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Analyzing Average Case Time Complexity

Definition

Let T(n) denote the average case time complexity used by an
algorithm to solve a problem on an input size n. Then:

T(n)=Y_P(l)ot(l)

1€Dn

D, is the set of all input instances of size n
| denotes instance / taking values over sample space D,
P(/) denotes the probability with which / occurs

t(/) denotes time it takes to solve problem on input instance /

> 1ep, P(I) =1 for correct analysis
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Light Exercise: Average Case Analysis of Insertion Sort
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Light Exercise: Average Case Analysis of Insertion Sort
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Light Exercise: Average Case Analysis of Insertion Sort

Need a bit of a refresher on expected values and random variables
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Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?
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Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?
Introduce binary random variable Xy to track this number

E[Xy] = 1-P(Xy = 1)+0- P(Xpy = 0) = 1-(1/2)+0-(1/2) = 1/2
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Probabilistic Analysis Average Case Analysis of Insertion Sort

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?
Introduce binary random variable Xy to track this number

EXy]=1-P(Xy =1)+0-P(Xy =0)=1-(1/2)+0-(1/2) =1/2
Expected number of H's from one flip of a fair coin is 1/2.
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Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?
Introduce binary random variable Xy to track this number

EXy]=1-P(Xy =1)+0-P(Xy =0)=1-(1/2)+0-(1/2) =1/2
Expected number of H's from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in n tosses of a coin?
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Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable Xy to track this number

EXy]=1-P(Xy =1)+0-P(Xy =0)=1-(1/2)+0-(1/2) =1/2
Expected number of H's from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in n tosses of a coin?

Let X = 27:1 Xu,i be the total number of H's in n tosses.
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Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?

Introduce binary random variable Xy to track this number

EXy]=1-P(Xy =1)+0-P(Xy =0)=1-(1/2)+0-(1/2) =1/2
Expected number of H's from one flip of a fair coin is 1/2.

Q: What is the expected number of Heads in n tosses of a coin?

Let X = 27:1 Xu,i be the total number of H's in n tosses.

Then: E[X] = E[X0 Xui]l =30, E[Xu]
= Y ir,1/2=n/2
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Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?
Introduce binary random variable Xy to track this number
EXy]=1-P(Xy =1)+0-P(Xy =0)=1-(1/2)+0-(1/2) =1/2

Expected number of H's from one flip of a fair coin is 1/2.
Q: What is the expected number of Heads in n tosses of a coin?
Let X = 27:1 Xu,i be the total number of H's in n tosses.

Then: E[X] = E[X L Xuil = > E[X4]

= XYi1l/2=n/2

Expected number of H's from n tosses of a fair coin is 1/2.
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Back to Average Case Analysis of Insertion Sort

Recall:
InsertionSort(arrayA[l ... n|) T(n) =7 {A+ Zj,:;é B+ C}
1. for j < 2 to ndo
2. Temp + A[j]
3 -1
4:  while i > 0 and A[/] >

Ignoring machine-dependent

constants, we can write:

T(n) = Zf:z ki, where k; is a

variable that tracks the total number

T d : : . .
emp ° . of iterations of the inner while loop
5: Ali + 1] < A[i] . . .
L in an iteration of the outer for loop
6: i—i—1
7. Ali +1] + Temp In the worst-case analysis, we

assumed that k; = j, arriving at a
total quadratic running time for
insertion sort.

Here we ask for E[k;]

@ Loop invariant: At the start
of each iteration j,
A[l...j—1] is sorted.
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Average Case Analysis of Insertion Sort

k;: random variable counting total number of moves to the right

So: E[kj] = E[Z{;i ki], where k; is a random variable tracking the
number of moves in one iteration of the while loop

By linearity of expectation: E[k;] = Z{;i E[ki]
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Average Case Analysis of Insertion Sort

k;: random variable counting total number of moves to the right

So: E[kj] = E[Z{;i ki], where k; is a random variable tracking the
number of moves in one iteration of the while loop

By linearity of expectation: E[k;] = Z{;i E[ki]

What is E[k;]?
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Average Case Analysis of Insertion Sort

k;: random variable counting total number of moves to the right

So: E[kj] = E[Z{;i ki], where k; is a random variable tracking the
number of moves in one iteration of the while loop

By linearity of expectation: E[k;] = Z{;i E[ki]

What is E[k;]?  E[ki] = P(move) x 1 4+ P(no move) % 0
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Average Case Analysis of Insertion Sort

k;: random variable counting total number of moves to the right

So: E[kj] = E[Z{;i ki], where k; is a random variable tracking the
number of moves in one iteration of the while loop

By linearity of expectation: E[k;] = Z{;i E[ki]

What is E[k;]?  E[ki] = P(move) x 1 4+ P(no move) % 0
P(move) = P(A[i] > Key) = 0.5
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Average Case Analysis of Insertion Sort

k;: random variable counting total number of moves to the right

So: E[kj] = E[Z{;i ki], where k; is a random variable tracking the
number of moves in one iteration of the while loop

By linearity of expectation: E[k;] = Z{;i E[ki]

What is E[k;]?  E[ki] = P(move) x 1 4+ P(no move) % 0
P(move) = P(A[i] > Key) = 0.5

So: E[k]=05%1=05 = E[k]=>7_105=1."
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Average Case Analysis of Insertion Sort

k;: random variable counting total number of moves to the right

So: E[kj] = E[Z{;i ki], where k; is a random variable tracking the
number of moves in one iteration of the while loop

By linearity of expectation: E[k;] = Z{;i E[ki]

What is E[k;]?  E[ki] = P(move) x 1 4+ P(no move) % 0
P(move) = P(A[i] > Key) = 0.5
So: E[k] =05%1=05 — E[k]=>"_105=41

Finally: E[T(n)] =>_] 2%
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Average Case Analysis of Insertion Sort

k;: random variable counting total number of moves to the right

So: E[kj] = E[Z{;i ki], where k; is a random variable tracking the
number of moves in one iteration of the while loop

By linearity of expectation: E[k;] = Z{;i E[ki]

What is E[k;]?  E[ki] = P(move) x 1 4+ P(no move) % 0
P(move) = P(A[i] > Key) = 0.5

So: E[k]=05%1=05 = E[k]=>7_105=1."

Finally: E[T(n)] = Y0, 452
You can show that this expected running time is no better than
the worst-case running time.
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Can we do better than 6(n?)?
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Can we do better than 6(n?)?

You have have already seen an example ...
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Probabilistic Analysis Average Case Analysis of Insertion Sort

Can we do better than 6(n?)?

You have have already seen an example ...

More follow
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@ Outline of Today's Class
@ Sorting in O(n Ig n) Time on Average: Quicksort
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Quicksort: Divide and Conquer

@ Proposed by C. A. R. Hoare in 1962
@ Implements the divide-and-conquer paradigm

@ Is a very practical algorithm
@ Sorts in place like insertion sort and heapsort
@ Divide: Partition array into two subarrays around a pivot x s.t.
values left < x < values right

@ Conquer: Recursively sort the two subarrays
© Combine: Trivial

<X X =X

o Key to speed: linear-time partitioning subroutine
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Quicksort: Partitioning Subroutine

PARTITION(A, p, q)

1. X 4 A[p]
rp Running time
3: for j« p+1togdo o
4:if A[j] < x then = O(n) forn
5: i—i+1 elements.
6: swap(A[i], A[j])
7: return /
b 5 <X =X ?

p / J q
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Partitioning: Trace
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Partitioning: Trace
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Partitioning: Trace
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Outline of Today’s Class

Partitioning: Trace

Sorting in O(n Ig n) Ti
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Partitioning: Trace
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Partitioning: Trace

6 |5 13]10] 8 | 3|2 |11

i —j




Outline of Today's Class Sorting in O(n Ig n) Ti

Partitioning: Trace

6 |5 13]10] 8 | 3|2 |11

i —j




Outline of Today’s Class

Partitioning: Trace

Sorting in O(n Ig n) Time on Average: Quicksort
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Partitioning: Trace

Sorting in O(n Ig n) Ti
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Partitioning: Trace

Sorting in O(n Ig n) Ti
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Partitioning: Trace
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Quicksort: Pseudocode And Analysis

QUICKSORT(A, p, r) Initial call: QUICKSORT(A, 1, n)

1. if p < r then Worst-case Time Analysis:

2: g+ PARTITION(A, p,r) @ Assume elements are distinct
3:  QUICKSORT(A, p,q —1) @ There are better algorithms for
4. QUICKSORT(A,q +1,r) duplicate elements

@ Let T(n) be worst-case running time on n elements
@ A is sorted/reverse sorted; partition around min/max element
@ One side of partition always has no elements
T(n) = TO)+T(n—1)+6(n)
= 6(1)+T(n—1)+6(n)
T(n—1)+ 6(n) - arithmetic series
= 6(n?)
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Worst-case Recursion Tree

I(n)=T1(0) + I(n—1) + cn

cn n
o) ) ®[ij =0(r2)
P k=1

h=n " 1(n) = O(n) + O(n?)
O(1) = O(n?)
TR
O(1)
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Best-case (Lucky) Analysis for Intuition

Best Case:
o If we are lucky, PARTITION splits the array evenly
e T(n) = 2T(n/2)+ 6(n)=6(nlgn)

@ Let L(n) denote the running time when we are lucky

@ Versus U(n) - the worst-case running time of 0(n?)

Almost Best Case:
@ What if the split is not even?

@ Say, it is %:1%
o T(n) = T(5n)+ T(s5n)+0(n)

@ What is the solution to this recurrence?
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Analysis of "almost best”

=~cn

log, / \
L an cn 2en Blon -x-------- ch
()(J.l 100/ N 10} N 100
/

O(1) ‘ O(n) leavesJ \
O(nlgn) e()
Lucky! cnlog,on < T(n) < cnlog,,on + An)
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More Intuition

@ Suppose that QUICKSORT is alternately lucky, unlucky,
lucky, unlucky, lucky, ...

L(n) = 2U(n/2)+60(n)

Un) = Ln—1)+6(n)
@ Solving further:

L(n) = 2(L(n/2—1/2)+6(n/2))+ O(n)
° = 2L(n/2—-1/2)+6(n)

= 6(nlgn) - Lucky!!!

@ How can we make sure QUICKSORT is usually lucky?
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Randomized Quicksort

Basic Idea: Partition around a random element
@ Running time is independent of input order
@ No assumptions need to be made about the input distribution
@ No specific input elicits the worst-case behavior

@ The worst case is determined now only by the output of a
random-number generator

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class Sorting in O(n Ig n) Time on Average: Quicksort

Randomized Quicksort Analysis

@ Let T(n) be the random variable for the running time of
randomized quicksort on an input of length n, assuming
random numbers are independent

e So:
TO)+ T(n—1)+6(n)  if 0:n—1 split
T(1)+ T(n—2)+6(n) if 1:n — 2 split

T(n—1)+ T(0)+6(n) if n—1:0 split

T(n) =

e Each of these k : n — k — 1 partitions (k € {0,1,...,n—1} is
equally likely, assuming distinct elements)

o So: E[T(n)] = 3 S 0Zo{E[T(K)] + E[T(n — k = 1)] +6(n)}
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Randomized Quicksort Analysis Continued

Continuing:

E[T(n)] = 330 olEIT(K)]+E[T(n—k -
= S lEIT(R] + E[T(n— k= 1)} + 5 X020 0(n)}
= 3 CiColEIT(R] + E[T(n— k= 1)} + 1 - n-6(n)}
= 3 CiSolEIT(K] + E[T(n — k = 1)]} +6(n)}
= EX RSl EIT(R + 5 X0Zo{EIT(n — k= 1)]} + 6(n)

summations have identical terms

= 23 NColEIT(K)I} +6(n)

What do we do now?

D]+ 6(n)}
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Randomized Quicksort Analysis Continued

The k = 0,1 terms can be absorbed in the 6(n)
So: E[T(n)] =3 3o {EIT(K)]} +6(n)

Guess: E[T(n)] € O(nlgn)

By induction, need to find a > 0s.t. E[T(n)]<a-n-lgn
Use the fact that 327_5 k - Igk < 3n? - gn — 1n? (integration
technique bounds this summation)

Then, using the substitution/induction technique:

EIT(n)] < 27 %a-k-lgk+6(n)
= 2(3n*-lgn—3n®) + 0(n)
= aon-lgn— (%~ 0(n)
< a-n-lgn

@ Note: a needs to be large enough so that 5! dominates 6(n)
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Final Word on Quicksort

Useful general-purpose algorithm
Typically over twice as fast as mergesort
Can benefit substantially from code tuning

Behaves well even with caching and virtual memory
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