1/2.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Probabilistic Analysis Average Case Analysis of Insertion Sort

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable XH to track this number

E [XH ] = 1 ·P(XH = 1)+0 ·P(XH = 0) = 1 · (1/2)+0 · (1/2) = 1/2
Expected number of H’s from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in n tosses of a coin?

Let X =
∑n

i=1 XH,i be the total number of H’s in n tosses.

Then: E [X ] = E [
∑n

i=1 XH,i ] =
∑n

i=1 E [XH ]
=

∑n
i=1 1/2 = n/2

Expected number of H’s from n tosses of a fair coin is 1/2.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Probabilistic Analysis Average Case Analysis of Insertion Sort

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable XH to track this number

E [XH ] = 1 ·P(XH = 1)+0 ·P(XH = 0) = 1 · (1/2)+0 · (1/2) = 1/2
Expected number of H’s from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in n tosses of a coin?

Let X =
∑n

i=1 XH,i be the total number of H’s in n tosses.

Then: E [X ] = E [
∑n

i=1 XH,i ] =
∑n

i=1 E [XH ]
=

∑n
i=1 1/2 = n/2

Expected number of H’s from n tosses of a fair coin is 1/2.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Probabilistic Analysis Average Case Analysis of Insertion Sort

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable XH to track this number

E [XH ] = 1 ·P(XH = 1)+0 ·P(XH = 0) = 1 · (1/2)+0 · (1/2) = 1/2
Expected number of H’s from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in n tosses of a coin?

Let X =
∑n

i=1 XH,i be the total number of H’s in n tosses.

Then: E [X ] = E [
∑n

i=1 XH,i ] =
∑n

i=1 E [XH ]
=

∑n
i=1 1/2 = n/2

Expected number of H’s from n tosses of a fair coin is 1/2.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Probabilistic Analysis Average Case Analysis of Insertion Sort

Back to Average Case Analysis of Insertion Sort

InsertionSort(arrayA[1 . . . n])

1: for j ← 2 to n do
2: Temp ← A[j ]
3: i ← j − 1
4: while i > 0 and A[i ] >

Temp do
5: A[i + 1]← A[i ]
6: i ← i − 1
7: A[i + 1]← Temp

Loop invariant: At the start
of each iteration j ,
A[1 . . . j − 1] is sorted.

Recall:
T (n) =

∑n
j=2{A +

∑j−1
i=0 B + C}

Ignoring machine-dependent
constants, we can write:
T (n) =

∑n
j=2 kj , where kj is a

variable that tracks the total number
of iterations of the inner while loop
in an iteration of the outer for loop

In the worst-case analysis, we
assumed that kj = j , arriving at a
total quadratic running time for
insertion sort.

Here we ask for E [kj ]
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Average Case Analysis of Insertion Sort

kj : random variable counting total number of moves to the right

So: E [kj ] = E [
∑j−1

i=1 ki ], where ki is a random variable tracking the
number of moves in one iteration of the while loop

By linearity of expectation: E [kj ] =
∑j−1

i=1 E [ki ]

What is E [ki ]?

E [ki ] = P(move) ∗ 1 + P(no move) ∗ 0

P(move) = P(A[i ] > Key) = 0.5

So: E [ki ] = 0.5 ∗ 1 = 0.5 =⇒ E [kj ] =
∑j−1

i=1 0.5 = j−1
2

Finally: E [T (n)] =
∑n

j=2
j−1
2

You can show that this expected running time is no better than
the worst-case running time.
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Can we do better than θ(n2)?

You have have already seen an example ...

More follow
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Quicksort: Divide and Conquer

Proposed by C. A. R. Hoare in 1962

Implements the divide-and-conquer paradigm

Is a very practical algorithm

Sorts in place like insertion sort and heapsort
1 Divide: Partition array into two subarrays around a pivot x s.t.

values left ≤ x ≤ values right
2 Conquer: Recursively sort the two subarrays
3 Combine: Trivial

Key to speed: linear-time partitioning subroutine
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Quicksort: Partitioning Subroutine

PARTITION(A, p, q)

1: x ← A[p]
2: i ← p
3: for j ← p + 1 to q do
4: if A[j ] ≤ x then
5: i ← i + 1
6: swap(A[i ],A[j ])
7: return i
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Partitioning: Trace
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Quicksort: Pseudocode And Analysis

QUICKSORT(A, p, r)

1: if p < r then
2: q ← PARTITION(A, p, r)
3: QUICKSORT(A, p, q − 1)
4: QUICKSORT(A, q + 1, r)

Initial call: QUICKSORT(A, 1, n)

Worst-case Time Analysis:

Assume elements are distinct

There are better algorithms for
duplicate elements

Let T (n) be worst-case running time on n elements

A is sorted/reverse sorted; partition around min/max element

One side of partition always has no elements
T (n) = T (0) + T (n − 1) + θ(n)

= θ(1) + T (n − 1) + θ(n)
= T (n − 1) + θ(n) - arithmetic series
= θ(n2)
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Worst-case Recursion Tree
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Best-case (Lucky) Analysis for Intuition

Best Case:

If we are lucky, PARTITION splits the array evenly

T (n) = 2T (n/2) + θ(n) = θ(nlgn)

Let L(n) denote the running time when we are lucky

Versus U(n) - the worst-case running time of θ(n2)

Almost Best Case:

What if the split is not even?

Say, it is 1
10 : 9

10

T (n) = T ( 1
10n) + T ( 9

10n) + θ(n)

What is the solution to this recurrence?
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Analysis of ”almost best”
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More Intuition

Suppose that QUICKSORT is alternately lucky, unlucky,
lucky, unlucky, lucky, ...

L(n) = 2U(n/2) + θ(n)
U(n) = L(n − 1) + θ(n)

Solving further:

L(n) = 2(L(n/2− 1/2) + θ(n/2)) + θ(n)
= 2L(n/2− 1/2) + θ(n)
= θ(nlgn) - Lucky!!!

How can we make sure QUICKSORT is usually lucky?
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Randomized Quicksort

Basic Idea: Partition around a random element

Running time is independent of input order

No assumptions need to be made about the input distribution

No specific input elicits the worst-case behavior

The worst case is determined now only by the output of a
random-number generator
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Randomized Quicksort Analysis

Let T (n) be the random variable for the running time of
randomized quicksort on an input of length n, assuming
random numbers are independent

So:

T (n) =


T (0) + T (n − 1) + θ(n) if 0:n − 1 split
T (1) + T (n − 2) + θ(n) if 1:n − 2 split
. . .
T (n − 1) + T (0) + θ(n) if n − 1:0 split

Each of these k : n − k − 1 partitions (k ∈ {0, 1, . . . , n − 1} is
equally likely, assuming distinct elements)

So: E [T (n)] = 1
n

∑n−1
k=0{E [T (k)] + E [T (n − k − 1)] + θ(n)}
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Randomized Quicksort Analysis Continued

Continuing:

E [T (n)] = 1
n

∑n−1
k=0{E [T (k)] + E [T (n − k − 1)] + θ(n)}

= 1
n

∑n−1
k=0{E [T (k)] + E [T (n − k − 1)]}+ 1

n

∑n−1
k=0 θ(n)}

= 1
n

∑n−1
k=0{E [T (k)] + E [T (n − k − 1)]}+ 1

n · n · θ(n)}

= 1
n

∑n−1
k=0{E [T (k)] + E [T (n − k − 1)]}+ θ(n)}

= 1
n

∑n−1
k=0{E [T (k)]}+ 1

n

∑n−1
k=0{E [T (n − k − 1)]}+ θ(n)

summations have identical terms

= 2
n

∑n−1
k=0{E [T (k)]}+ θ(n)

What do we do now?
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Randomized Quicksort Analysis Continued

The k = 0, 1 terms can be absorbed in the θ(n)

So: E [T (n)] = 2
n

∑n−1
k=2{E [T (k)]}+ θ(n)

Guess: E [T (n)] ∈ O(nlgn)

By induction, need to find a > 0 s.t. E [T (n)] ≤ a · n · lgn
Use the fact that

∑n−1
k=2 k · lgk ≤

1
2n

2 · lgn − 1
4n

2 (integration
technique bounds this summation)

Then, using the substitution/induction technique:

E [T (n)] ≤ 2
n

∑n−1
k=2 a · k · lgk + θ(n)

= 2a
n (12n

2 · lgn − 1
4n

2) + θ(n)
= a · n · lgn − (an2 − θ(n))
≤ a · n · lgn

Note: a needs to be large enough so that an
2 dominates θ(n)
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Final Word on Quicksort

Useful general-purpose algorithm

Typically over twice as fast as mergesort

Can benefit substantially from code tuning

Behaves well even with caching and virtual memory
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