
Outline of Today’s Class
Techniques for Bounding Recurrences

Lecture: Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Spring 2019

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Techniques for Bounding Recurrences

1 Outline of Today’s Class

2 Techniques for Bounding Recurrences
Iteration Method
Recursion-tree Method
Substitution Method
Master Theorem

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Techniques for Bounding Recurrences

Iteration Method
Recursion-tree Method
Substitution Method
Master Theorem

Techniques for Bounding Recurrences

What is a Recurrence?

A recurrence is an equation of inequality that describes a
function in terms of its value on smaller inputs

Example: T (n) of Mergesort is described in terms of T (n/2)

Recurrences have boundary conditions (bottom out)

Example: T (n) = c when n = 1

Techniques for Bounding Recurrences

1 Iteration or expansion method

2 Recursion-tree method

3 Substitution method

4 Master Theorem

5 Generating Functions∗ (beyond scope of this course)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Techniques for Bounding Recurrences

Iteration Method
Recursion-tree Method
Substitution Method
Master Theorem

Iteration Method

Expand T (n) = 2T (n/2) + cn – iterate down to boundary
condition
T (n) = 2T (n/2) + cn

= 2 · [2T (n/4) + c n
2 ] + cn

= 4 · [2T (n/8) + c n
4 ] + 2cn

= 8 · T (n/8) + 3cn
= 23 · T (n/23) + 3cn
= . . . do you see the pattern?
= 2k · T (n/2k) + kcn

Since the recursion bottoms out at n = 1, k = lg(n). So:
T (n) = n · T (1) + lg(n) · cn

= cn + cn · lg(n) ∈ θ(n · lgn)
Try to solve T (n) = T (n − 1) + n, where T (1) = 1.
Try to solve T (n) = 2T (n/2) + n, where T (1) = 1.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Techniques for Bounding Recurrences

Iteration Method
Recursion-tree Method
Substitution Method
Master Theorem

Recursion-tree Method

Build recursion tree for T (n) = 2T (n/2) + c · n:

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Techniques for Bounding Recurrences

Iteration Method
Recursion-tree Method
Substitution Method
Master Theorem

Example of Recursion-tree Method

Solve T (n) = T (n/4) + T (n/2) + n2:

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Techniques for Bounding Recurrences

Iteration Method
Recursion-tree Method
Substitution Method
Master Theorem

Substitution (Induction) Method

Guess that T (n) = 2T (n2 ) + n ∈ O(n + n · lgn), where T (1) = 1.
Then use induction to prove that the guess is correct.

1 Base Case: The boundary condition states that T (1) = 1.
The guess states that T (1) ∈ O(1 + 1 · lg1). Since,
1 + 1 · lg1 = 1 and 1 ∈ O(1), the guess is correct.

2 Inductive Step: Assuming that T (n2 ) ∈ O(n2 + n
2 · lg(n2 )), we

have to show that the guess holds for T (n):
T (n) = 2T (n2 ) + n

≤ 2[c · (n2 + n
2 · lg(n2 ))] + n, where c > 0

= c · n + c · n · lgn − cn + n
= c · n · lgn + n

Easy to show that c · n · lgn + n ∈ O(n + n · lgn)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Techniques for Bounding Recurrences

Iteration Method
Recursion-tree Method
Substitution Method
Master Theorem

Master Theorem

Theorem: Let a ≥ 1 and b > 1 be constants, let f (n) be a
function, and let T (n) be defined on the nonnegative integers by
the recurrence T (n) = a · T (n/b) + f (n), where n/b can mean
bn/bc or dn/be.

1 If f (n) ∈ O(nlogba−ε) for some constant ε > 0, then
T (n) ∈ θ(nlogba)

2 If f (n) ∈ θ(nlogba), then T (n) ∈ θ(nlogba · lgn)

3 If f (n) ∈ Ω(nlogba+ε) for some constant ε > 0, and if
a · f (n/b) ≤ cf (n) for some constant c < 1 and all sufficiently
large n, then T (n) ∈ θ(f (n))

Examples: T (n) = 9T (n/3) + n, T (n) = T (2n3 ) + 1,
T (n) = 3T (n4 ) + nlgn, T (n) = 2T (n2 ) + nlgn, T (n) = n · T 2(n2 ).

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Techniques for Bounding Recurrences

Iteration Method
Recursion-tree Method
Substitution Method
Master Theorem

Idea Behind Master Theorem: Case 1.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Techniques for Bounding Recurrences

Iteration Method
Recursion-tree Method
Substitution Method
Master Theorem

Idea Behind Master Theorem: Case 1.

Figure: The weight increases geometrically from the root to the leaves.
The leaves hold a constant fraction of the total weight. T (n) ∈ θ(nlogba).

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Techniques for Bounding Recurrences

Iteration Method
Recursion-tree Method
Substitution Method
Master Theorem

Idea Behind Master Theorem: Case 2.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Techniques for Bounding Recurrences

Iteration Method
Recursion-tree Method
Substitution Method
Master Theorem

Idea Behind Master Theorem: Case 3.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)


	Outline of Today's Class
	Techniques for Bounding Recurrences
	Iteration Method
	Recursion-tree Method
	Substitution Method
	Master Theorem


