Lecture: Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Spring 2019

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today's Class

2 Techniques for Bounding Recurrences

- Iteration Method
- Recursion-tree Method
- Substitution Method
- Master Theorem

Iteration Method Recursion-tree Method Substitution Method Master Theorem

Techniques for Bounding Recurrences

What is a Recurrence?

- A recurrence is an equation of inequality that describes a function in terms of its value on smaller inputs
 - Example: T(n) of Mergesort is described in terms of T(n/2)
- Recurrences have boundary conditions (bottom out)
 - Example: T(n) = c when n = 1

Techniques for Bounding Recurrences

- Iteration or expansion method
- 2 Recursion-tree method
- Substitution method
- Master Theorem
- Generating Functions* (beyond scope of this course)

Iteration Method Recursion-tree Method Substitution Method Master Theorem

Iteration Method

Expand
$$T(n) = 2T(n/2) + cn$$
 - iterate down to boundary
condition
 $T(n) = 2T(n/2) + cn$
 $= 2 \cdot [2T(n/4) + c\frac{n}{2}] + cn$
 $= 4 \cdot [2T(n/8) + c\frac{n}{4}] + 2cn$
 $= 8 \cdot T(n/8) + 3cn$
 $= 2^3 \cdot T(n/2^3) + 3cn$
 $= \dots$ do you see the pattern?
 $= 2^k \cdot T(n/2^k) + kcn$
Since the recursion bottoms out at $n = 1$, $k = lg(n)$. So:
 $T(n) = n \cdot T(1) + lg(n) \cdot cn$
 $= cn + cn \cdot lg(n) \in \theta(n \cdot lgn)$
Try to solve $T(n) = T(n-1) + n$, where $T(1) = 1$.
Try to solve $T(n) = 2T(n/2) + n$, where $T(1) = 1$.

Iteration Method Recursion-tree Method Substitution Method Master Theorem

Recursion-tree Method

Build recursion tree for $T(n) = 2T(n/2) + c \cdot n$:

Iteration Method Recursion-tree Method Substitution Method Master Theorem

Example of Recursion-tree Method

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

Iteration Method Recursion-tree Method Substitution Method Master Theorem

Substitution (Induction) Method

Guess that $T(n) = 2T(\frac{n}{2}) + n \in O(n + n \cdot lgn)$, where T(1) = 1. Then use induction to prove that the guess is correct.

- Base Case: The boundary condition states that T(1) = 1. The guess states that $T(1) \in O(1 + 1 \cdot lg1)$. Since, $1 + 1 \cdot lg1 = 1$ and $1 \in O(1)$, the guess is correct.
- **3** Inductive Step: Assuming that $T(\frac{n}{2}) \in O(\frac{n}{2} + \frac{n}{2} \cdot lg(\frac{n}{2}))$, we have to show that the guess holds for T(n):

$$T(n) = 2T(\frac{n}{2}) + n$$

$$\leq 2[c \cdot (\frac{n}{2} + \frac{n}{2} \cdot lg(\frac{n}{2}))] + n, \text{ where } c > 0$$

$$= c \cdot n + c \cdot n \cdot lgn - cn + n$$

$$= c \cdot n \cdot lgn + n$$

Easy to show that $c \cdot n \cdot lgn + n \in O(n + n \cdot lgn)$

Iteration Method Recursion-tree Method Substitution Method Master Theorem

Master Theorem

Theorem: Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence $T(n) = a \cdot T(n/b) + f(n)$, where n/b can mean $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

- If $f(n) \in O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) \in \theta(n^{\log_b a})$
- 3 If $f(n) \in \theta(n^{\log_b a})$, then $T(n) \in \theta(n^{\log_b a} \cdot \lg n)$
- Solution If $f(n) ∈ Ω(n^{log_ba+ε})$ for some constant ε > 0, and if a · f(n/b) ≤ cf(n) for some constant c < 1 and all sufficiently large n, then T(n) ∈ θ(f(n))

Examples: T(n) = 9T(n/3) + n, $T(n) = T(\frac{2n}{3}) + 1$, $T(n) = 3T(\frac{n}{4}) + nlgn$, $T(n) = 2T(\frac{n}{2}) + nlgn$, $T(n) = n \cdot T^2(\frac{n}{2})$.

Iteration Method Recursion-tree Method Substitution Method Master Theorem

Idea Behind Master Theorem: Case 1.

Recursion tree: $f(n) \underline{\neg} a$ f(n) $f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad \cdots \quad af(n/b)$ $f(n/b^2) f(n/b^2) \cdots f(n/b^2) \cdots a^2 f(n/b^2)$ ٠ T(1)

Iteration Method Recursion-tree Method Substitution Method Master Theorem

Idea Behind Master Theorem: Case 1.

Figure: The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight. $T(n) \in \theta(n^{\log_b a})$.

Iteration Method Recursion-tree Method Substitution Method Master Theorem

Idea Behind Master Theorem: Case 2.

Iteration Method Recursion-tree Method Substitution Method Master Theorem

Idea Behind Master Theorem: Case 3.

