
Outline of Today’s Class
Lower Bound on Comparison-based Sorting

Lecture: Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Spring 2019

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Lower Bound on Comparison-based Sorting

1 Outline of Today’s Class

2 Lower Bound on Comparison-based Sorting
Decision Trees

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Lower Bound on Comparison-based Sorting

Decision Trees

How Fast Can We Sort?

The sorting algorithms we have seen so far are insertion sort,
mergesort, heapsort, and quicksort

All these sorting algorithms are comparison sorts

They rely on comparisons to determine the relative order of
elements

The best worst-case running time that we have seen for
comparison sorting is O(n · lgn)

Is O(n · lgn) the best we can do?

We need to employ decision trees to answer this question

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Lower Bound on Comparison-based Sorting

Decision Trees

Reason for Employing a Decision Tree

Sort 〈a1, a2, . . . , an〉:

Each internal node is labeled i : j for i , j ∈ {1, 2, . . . , n}

The left subtree shows subsequent comparisons if ai ≤ aj

The right subtree shows subsequent comparisons if ai > aj

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Lower Bound on Comparison-based Sorting

Decision Trees

Example of a Decision Tree

Sort 〈a1, a2, . . . , an〉 =< 9, 4, 6 >:

Each internal node is labeled i : j for i , j ∈ {1, 2, . . . , n}

The left subtree shows subsequent comparisons if ai ≤ aj

The right subtree shows subsequent comparisons if ai > aj

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Lower Bound on Comparison-based Sorting

Decision Trees

Example of a Decision Tree

Sort 〈a1, a2, . . . , an〉 =< 9, 4, 6 >:

Each internal node is labeled i : j for i , j ∈ {1, 2, . . . , n}

The left subtree shows subsequent comparisons if ai ≤ aj

The right subtree shows subsequent comparisons if ai > aj

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Lower Bound on Comparison-based Sorting

Decision Trees

Example of a Decision Tree

Sort 〈a1, a2, . . . , an〉 =< 9, 4, 6 >:

Each internal node is labeled i : j for i , j ∈ {1, 2, . . . , n}

The left subtree shows subsequent comparisons if ai ≤ aj

The right subtree shows subsequent comparisons if ai > aj

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Lower Bound on Comparison-based Sorting

Decision Trees

Example of a Decision Tree

Sort 〈a1, a2, . . . , an〉 =< 9, 4, 6 >:

Each leaf contains a permutation 〈π(1), π(2), . . . π(n)〉 which
establishes the ordering aπ(1), aπ(2), . . . , aπ(n)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Lower Bound on Comparison-based Sorting

Decision Trees

Decision Tree Model

A decision tree can model the execution of any comparison sort:

One tree for each input size n

View the algorithm as splitting the tree whenever it compares
two elements

The tree contains the comparisons along all possible
instruction traces

The running time of the algorithm is then the length of the
actual path taken

Worst-case running time is the height of tree

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Lower Bound on Comparison-based Sorting

Decision Trees

Lower Bound for Decision Tree Sorting

Theorem: Any decision tree that can sort n elements must have
height Ω(n · lgn)
Proof:

The tree must contain ≥ n! leaves, since there are n! possible
permutations.

A height h binary tree has ≤ 2h leaves

Hence, n! ≤ 2h

h ≥ lg(n!)
≥ lg((n/e)n) – Stirling’s approximation
= n · lgn − n · lge
∈ Ω(n · lgn)

Corollary: Heapsort and mergesort are asymptotically optimal
comparison-based sorting algorithms

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Lecture 3: Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Spring 2019

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

1 Outline of Today’s Class

2 Sorting in Linear Time
Counting Sort
Radix Sort

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Sorting in Linear Time

We can sort faster than O(n · lgn) if we do not compare the
items being sorted against each other

We can do this if we have additional information about the
structure of the items

Examples of Sorting Algorithms that do not compare items
1 Counting Sort
2 Radix Sort
3 Bucket Sort

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Basic Idea and Pseudocode

Input: A[1 . . . n], where
A[j] ∈ {1, 2, . . . k}
Output: B[1 . . . n] sorted

Auxiliary storage: C [1 . . . k]

Note: all elements are in
{1, 2, . . . k}
Basic Idea: Count the number
of 1’s, 2’s, . . ., k’s.

COUNTINGSORT(A, n)

1: for i ← 1 to k do
2: Ci ← 0
3: for j ← 1 to n do
4: C [A[j]]← C [A[j]] + 1

BC [i] = |{key = i}|
5: for i ← 2 to k do
6: C [i]← C [i] + C [i − 1]

BC [i] = |{key ≤ i}|
7: for j ← n to 1 do
8: B[C [A[j]]]← A[j]
9: C [A[j]]← C [A[j]− 1]

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Trace

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Running Time Analysis

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Running Time Analysis

If k ∈ O(n), then counting sort takes O(n) time.

But sorting takes Ω(n · lgn) time!

Where is the contradiction?

Comparison sorting takes Ω(n · lgn)

Counting sot is not a comparison sort

Not a single comparison occurs in counting sort

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Running Time Analysis

If k ∈ O(n), then counting sort takes O(n) time.

But sorting takes Ω(n · lgn) time!

Where is the contradiction?

Comparison sorting takes Ω(n · lgn)

Counting sot is not a comparison sort

Not a single comparison occurs in counting sort

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort: Running Time Analysis

If k ∈ O(n), then counting sort takes O(n) time.

But sorting takes Ω(n · lgn) time!

Where is the contradiction?

Comparison sorting takes Ω(n · lgn)

Counting sot is not a comparison sort

Not a single comparison occurs in counting sort

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Counting Sort is Stable

Counting sort is a stable sort because it preserves the input order
among equal elements.

What other sorting algorithms have this property?

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Radix Sort

History: Herman Hollerith’s card-sorting machine for the 1890
US Census.

Radix sort is digit-by-digit sort

Hollerith’s original (wrong) idea was to sort on most
significant digit first

The final (correct) idea was to sort on the least significant
digit first with an auxiliary stable sort

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Radix Sort in Action

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Radix Sort: Correctness

The proof is by induction on
the digit position

Assume that the numbers are
already sorted by their
low-order t − 1 digits

Sort on digit t

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Radix Sort: Correctness

The proof is by induction on
the digit position

Assume that the numbers are
already sorted by their
low-order t − 1 digits

Sort on digit t

Two numbers that differ in
digit t are correctly sorted

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Radix Sort: Correctness

The proof is by induction on
the digit position

Assume that the numbers are
already sorted by their
low-order t − 1 digits

Sort on digit t

Two numbers that differ in
digit t are correctly sorted
Two numbers equal in digit t
are put in the same order as
the input - the correct order

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Radix Sort: Running Time Analysis

Assume counting sort is the auxiliary stable sort

Sort n computer words of b bits each

Each word can be viewed as having b/r base-2r

Figure: Example of a 32-bit word

r = 8 means b/r = 4 passes of counting sort on base-28 digits

r = 16 means b/r = 2 passes on base-216 digits

How many passes should one make?

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Radix Sort: Running Time Analysis

Note: Counting sort takes θ(n + k) time to sort n numbers in the
range 0 to k − 1.
If each b-bit word is broken into r -bit pieces, each pass of counting
sort takes θ(n + 2r) time. Since there are b/r passes, we have:

T (n, b) ∈ θ(
b

r
(n + 2r))

Choose r to minimize T (n, b)

Increasing r means fewer passes, but as r >> lgn, the time
grows exponentially

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Radix Sort Runs in Linear Time: Choosing r

T (n, b) ∈ θ(
b

r
(n + 2r))

Minimize T (n, b) by differentiating and setting the first derivative
to 0. Recall that this is the technique to find minima or maxima
for a function.
Alternatively, observe that we do not want 2r >> n, and so we can
safely choose r to be as large as possible without violating this
constraint.
Choosing r = lgn implies that T (n, b) ∈ θ(bn/lgn)

For numbers in the range 0 to nd − 1, we have that b = d · lgn
Hence, radix sort runs in θ(d · n) time

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

Outline of Today’s Class
Sorting in Linear Time

Counting Sort
Radix Sort

Final Words on Radix Sort and Sorting Algorithms

In practice, radix sort is fast for large inputs, as well as simple to
implement and maintain

Example: 32-bit numbers

At most 3 passes when sorting ≥ 2000 numbers

Mergesort and quicksort do at least dlg2000e passes

Not all Rosy:

Unlike quicksort, radix sort displays little locality of reference

A well-tuned quicksort does better on modern processors that
feature steep memory hierarchies

Amarda Shehu Lecture 3: Analysis of Algorithms (CS583 - 004)

	Outline of Today's Class
	Lower Bound on Comparison-based Sorting
	Decision Trees

	Outline of Today's Class
	Sorting in Linear Time
	Counting Sort
	Radix Sort

