Lecture: Analysis of Algorithms (CS583-004)

Amarda Shehu

Spring 2019
(1) Probabilistic Analysis

- Average Case Analysis of Insertion Sort

Analyzing Average Case Time Complexity

Definition

Let $T(n)$ denote the average case time complexity used by an algorithm to solve a problem on an input size n. Then:

$$
T(n)=\sum_{I \in D_{n}} P(I) \circ t(I)
$$

- D_{n} is the set of all input instances of size n
- I denotes instance I taking values over sample space D_{n}
- $P(I)$ denotes the probability with which I occurs
- $t(I)$ denotes time it takes to solve problem on input instance I
- $\sum_{I \in D_{n}} P(I)=1$ for correct analysis

Light Exercise: Average Case Analysis of Insertion Sort

Light Exercise: Average Case Analysis of Insertion Sort

Light Exercise: Average Case Analysis of Insertion Sort

Need a bit of a refresher on expected values and random variables

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?
Introduce binary random variable X_{H} to track this number
$E\left[X_{H}\right]=1 \cdot P\left(X_{H}=1\right)+0 \cdot P\left(X_{H}=0\right)=1 \cdot(1 / 2)+0 \cdot(1 / 2)=1 / 2$

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?
Introduce binary random variable X_{H} to track this number
$E\left[X_{H}\right]=1 \cdot P\left(X_{H}=1\right)+0 \cdot P\left(X_{H}=0\right)=1 \cdot(1 / 2)+0 \cdot(1 / 2)=1 / 2$
Expected number of H's from one flip of a fair coin is $1 / 2$.

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?
Introduce binary random variable X_{H} to track this number
$E\left[X_{H}\right]=1 \cdot P\left(X_{H}=1\right)+0 \cdot P\left(X_{H}=0\right)=1 \cdot(1 / 2)+0 \cdot(1 / 2)=1 / 2$ Expected number of H 's from one flip of a fair coin is $1 / 2$.

Q: What is the expected number of Heads in n tosses of a coin?

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?
Introduce binary random variable X_{H} to track this number
$E\left[X_{H}\right]=1 \cdot P\left(X_{H}=1\right)+0 \cdot P\left(X_{H}=0\right)=1 \cdot(1 / 2)+0 \cdot(1 / 2)=1 / 2$ Expected number of H's from one flip of a fair coin is $1 / 2$.

Q: What is the expected number of Heads in n tosses of a coin?
Let $X=\sum_{i=1}^{n} X_{H, i}$ be the total number of H's in n tosses.

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?
Introduce binary random variable X_{H} to track this number
$E\left[X_{H}\right]=1 \cdot P\left(X_{H}=1\right)+0 \cdot P\left(X_{H}=0\right)=1 \cdot(1 / 2)+0 \cdot(1 / 2)=1 / 2$ Expected number of H 's from one flip of a fair coin is $1 / 2$.

Q: What is the expected number of Heads in n tosses of a coin?
Let $X=\sum_{i=1}^{n} X_{H, i}$ be the total number of H's in n tosses.

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?
Introduce binary random variable X_{H} to track this number
$E\left[X_{H}\right]=1 \cdot P\left(X_{H}=1\right)+0 \cdot P\left(X_{H}=0\right)=1 \cdot(1 / 2)+0 \cdot(1 / 2)=1 / 2$ Expected number of H 's from one flip of a fair coin is $1 / 2$.

Q: What is the expected number of Heads in n tosses of a coin?
Let $X=\sum_{i=1}^{n} X_{H, i}$ be the total number of H's in n tosses.
Then: $E[X]=E\left[\sum_{i=1}^{n} X_{H, i}\right]=\sum_{i=1}^{n} E\left[X_{H}\right]$

$$
=\quad \sum_{i=1}^{n} 1 / 2=n / 2
$$

Expected number of H's from n tosses of a fair coin is $1 / 2$.

Refresher in Context of Simple Coin Tossing Example

Q: What is the expected number of Heads from one coin toss?
Introduce binary random variable X_{H} to track this number
$E\left[X_{H}\right]=1 \cdot P\left(X_{H}=1\right)+0 \cdot P\left(X_{H}=0\right)=1 \cdot(1 / 2)+0 \cdot(1 / 2)=1 / 2$ Expected number of H's from one flip of a fair coin is $1 / 2$.

Q: What is the expected number of Heads in n tosses of a coin?
Let $X=\sum_{i=1}^{n} X_{H, i}$ be the total number of H's in n tosses.
Then: $E[X]=E\left[\sum_{i=1}^{n} X_{H, i}\right]=\sum_{i=1}^{n} E\left[X_{H}\right]$

$$
=\quad \sum_{i=1}^{n} 1 / 2=n / 2
$$

Expected number of H's from n tosses of a fair coin is $1 / 2$.

Back to Average Case Analysis of Insertion Sort

Recall:
$T(n)=\sum_{j=2}^{n}\left\{A+\sum_{i=0}^{j-1} B+C\right\}$
Ignoring machine-dependent
constants, we can write:
$T(n)=\sum_{j=2}^{n} k_{j}$, where k_{j} is a variable that tracks the total number of iterations of the inner while loop in an iteration of the outer for loop

In the worst-case analysis, we assumed that $k_{j}=j$, arriving at a total quadratic running time for insertion sort.

Here we ask for $E\left[k_{j}\right]$

Average Case Analysis of Insertion Sort

k_{j} : random variable counting total number of moves to the right
So: $E\left[k_{j}\right]=E\left[\sum_{i=1}^{j-1} k_{i}\right]$, where k_{i} is a random variable tracking the number of moves in one iteration of the while loop
By linearity of expectation: $E\left[k_{j}\right]=\sum_{i=1}^{j-1} E\left[k_{i}\right]$
What is $E\left[k_{i}\right]$?

Average Case Analysis of Insertion Sort

k_{j} : random variable counting total number of moves to the right
So: $E\left[k_{j}\right]=E\left[\sum_{i=1}^{j-1} k_{i}\right]$, where k_{i} is a random variable tracking the number of moves in one iteration of the while loop
By linearity of expectation: $E\left[k_{j}\right]=\sum_{i=1}^{j-1} E\left[k_{i}\right]$
What is $E\left[k_{i}\right] ? \quad E\left[k_{i}\right]=P($ move $) * 1+P($ no move $) * 0$

Average Case Analysis of Insertion Sort

k_{j} : random variable counting total number of moves to the right
So: $E\left[k_{j}\right]=E\left[\sum_{i=1}^{j-1} k_{i}\right]$, where k_{i} is a random variable tracking the number of moves in one iteration of the while loop

By linearity of expectation: $E\left[k_{j}\right]=\sum_{i=1}^{j-1} E\left[k_{i}\right]$
What is $E\left[k_{i}\right] ? \quad E\left[k_{i}\right]=P($ move $) * 1+P($ no move $) * 0$
$P($ move $)=P(A[i]>$ Key $)=0.5$

Average Case Analysis of Insertion Sort

k_{j} : random variable counting total number of moves to the right
So: $E\left[k_{j}\right]=E\left[\sum_{i=1}^{j-1} k_{i}\right]$, where k_{i} is a random variable tracking the number of moves in one iteration of the while loop
By linearity of expectation: $E\left[k_{j}\right]=\sum_{i=1}^{j-1} E\left[k_{i}\right]$
What is $E\left[k_{i}\right] ? \quad E\left[k_{i}\right]=P($ move $) * 1+P($ no move $) * 0$
$P($ move $)=P(A[i]>$ Key $)=0.5$
So: $E\left[k_{i}\right]=0.5 * 1=0.5 \Longrightarrow E\left[k_{j}\right]=\sum_{i=1}^{j-1} 0.5=\frac{j-1}{2}$

Average Case Analysis of Insertion Sort

k_{j} : random variable counting total number of moves to the right
So: $E\left[k_{j}\right]=E\left[\sum_{i=1}^{j-1} k_{i}\right]$, where k_{i} is a random variable tracking the number of moves in one iteration of the while loop
By linearity of expectation: $E\left[k_{j}\right]=\sum_{i=1}^{j-1} E\left[k_{i}\right]$
What is $E\left[k_{i}\right] ? \quad E\left[k_{i}\right]=P($ move $) * 1+P($ no move $) * 0$
$P($ move $)=P(A[i]>$ Key $)=0.5$
So: $E\left[k_{i}\right]=0.5 * 1=0.5 \Longrightarrow E\left[k_{j}\right]=\sum_{i=1}^{j-1} 0.5=\frac{j-1}{2}$
Finally: $E[T(n)]=\sum_{j=2}^{n} \frac{j-1}{2}$

Average Case Analysis of Insertion Sort

k_{j} : random variable counting total number of moves to the right
So: $E\left[k_{j}\right]=E\left[\sum_{i=1}^{j-1} k_{i}\right]$, where k_{i} is a random variable tracking the number of moves in one iteration of the while loop
By linearity of expectation: $E\left[k_{j}\right]=\sum_{i=1}^{j-1} E\left[k_{i}\right]$
What is $E\left[k_{i}\right] ? \quad E\left[k_{i}\right]=P($ move $) * 1+P($ no move $) * 0$
$P($ move $)=P(A[i]>$ Key $)=0.5$
So: $E\left[k_{i}\right]=0.5 * 1=0.5 \Longrightarrow E\left[k_{j}\right]=\sum_{i=1}^{j-1} 0.5=\frac{j-1}{2}$
Finally: $E[T(n)]=\sum_{j=2}^{n} \frac{j-1}{2}$
You can show that this expected running time is no better than the worst-case running time.

Average Case Analysis of Insertion Sort

k_{j} : random variable counting total number of moves to the right
So: $E\left[k_{j}\right]=E\left[\sum_{i=1}^{j-1} k_{i}\right]$, where k_{i} is a random variable tracking the number of moves in one iteration of the while loop
By linearity of expectation: $E\left[k_{j}\right]=\sum_{i=1}^{j-1} E\left[k_{i}\right]$
What is $E\left[k_{i}\right] ? \quad E\left[k_{i}\right]=P($ move $) * 1+P($ no move $) * 0$
$P($ move $)=P(A[i]>$ Key $)=0.5$
So: $E\left[k_{i}\right]=0.5 * 1=0.5 \Longrightarrow E\left[k_{j}\right]=\sum_{i=1}^{j-1} 0.5=\frac{j-1}{2}$
Finally: $E[T(n)]=\sum_{j=2}^{n} \frac{j-1}{2}$
You can show that this expected running time is no better than the worst-case running time.

Can we do better than $\theta\left(n^{2}\right)$?

You have have already seen an example ...

Can we do better than $\theta\left(n^{2}\right)$?

You have have already seen an example ...

More follow

Can we do better than $\theta\left(n^{2}\right)$?

You have have already seen an example ...

More follow

Lecture: Analysis of Algorithms (CS583-004)

Amarda Shehu

Spring 2019
(1) Outline of Today's Class

- Sorting in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ Time on Average: Quicksort

Quicksort: Divide and Conquer

- Proposed by C. A. R. Hoare in 1962
- Implements the divide-and-conquer paradigm
- Is a very practical algorithm
- Sorts in place like insertion sort and heapsort
(1) Divide: Partition array into two subarrays around a pivot \times s.t. values left $\leq x \leq$ values right
(2) Conquer: Recursively sort the two subarrays
(3) Combine: Trivial

- Key to speed: linear-time partitioning subroutine

Quicksort: Partitioning Subroutine

PARTITION(A, p, q)

1: $x \leftarrow A[p]$
2: $i \leftarrow p$
3: for $j \leftarrow p+1$ to q do
4: \quad if $A[j] \leq x$ then
5: $\quad i \leftarrow i+1$
6: $\quad \operatorname{swap}(A[i], A[j])$
7: return i

Running time
 $=O(n)$ for n elements.

x	$\leq x$	$\geq x$	
p	i		

Partitioning: Trace

Quicksort: Pseudocode And Analysis

QUICKSORT(A, p, r)

1: if $p<r$ then
2: $\quad q \leftarrow \operatorname{PARTITION}(A, p, r)$
3: $\quad \operatorname{QUICKSORT}(A, p, q-1)$
4: \quad QUICKSORT $(A, q+1, r)$

Initial call: QUICKSORT $(A, 1, n)$
Worst-case Time Analysis:

- Assume elements are distinct
- There are better algorithms for duplicate elements
- Let $T(n)$ be worst-case running time on n elements
- A is sorted/reverse sorted; partition around min/max element
- One side of partition always has no elements

$$
\begin{aligned}
T(n) & =T(0)+T(n-1)+\theta(n) \\
& =\theta(1)+T(n-1)+\theta(n) \\
& =T(n-1)+\theta(n) \text {-arithmetic series } \\
& =\theta\left(n^{2}\right)
\end{aligned}
$$

Worst-case Recursion Tree

$$
\begin{aligned}
& T(n)=T(0)+T(n-1)+c n \\
& \Theta(1) \stackrel{c n}{c(n-1)}-\Theta\left(\sum_{k=1}^{n} k\right)=\Theta\left(n^{2}\right) \\
& \Theta(1) c(n-2) \\
& T(n)=\Theta(n)+\Theta\left(n^{2}\right) \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

Best-case (Lucky) Analysis for Intuition

Best Case:

- If we are lucky, PARTITION splits the array evenly
- $T(n)=2 T(n / 2)+\theta(n)=\theta(n / g n)$
- Let $L(n)$ denote the running time when we are lucky
- Versus $U(n)$ - the worst-case running time of $\theta\left(n^{2}\right)$

Almost Best Case:

- What if the split is not even?
- Say, it is $\frac{1}{10}: \frac{9}{10}$
- $T(n)=T\left(\frac{1}{10} n\right)+T\left(\frac{9}{10} n\right)+\theta(n)$
- What is the solution to this recurrence?

Analysis of "almost best"

More Intuition

- Suppose that QUICKSORT is alternately lucky, unlucky, lucky, unlucky, lucky, ...
- $\begin{aligned} L(n) & =2 U(n / 2)+\theta(n) \\ U(n) & =L(n-1)+\theta(n)\end{aligned}$
- Solving further:

$$
\begin{aligned}
L(n) & =2(L(n / 2-1 / 2)+\theta(n / 2))+\theta(n) \\
& =2 L(n / 2-1 / 2)+\theta(n) \\
& =\theta(n \lg n)-\text { Lucky!!! }
\end{aligned}
$$

- How can we make sure QUICKSORT is usually lucky?

Randomized Quicksort

Basic Idea: Partition around a random element

- Running time is independent of input order
- No assumptions need to be made about the input distribution
- No specific input elicits the worst-case behavior
- The worst case is determined now only by the output of a random-number generator

Randomized Quicksort Analysis

- Let $T(n)$ be the random variable for the running time of randomized quicksort on an input of length n, assuming random numbers are independent
- So:

$$
T(n)= \begin{cases}T(0)+T(n-1)+\theta(n) & \text { if } 0: n-1 \text { split } \\ T(1)+T(n-2)+\theta(n) & \text { if } 1: n-2 \text { split } \\ \cdots & \\ T(n-1)+T(0)+\theta(n) & \text { if } n-1: 0 \text { split }\end{cases}
$$

- Each of these $k: n-k-1$ partitions $(k \in\{0,1, \ldots, n-1\}$ is equally likely, assuming distinct elements)
- So: $E[T(n)]=\frac{1}{n} \sum_{k=0}^{n-1}\{E[T(k)]+E[T(n-k-1)]+\theta(n)\}$

Randomized Quicksort Analysis Continued

Continuing:

$$
\begin{aligned}
E[T(n)] & =\frac{1}{n} \sum_{k=0}^{n-1}\{E[T(k)]+E[T(n-k-1)]+\theta(n)\} \\
& \left.=\frac{1}{n} \sum_{k=0}^{n-1}\{E[T(k)]+E[T(n-k-1)]\}+\frac{1}{n} \sum_{k=0}^{n-1} \theta(n)\right\} \\
& \left.=\frac{1}{n} \sum_{k=0}^{n-1}\{E[T(k)]+E[T(n-k-1)]\}+\frac{1}{n} \cdot n \cdot \theta(n)\right\} \\
& \left.=\frac{1}{n} \sum_{k=0}^{n-1}\{E[T(k)]+E[T(n-k-1)]\}+\theta(n)\right\} \\
& =\frac{1}{n} \sum_{k=0}^{n-1}\{E[T(k)]\}+\frac{1}{n} \sum_{k=0}^{n-1}\{E[T(n-k-1)]\}+\theta(n)
\end{aligned}
$$

summations have identical terms

$$
=\frac{2}{n} \sum_{k=0}^{n-1}\{E[T(k)]\}+\theta(n)
$$

What do we do now?

Randomized Quicksort Analysis Continued

- The $k=0,1$ terms can be absorbed in the $\theta(n)$
- So: $E[T(n)]=\frac{2}{n} \sum_{k=2}^{n-1}\{E[T(k)]\}+\theta(n)$
- Guess: $E[T(n)] \in O(n / g n)$
- By induction, need to find $a>0$ s.t. $E[T(n)] \leq a \cdot n \cdot \lg n$
- Use the fact that $\sum_{k=2}^{n-1} k \cdot \lg k \leq \frac{1}{2} n^{2} \cdot \lg n-\frac{1}{4} n^{2}$ (integration technique bounds this summation)
- Then, using the substitution/induction technique:

$$
\begin{aligned}
E[T(n)] & \leq \frac{2}{n} \sum_{k=2}^{n-1} a \cdot k \cdot \lg k+\theta(n) \\
& =\frac{2 a}{n}\left(\frac{1}{2} n^{2} \cdot \lg n-\frac{1}{4} n^{2}\right)+\theta(n) \\
& =a \cdot n \cdot \lg n-\left(\frac{a n}{2}-\theta(n)\right) \\
& \leq a \cdot n \cdot \lg n
\end{aligned}
$$

- Note: a needs to be large enough so that $\frac{a n}{2}$ dominates $\theta(n)$

Final Word on Quicksort

- Useful general-purpose algorithm
- Typically over twice as fast as mergesort
- Can benefit substantially from code tuning
- Behaves well even with caching and virtual memory

