Lecture: Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Spring 2019

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class

@ Outline of Today's Class

@ Techniques for Bounding Recurrences
@ lteration Method
@ Recursion-tree Method
@ Substitution Method
@ Master Theorem

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Iteration Method

Recursion-tree Method
Techniques for Bounding Recurrences Substitution Method

Master Theorem

Techniques for Bounding Recurrences

What is a Recurrence?

@ A recurrence is an equation of inequality that describes a
function in terms of its value on smaller inputs

o Example: T(n) of Mergesort is described in terms of T(n/2)
@ Recurrences have boundary conditions (bottom out)
o Example: T(n) =c when n=1

Techniques for Bounding Recurrences

© lteration or expansion method

@ Recursion-tree method

© Substitution method

©Q Master Theorem

@ Generating Functions* (beyond scope of this course)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Iteration Method

Recursion-tree Method
Techniques for Bounding Recurrences Substitution Method

Master Theorem

Iteration Method

Expand T(n) = 2T(n/2) + cn — iterate down to boundary
condition
T(n) = 2T(n/2)+cn
= 2-[2T(n/4)+c5] +cn
= 4-[2T(n/8)+ cj] + 2cn
= 8-T(n/8)+3cn
= 23.T(n/23)+3cn
= ... do you see the pattern?
= 2K.T(n/2X) + ken
Since the recursion bottoms out at n =1, k = Ig(n). So:
T(n) = n-T(1)+Ig(n)-cn
= cn+cn-lg(n) €0(n-lgn)
Try to solve T(n) = T(n—1) + n, where T(1) = 1.
Try to solve T(n) =2T(n/2) + n, where T(1) = 1.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Iteration Method

Recursion-tree Method
Techniques for Bounding Recurrences Substitution Method

Master Theorem

Recursion-tree Method

Build recursion tree for T(n) =2T(n/2) + ¢ - n:

A CN el cn
C n/2 C n/2 C n
o| cn/4 chn/4d cn/4 cn/d............. ch
'l \‘ ’l \‘ ll \‘ ’l \‘
f A f A Y , A Y r A 3
y A Y r A Y r A Y r ‘
F A Y r A 4 A Y 1 A Y

Total: O(n Ig n)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Iteration Method

Recursion-tree Method
Techniques for Bounding Recurrences Substitution Method

Master Theorem

Example of Recursion-tree Method

Solve T(n) = T(n/4) + T(n/2) + n?:

R n2
(n/4)? (1/2)2 e Elﬂ
VRN VRN 25
w162 (/8 (i8R (m/A) — 2n?
(n ‘/ * (m/8)y (n/8) (n/4) 256’
/
o) Total = /72(1+156+ (%)2 +(%)3 +)
= Q(n?)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Iteration Method

Recursion-tree Method
Techniques for Bounding Recurrences Substitution Method

Master Theorem

Substitution (Induction) Method

Guess that T(n) =2T(5) +n<c O(n+ n-lIgn), where T(1) = 1.
Then use induction to prove that the guess is correct.

© Base Case: The boundary condition states that T(1) = 1.
The guess states that T(1) € O(1+1-/gl). Since,
1+1-/gl=1and 1€ O(1), the guess is correct.

@ Inductive Step: Assuming that T(5) € O(5 + 7 - Ig(5)), we
have to show that the guess holds for T(n):

T(n) 2T(3)+n

2[c- (5 + 5 -lg(5))] + n, where ¢ >0

c-n+c-n-lgn—cn+n

c-n-lgn+n

Easy to show that c-n-lgn+ne€ O(n+ n- Ign)

[IA 1l

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Iteration Method

Recursion-tree Method
Techniques for Bounding Recurrences Substitution Method

Master Theorem

Master Theorem

Theorem: Let a > 1 and b > 1 be constants, let f(n) be a
function, and let T(n) be defined on the nonnegative integers by
the recurrence T(n) =a- T(n/b)+ f(n), where n/b can mean

n/b| or [n/b].
O If f(n) € O(n'*8»3=¢) for some constant ¢ > 0, then
T(n) € O(n'o8v?)
@ If f(n) € O(n*&+3), then T(n) € O(n'°&v2 . Ign)
O If f(n) € Q(n'°8>27<) for some constant ¢ > 0, and if
a- f(n/b) < cf(n) for some constant ¢ < 1 and all sufficiently
large n, then T(n) € 6(f(n))
Examples: T(n) =9T(n/3)+n, T(n) = T(F)+1,
T(n) =3T(3)+ nlgn, T(n)=2T(5)+ nign, T(n)=n- Tz(g).

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Iteration Method

Recursion-tree Method
Techniques for Bounding Recurrences Substitution Method

Master Theorem

Idea Behind Master Theorem: Case 1

Recursion tree:

f(n/b) f(/?)b) - f(n/b) af(n/b)

g

(/b2 f(n/b?) -+ f(/B?) s a’ f(n/b?)
/

7(1)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Iteration Method

Recursion-tree Method
Techniques for Bounding Recurrences Substitution Method

Master Theorem

Idea Behind Master Theorem: Case 1

Recursion tree:

f(n/b) f(/f}b) o f(n/b) af(n/b)

log,n / } T \\a
f(n/b?) f(/b?) - f(n/b?) a*f(n/b?)
/

,; Hleaves = a” :
— ~logpn
Y £ §) P a—=) nlogsa 7(1)
= plogpa

Figure: The weight increases geometrically from the root to the leaves.
The leaves hold a constant fraction of the total weight. T(n) € 6(n'#).

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Iteration Method

Recursion-tree Method
Techniques for Bounding Recurrences Substitution Method

Master Theorem

Idea Behind Master Theorem: Case 2.

Recursion tree:

f(n/b) f(n/b) - f(n/b)y af(n/b)

h=log,n / '}f ,,\\a
F(n/b) f(n/B?) - f(n/DE) a*f(n/b?)
/

. [CASE 2: (k = 0) The weight

,,,,, 1s approximately the sameon|| 100y
4o, each of the log,» levels. 1 (1)
O(n'lgn)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Iteration Method

Recursion-tree Method
Techniques for Bounding Recurrences Substitution Method

Master Theorem

Idea Behind Master Theorem: Case 3.

Recursion tree:

Fub) Fuby - f(nb) - af(n/b)

h = log,n /\/7 ,\\a
(/B2 f(n/b2) - f(n/b?) s a2 f(n/b?)
/

CASE 3: The weight decreases

I geometrically from the root to the
7(1) |leaves. The root holds a constant | /7/°22“ 7(1)
fraction of the total weight. S —
O(f(n))

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

	Outline of Today's Class
	Techniques for Bounding Recurrences
	Iteration Method
	Recursion-tree Method
	Substitution Method
	Master Theorem

