Lecture: Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Spring 2019

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Lower Bound on Comparison-based Sorting Decision Trees

How Fast Can We Sort?

- The sorting algorithms we have seen so far are insertion sort, mergesort, heapsort, and quicksort
- All these sorting algorithms are comparison sorts
- They rely on comparisons to determine the relative order of elements
- The best worst-case running time that we have seen for comparison sorting is $O(n \cdot lgn)$
- Is $O(n \cdot lgn)$ the best we can do?
- We need to employ decision trees to answer this question

Reason for Employing a Decision Tree

Each internal node is labeled i : j for $i, j \in \{1, 2, \dots, n\}$

- The left subtree shows subsequent comparisons if $a_i \leq a_j$
- The right subtree shows subsequent comparisons if $a_i > a_i$

Each internal node is labeled i : j for $i, j \in \{1, 2, \dots, n\}$

- The left subtree shows subsequent comparisons if $a_i \leq a_j$
- The right subtree shows subsequent comparisons if $a_i > a_i$

Each internal node is labeled i : j for $i, j \in \{1, 2, ..., n\}$

- The left subtree shows subsequent comparisons if $a_i \leq a_j$
- The right subtree shows subsequent comparisons if $a_i > a_i$

Each internal node is labeled i : j for $i, j \in \{1, 2, \dots, n\}$

- The left subtree shows subsequent comparisons if $a_i \leq a_j$
- The right subtree shows subsequent comparisons if $a_i > a_i$

Each leaf contains a permutation $\langle \pi(1), \pi(2), \dots, \pi(n) \rangle$ which establishes the ordering $a_{\pi(1)}, a_{\pi(2)}, \dots, a_{\pi(n)}$

Decision Tree Model

A decision tree can model the execution of any comparison sort:

- One tree for each input size n
- View the algorithm as splitting the tree whenever it compares two elements
- The tree contains the comparisons along all possible instruction traces
- The running time of the algorithm is then the length of the actual path taken
- Worst-case running time is the height of tree

Lower Bound for Decision Tree Sorting

Theorem: Any decision tree that can sort *n* elements must have height $\Omega(n \cdot lgn)$

Proof:

The tree must contain $\geq n!$ leaves, since there are n! possible permutations.

A height *h* binary tree has $\leq 2^h$ leaves

Hence,
$$n! \leq 2^h$$

$$\begin{array}{ll} h & \geq & lg(n!) \\ & \geq & lg((n/e)^n) - \text{Stirling's approximation} \\ & = & n \cdot lgn - n \cdot lge \\ & \in & \Omega(n \cdot lgn) \end{array}$$

Corollary: Heapsort and mergesort are asymptotically optimal comparison-based sorting algorithms

Lecture 3: Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Spring 2019

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Sorting in Linear Time

- We can sort faster than $O(n \cdot lgn)$ if we do not compare the items being sorted against each other
- We can do this if we have additional information about the structure of the items
- Examples of Sorting Algorithms that do not compare items
 - Counting Sort
 - 2 Radix Sort
 - Bucket Sort

Counting Sort: Basic Idea and Pseudocode

COUNTINGSORT(A, n)

- Input: A[1...n], where $A[j] \in \{1, 2, ..., k\}$
- Output: B[1...n] sorted
- Auxiliary storage: $C[1 \dots k]$
- **Note:** all elements are in {1, 2, ... *k*}
- Basic Idea: Count the number of 1's, 2's, ..., k's.

- 1: for $i \leftarrow 1$ to k do
- 2: $C_i \leftarrow 0$
- 3: for $j \leftarrow 1$ to n do
- 4: $C[A[j]] \leftarrow C[A[j]] + 1$ $\rhd C[i] = |\{\text{key} = i\}|$
- 5: for $i \leftarrow 2$ to k do
- 6: $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{ \text{key} \le i \}|$

Counting Sort Radix Sort

Counting Sort: Trace

Counting Sort Radix Sort

Counting Sort: Trace

for $i \leftarrow 1$ to kdo $C[i] \leftarrow 0$

Counting Sort Radix Sort

Counting Sort: Trace

for $i \leftarrow 2$ to kdo $C[i] \leftarrow C[i] + C[i-1] \triangleright C[i] = |\{\text{key} \le i\}|$

Counting Sort Radix Sort

Counting Sort: Trace

for $i \leftarrow 2$ to kdo $C[i] \leftarrow C[i] + C[i-1] \triangleright C[i] = |\{\text{key} \le i\}|$

Counting Sort Radix Sort

Counting Sort: Trace

for $i \leftarrow 2$ to kdo $C[i] \leftarrow C[i] + C[i-1] \triangleright C[i] = |\{\text{key} \le i\}|$

Counting Sort Radix Sort

Counting Sort: Trace

Counting Sort Radix Sort

$$\Theta(k) \begin{cases} \text{for } i \leftarrow 1 \text{ to } k \\ \text{do } C[i] \leftarrow 0 \\ \Theta(n) \end{cases} \begin{cases} \text{for } j \leftarrow 1 \text{ to } n \\ \text{do } C[A[j]] \leftarrow C[A[j]] + 1 \\ \Theta(k) \end{cases} \begin{cases} \text{for } i \leftarrow 2 \text{ to } k \\ \text{do } C[i] \leftarrow C[i] + C[i-1] \\ \text{for } j \leftarrow n \text{ downto } 1 \\ \text{do } B[C[A[j]]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \end{cases}$$

- If $k \in O(n)$, then counting sort takes O(n) time.
 - But sorting takes $\Omega(n \cdot lgn)$ time!
 - Where is the contradiction?

- If $k \in O(n)$, then counting sort takes O(n) time.
 - But sorting takes $\Omega(n \cdot lgn)$ time!
 - Where is the contradiction?
 - Comparison sorting takes $\Omega(n \cdot lgn)$
 - Counting sot is *not* a comparison sort
 - Not a single comparison occurs in counting sort

- If $k \in O(n)$, then counting sort takes O(n) time.
 - But sorting takes $\Omega(n \cdot lgn)$ time!
 - Where is the contradiction?
 - Comparison sorting takes $\Omega(n \cdot lgn)$
 - Counting sot is *not* a comparison sort
 - Not a single comparison occurs in counting sort

Counting Sort is Stable

Counting sort is a stable sort because it preserves the input order among equal elements.

What other sorting algorithms have this property?

Radix Sort

- History: Herman Hollerith's card-sorting machine for the 1890 US Census.
- Radix sort is digit-by-digit sort
- Hollerith's original (wrong) idea was to sort on most significant digit first
- The final (correct) idea was to sort on the least significant digit first with an auxiliary stable sort

Counting Sort Radix Sort

Radix Sort in Action

32	9	7	2	0	,	7	2	0	3	29
4 5	7	3	5	5		3	2	9	3	55
6 5	7	4	3	6	2	4	3	6	4	36
83	9	4	5	7	8	8	3	9	4	57
43	6	6	5	7		3	5	5	6	57
72	0	3	2	9	2	4	5	7	7	20
3 5	5	8	3	9	(6	5	7	8	39
	J		ζ	Į			Ĵ		Ĵ	

Counting Sort Radix Sort

Radix Sort: Correctness

- The proof is by induction on the digit position
- Assume that the numbers are already sorted by their low-order t - 1 digits
- Sort on digit t

Counting Sort Radix Sort

Radix Sort: Correctness

- The proof is by induction on the digit position
- Assume that the numbers are already sorted by their low-order t - 1 digits
- Sort on digit t
 - Two numbers that differ in digit *t* are correctly sorted

Radix Sort: Correctness

- The proof is by induction on the digit position
- Assume that the numbers are already sorted by their low-order t - 1 digits
- Sort on digit t
 - Two numbers that differ in digit *t* are correctly sorted
 - Two numbers equal in digit t are put in the same order as the input - the correct order

Radix Sort: Running Time Analysis

- Assume counting sort is the auxiliary stable sort
- Sort *n* computer words of *b* bits each
- Each word can be viewed as having b/r base- 2^r

Figure: Example of a 32-bit word

- r = 8 means b/r = 4 passes of counting sort on base-2⁸ digits
- r = 16 means b/r = 2 passes on base-2¹⁶ digits
- How many passes should one make?

Radix Sort: Running Time Analysis

Note: Counting sort takes $\theta(n+k)$ time to sort *n* numbers in the range 0 to k-1.

If each *b*-bit word is broken into *r*-bit pieces, each pass of counting sort takes $\theta(n + 2^r)$ time. Since there are b/r passes, we have:

$$T(n,b) \in \theta(\frac{b}{r}(n+2^r))$$

Choose r to minimize T(n, b)

 Increasing r means fewer passes, but as r >> lgn, the time grows exponentially

Radix Sort Runs in Linear Time: Choosing r

$$T(n,b) \in \theta(\frac{b}{r}(n+2^r))$$

Minimize T(n, b) by differentiating and setting the first derivative to 0. Recall that this is the technique to find minima or maxima for a function.

Alternatively, observe that we do not want $2^r >> n$, and so we can safely choose r to be as large as possible without violating this constraint.

Choosing r = lgn implies that $T(n, b) \in \theta(bn/lgn)$

- For numbers in the range 0 to $n^d 1$, we have that $b = d \cdot lgn$
- Hence, radix sort runs in $\theta(d \cdot n)$ time

Final Words on Radix Sort and Sorting Algorithms

In practice, radix sort is fast for large inputs, as well as simple to implement and maintain

Example: 32-bit numbers

- At most 3 passes when sorting \geq 2000 numbers
- Mergesort and quicksort do at least [*lg*2000] passes

Not all Rosy:

- Unlike quicksort, radix sort displays little locality of reference
- A well-tuned quicksort does better on modern processors that feature steep memory hierarchies