Lecture: Analysis of Algorithms (CS583-004)

Amarda Shehu

Spring 2019
(1) Outline of Today's Class
(2) Lower Bound on Comparison-based Sorting

- Decision Trees

How Fast Can We Sort?

- The sorting algorithms we have seen so far are insertion sort, mergesort, heapsort, and quicksort
- All these sorting algorithms are comparison sorts
- They rely on comparisons to determine the relative order of elements
- The best worst-case running time that we have seen for comparison sorting is $O(n \cdot \lg n)$
- Is $O(n \cdot \lg n)$ the best we can do?
- We need to employ decision trees to answer this question

Reason for Employing a Decision Tree

Sort $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$:

Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$

- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$
- The right subtree shows subsequent comparisons if $a_{i}>a_{j}$

Example of a Decision Tree

Sort $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=<9,4,6>$:

Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$

- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$
- The right subtree shows subsequent comparisons if $a_{i}>a_{j}$

Example of a Decision Tree

Sort $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=<9,4,6>$:

Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$

- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$
- The right subtree shows subsequent comparisons if $a_{i}>a_{j}$

Example of a Decision Tree

Sort $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=<9,4,6>$:

Each internal node is labeled $i: j$ for $i, j \in\{1,2, \ldots, n\}$

- The left subtree shows subsequent comparisons if $a_{i} \leq a_{j}$
- The right subtree shows subsequent comparisons if $a_{i}>a_{j}$

Example of a Decision Tree

Sort $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=<9,4,6>$:

Each leaf contains a permutation $\langle\pi(1), \pi(2), \ldots \pi(n)\rangle$ which establishes the ordering $a_{\pi(1)}, a_{\pi(2)}, \ldots, a_{\pi(n)}$

Decision Tree Model

A decision tree can model the execution of any comparison sort:

- One tree for each input size n
- View the algorithm as splitting the tree whenever it compares two elements
- The tree contains the comparisons along all possible instruction traces
- The running time of the algorithm is then the length of the actual path taken
- Worst-case running time is the height of tree

Lower Bound for Decision Tree Sorting

Theorem: Any decision tree that can sort n elements must have height $\Omega(n \cdot \lg n)$
Proof:
The tree must contain $\geq n$! leaves, since there are n ! possible permutations.
A height h binary tree has $\leq 2^{h}$ leaves
Hence, $n!\leq 2^{h}$ $h \geq \lg (n!)$
$\geq \lg \left((n / e)^{n}\right)$ - Stirling's approximation
$=n \cdot \lg n-n \cdot \lg e$
$\in \Omega(n \cdot \lg n)$
Corollary: Heapsort and mergesort are asymptotically optimal comparison-based sorting algorithms

Lecture 3: Analysis of Algorithms (CS583-004)

Amarda Shehu

Spring 2019
(1) Outline of Today's Class
(2) Sorting in Linear Time

- Counting Sort
- Radix Sort

Sorting in Linear Time

- We can sort faster than $O(n \cdot \operatorname{lgn})$ if we do not compare the items being sorted against each other
- We can do this if we have additional information about the structure of the items
- Examples of Sorting Algorithms that do not compare items
(1) Counting Sort
(2) Radix Sort
(3) Bucket Sort

Counting Sort: Basic Idea and Pseudocode

COUNTINGSORT(A, n)

- Input: $A[1 \ldots n]$, where $A[j] \in\{1,2, \ldots k\}$
- Output: $B[1 \ldots n]$ sorted
- Auxiliary storage: $C[1 \ldots k]$
- Note: all elements are in $\{1,2, \ldots k\}$
- Basic Idea: Count the number of 1's, 2's, ..., k's.

1: for $i \leftarrow 1$ to k do
2: $\quad C_{i} \leftarrow 0$
3: for $j \leftarrow 1$ to n do
4: $\quad C[A[j]] \leftarrow C[A[j]]+1$
$\triangleright C[i]=\mid\{$ key $=\mathrm{i}\} \mid$
5: for $i \leftarrow 2$ to k do
6: $\quad C[i] \leftarrow C[i]+C[i-1]$
$\triangleright C[i]=\mid\{$ key $\leq \mathrm{i}\} \mid$
7: for $j \leftarrow n$ to 1 do
8: $\quad B[C[A[j]]] \leftarrow A[j]$
9: $\quad C[A[j]] \leftarrow C[A[j]-1]$

Counting Sort: Trace

Counting Sort: Trace

B :

for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$

Counting Sort: Trace

for $j \leftarrow 1$ to n
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=i\} \mid$

Counting Sort: Trace

for $j \leftarrow 1$ to n
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=i\} \mid$

Counting Sort: Trace

for $j \leftarrow 1$ to n
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=i\} \mid$

Counting Sort: Trace

for $j \leftarrow 1$ to n
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=\mid\{$ key $=i\} \mid$

Counting Sort: Trace

for $j \leftarrow 1$ to n
do $C[A[j]] \leftarrow C[A[j]]+1 \quad \triangleright C[i]=|\{\mathrm{key}=i\}|$

Counting Sort: Trace

for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i]+C[i-1] \quad \triangleright C[i]=\mid\{$ key $\leq i\} \mid$

Counting Sort: Trace

for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i]+C[i-1] \quad \triangleright C[i]=\mid\{$ key $\leq i\} \mid$

Counting Sort: Trace

for $i \leftarrow 2$ to k

$$
\text { do } C[i] \leftarrow C[i]+C[i-1] \quad \triangleright C[i]=\mid\{\text { key } \leq i\} \mid
$$

Counting Sort: Trace

for $j \leftarrow n$ downto 1
do $B[C[A[j]]] \leftarrow \mathrm{A}[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort: Trace

for $j \leftarrow n$ downto 1

$$
\begin{aligned}
& \text { do } B[C[A[j]]] \leftarrow \mathrm{A}[j] \\
& \quad C[A[j]] \leftarrow C[A[j]]-1
\end{aligned}
$$

Counting Sort: Trace

for $j \leftarrow n$ downto 1
do $B[C[A[j]]] \leftarrow \mathrm{A}[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort: Trace

for $j \leftarrow n$ downto 1
do $B[C[A[j]]] \leftarrow \mathrm{A}[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort: Trace

for $j \leftarrow n$ downto 1 do $B[C[A[j]]] \leftarrow \mathrm{A}[j]$ $C[A[j]] \leftarrow C[A[j]]-1$

Counting Sort: Running Time Analysis

Counting Sort: Running Time Analysis

If $k \in O(n)$, then counting sort takes $O(n)$ time.

- But sorting takes $\Omega(n \cdot \lg n)$ time!
- Where is the contradiction?

Counting Sort: Running Time Analysis

If $k \in O(n)$, then counting sort takes $O(n)$ time.

- But sorting takes $\Omega(n \cdot \lg n)$ time!
- Where is the contradiction?
- Comparison sorting takes $\Omega(n \cdot \lg n)$
- Counting sot is not a comparison sort
- Not a single comparison occurs in counting sort

Counting Sort: Running Time Analysis

If $k \in O(n)$, then counting sort takes $O(n)$ time.

- But sorting takes $\Omega(n \cdot \lg n)$ time!
- Where is the contradiction?
- Comparison sorting takes $\Omega(n \cdot \lg n)$
- Counting sot is not a comparison sort
- Not a single comparison occurs in counting sort

Counting Sort is Stable

Counting sort is a stable sort because it preserves the input order among equal elements.

What other sorting algorithms have this property?

Radix Sort

- History: Herman Hollerith's card-sorting machine for the 1890 US Census.
- Radix sort is digit-by-digit sort
- Hollerith's original (wrong) idea was to sort on most significant digit first
- The final (correct) idea was to sort on the least significant digit first with an auxiliary stable sort

Radix Sort in Action

| 329 | 720 | 720 | 329 |
| ---: | ---: | ---: | ---: | ---: |
| 457 | 355 | 329 | 355 |
| 657 | 436 | 436 | 436 |
| 839 | 457 | 839 | 457 |
| 436 | 657 | 355 | 657 |
| 720 | 329 | 457 | 720 |
| 355 | 839 | 657 | 839 |
| | \boldsymbol{K} | | |

Radix Sort: Correctness

- The proof is by induction on the digit position
- Assume that the numbers are already sorted by their low-order $t-1$ digits
- Sort on digit t

Radix Sort: Correctness

- The proof is by induction on the digit position
- Assume that the numbers are already sorted by their low-order $t-1$ digits
- Sort on digit t
- Two numbers that differ in digit t are correctly sorted

Radix Sort: Correctness

- The proof is by induction on the digit position
- Assume that the numbers are already sorted by their low-order $t-1$ digits
- Sort on digit t
- Two numbers that differ in digit t are correctly sorted
- Two numbers equal in digit t are put in the same order as the input - the correct order

Radix Sort: Running Time Analysis

- Assume counting sort is the auxiliary stable sort
- Sort n computer words of b bits each
- Each word can be viewed as having b / r base- 2^{r}

$$
\begin{array}{llll}
8 & 8 & 8 & 8
\end{array}
$$

Figure: Example of a 32-bit word

- $r=8$ means $b / r=4$ passes of counting sort on base- 2^{8} digits
- $r=16$ means $b / r=2$ passes on base- 2^{16} digits
- How many passes should one make?

Radix Sort: Running Time Analysis

Note: Counting sort takes $\theta(n+k)$ time to sort n numbers in the range 0 to $k-1$.
If each b-bit word is broken into r-bit pieces, each pass of counting sort takes $\theta\left(n+2^{r}\right)$ time. Since there are b / r passes, we have:

$$
T(n, b) \in \theta\left(\frac{b}{r}\left(n+2^{r}\right)\right)
$$

Choose r to minimize $T(n, b)$

- Increasing r means fewer passes, but as $r \gg \operatorname{lgn}$, the time grows exponentially

Radix Sort Runs in Linear Time: Choosing r

$$
T(n, b) \in \theta\left(\frac{b}{r}\left(n+2^{r}\right)\right)
$$

Minimize $T(n, b)$ by differentiating and setting the first derivative to 0 . Recall that this is the technique to find minima or maxima for a function.
Alternatively, observe that we do not want $2^{r} \gg n$, and so we can safely choose r to be as large as possible without violating this constraint.
Choosing $r=\lg n$ implies that $T(n, b) \in \theta(b n / \lg n)$

- For numbers in the range 0 to $n^{d}-1$, we have that $b=d \cdot \lg n$
- Hence, radix sort runs in $\theta(d \cdot n)$ time

Final Words on Radix Sort and Sorting Algorithms

In practice, radix sort is fast for large inputs, as well as simple to implement and maintain

Example: 32-bit numbers

- At most 3 passes when sorting ≥ 2000 numbers
- Mergesort and quicksort do at least 〔lg2000〕 passes

Not all Rosy:

- Unlike quicksort, radix sort displays little locality of reference
- A well-tuned quicksort does better on modern processors that feature steep memory hierarchies

