Lecture: Analysis of Algorithms (CS583-004)

Amarda Shehu

Spring 2019
(1) Outline of Today's Class
(2) Techniques for Bounding Recurrences

- Iteration Method
- Recursion-tree Method
- Substitution Method
- Master Theorem

Techniques for Bounding Recurrences

What is a Recurrence?

- A recurrence is an equation of inequality that describes a function in terms of its value on smaller inputs
- Example: $T(n)$ of Mergesort is described in terms of $T(n / 2)$
- Recurrences have boundary conditions (bottom out)
- Example: $T(n)=c$ when $n=1$

Techniques for Bounding Recurrences

(1) Iteration or expansion method
(2) Recursion-tree method
(3) Substitution method
(9) Master Theorem
(3) Generating Functions* (beyond scope of this course)

Iteration Method

Expand $T(n)=2 T(n / 2)+c n-$ iterate down to boundary condition
$T(n)=2 T(n / 2)+c n$
$=2 \cdot\left[2 T(n / 4)+c \frac{n}{2}\right]+c n$
$=4 \cdot\left[2 T(n / 8)+c \frac{n}{4}\right]+2 c n$
$=8 \cdot T(n / 8)+3 c n$
$=2^{3} \cdot T\left(n / 2^{3}\right)+3 c n$
$=\ldots$ do you see the pattern?
$=2^{k} \cdot T\left(n / 2^{k}\right)+k c n$
Since the recursion bottoms out at $n=1, k=\lg (n)$. So:

$$
\begin{aligned}
T(n) & =n \cdot T(1)+\lg (n) \cdot c n \\
& =c n+c n \cdot \lg (n) \in \theta(n \cdot \lg n)
\end{aligned}
$$

Try to solve $T(n)=T(n-1)+n$, where $T(1)=1$.
Try to solve $T(n)=2 T(n / 2)+n$, where $T(1)=1$.

Recursion-tree Method

Build recursion tree for $T(n)=2 T(n / 2)+c \cdot n$:

Example of Recursion-tree Method

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Substitution (Induction) Method

Guess that $T(n)=2 T\left(\frac{n}{2}\right)+n \in O(n+n \cdot \lg n)$, where $T(1)=1$.
Then use induction to prove that the guess is correct.
(1) Base Case: The boundary condition states that $T(1)=1$. The guess states that $T(1) \in O(1+1 \cdot \lg 1)$. Since, $1+1 \cdot \lg 1=1$ and $1 \in O(1)$, the guess is correct.
(2) Inductive Step: Assuming that $T\left(\frac{n}{2}\right) \in O\left(\frac{n}{2}+\frac{n}{2} \cdot \lg \left(\frac{n}{2}\right)\right)$, we have to show that the guess holds for $T(n)$:

$$
\begin{aligned}
T(n)= & 2 T\left(\frac{n}{2}\right)+n \\
\leq & 2\left[c \cdot\left(\frac{n}{2}+\frac{n}{2} \cdot \lg \left(\frac{n}{2}\right)\right)\right]+n, \text { where } c>0 \\
= & c \cdot n+c \cdot n \cdot \lg n-c n+n \\
= & c \cdot n \cdot \lg n+n \\
& \quad \text { Easy to show that } c \cdot n \cdot \lg n+n \in O(n+n \cdot \lg n)
\end{aligned}
$$

Master Theorem

Theorem: Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence $T(n)=a \cdot T(n / b)+f(n)$, where n / b can mean $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$.
(1) If $f(n) \in O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n) \in \theta\left(n^{\log _{b} a}\right)$
(2) If $f(n) \in \theta\left(n^{\log _{b} a}\right)$, then $T(n) \in \theta\left(n^{\log _{b} a} \cdot \lg n\right)$
(3) If $f(n) \in \Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and if $a \cdot f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n) \in \theta(f(n))$
Examples: $T(n)=9 T(n / 3)+n, T(n)=T\left(\frac{2 n}{3}\right)+1$, $T(n)=3 T\left(\frac{n}{4}\right)+n l g n, T(n)=2 T\left(\frac{n}{2}\right)+n \lg n, T(n)=n \cdot T^{2}\left(\frac{n}{2}\right)$.

Idea Behind Master Theorem: Case 1.

Recursion tree:

$f\left(n / b^{2}\right) f\left(n / b^{2}\right) \cdots f\left(n / b^{2}\right) \cdots \quad a^{2} f\left(n / b^{2}\right)$!

/
$T(1)$

Idea Behind Master Theorem: Case 1.

Recursion tree:

Figure: The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight. $T(n) \in \theta\left(n^{\log _{b} a}\right)$.

Idea Behind Master Theorem: Case 2.

Recursion tree:

$\Theta\left(n^{\log _{b} a} \lg n\right)$

Idea Behind Master Theorem: Case 3.

Recursion tree:

$$
\begin{aligned}
& \text { _ } \\
& h=\log _{b} n \\
& f\left(n / b^{2}\right) \\
& \vdots \\
& \vdots \\
& \vdots\left(n / b^{2}\right) \cdots f\left(n / b^{2}\right) \\
& \begin{array}{llc}
\text { CASE 3: The weight decreases } \\
\text { geometrically from the root to the } \\
\text { leaves. The root holds a constant } \\
\text { fraction of the total weight. }
\end{array}
\end{aligned}
$$

