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Decision Trees

How Fast Can We Sort?

The sorting algorithms we have seen so far are insertion sort,
mergesort, heapsort, and quicksort

All these sorting algorithms are comparison sorts

They rely on comparisons to determine the relative order of
elements

The best worst-case running time that we have seen for
comparison sorting is O(n · lgn)

Is O(n · lgn) the best we can do?

We need to employ decision trees to answer this question
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Decision Trees

Reason for Employing a Decision Tree

Sort 〈a1, a2, . . . , an〉:

Each internal node is labeled i : j for i , j ∈ {1, 2, . . . , n}

The left subtree shows subsequent comparisons if ai ≤ aj

The right subtree shows subsequent comparisons if ai > aj
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Decision Trees

Example of a Decision Tree

Sort 〈a1, a2, . . . , an〉 =< 9, 4, 6 >:

Each internal node is labeled i : j for i , j ∈ {1, 2, . . . , n}

The left subtree shows subsequent comparisons if ai ≤ aj

The right subtree shows subsequent comparisons if ai > aj
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Decision Trees

Example of a Decision Tree

Sort 〈a1, a2, . . . , an〉 =< 9, 4, 6 >:

Each leaf contains a permutation 〈π(1), π(2), . . . π(n)〉 which
establishes the ordering aπ(1), aπ(2), . . . , aπ(n)
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Decision Trees

Decision Tree Model

A decision tree can model the execution of any comparison sort:

One tree for each input size n

View the algorithm as splitting the tree whenever it compares
two elements

The tree contains the comparisons along all possible
instruction traces

The running time of the algorithm is then the length of the
actual path taken

Worst-case running time is the height of tree
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Decision Trees

Lower Bound for Decision Tree Sorting

Theorem: Any decision tree that can sort n elements must have
height Ω(n · lgn)
Proof:

The tree must contain ≥ n! leaves, since there are n! possible
permutations.

A height h binary tree has ≤ 2h leaves

Hence, n! ≤ 2h

h ≥ lg(n!)
≥ lg((n/e)n) – Stirling’s approximation
= n · lgn − n · lge
∈ Ω(n · lgn)

Corollary: Heapsort and mergesort are asymptotically optimal
comparison-based sorting algorithms
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Sorting in Linear Time

We can sort faster than O(n · lgn) if we do not compare the
items being sorted against each other

We can do this if we have additional information about the
structure of the items

Examples of Sorting Algorithms that do not compare items
1 Counting Sort
2 Radix Sort
3 Bucket Sort
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Counting Sort: Basic Idea and Pseudocode

Input: A[1 . . . n], where
A[j ] ∈ {1, 2, . . . k}
Output: B[1 . . . n] sorted

Auxiliary storage: C [1 . . . k]

Note: all elements are in
{1, 2, . . . k}
Basic Idea: Count the number
of 1’s, 2’s, . . ., k’s.

COUNTINGSORT(A, n)

1: for i ← 1 to k do
2: Ci ← 0
3: for j ← 1 to n do
4: C [A[j ]]← C [A[j ]] + 1

BC [i ] = |{key = i}|
5: for i ← 2 to k do
6: C [i ]← C [i ] + C [i − 1]

BC [i ] = |{key ≤ i}|
7: for j ← n to 1 do
8: B[C [A[j ]]]← A[j ]
9: C [A[j ]]← C [A[j ]− 1]
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Counting Sort: Trace
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Counting Sort: Running Time Analysis

If k ∈ O(n), then counting sort takes O(n) time.

But sorting takes Ω(n · lgn) time!

Where is the contradiction?

Comparison sorting takes Ω(n · lgn)

Counting sot is not a comparison sort

Not a single comparison occurs in counting sort
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Counting Sort is Stable

Counting sort is a stable sort because it preserves the input order
among equal elements.

What other sorting algorithms have this property?
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Radix Sort

History: Herman Hollerith’s card-sorting machine for the 1890
US Census.

Radix sort is digit-by-digit sort

Hollerith’s original (wrong) idea was to sort on most
significant digit first

The final (correct) idea was to sort on the least significant
digit first with an auxiliary stable sort
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Radix Sort in Action
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Radix Sort: Correctness

The proof is by induction on
the digit position

Assume that the numbers are
already sorted by their
low-order t − 1 digits

Sort on digit t
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Radix Sort: Correctness

The proof is by induction on
the digit position

Assume that the numbers are
already sorted by their
low-order t − 1 digits

Sort on digit t

Two numbers that differ in
digit t are correctly sorted
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Radix Sort: Correctness

The proof is by induction on
the digit position

Assume that the numbers are
already sorted by their
low-order t − 1 digits

Sort on digit t

Two numbers that differ in
digit t are correctly sorted
Two numbers equal in digit t
are put in the same order as
the input - the correct order
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Radix Sort: Running Time Analysis

Assume counting sort is the auxiliary stable sort

Sort n computer words of b bits each

Each word can be viewed as having b/r base-2r

Figure: Example of a 32-bit word

r = 8 means b/r = 4 passes of counting sort on base-28 digits

r = 16 means b/r = 2 passes on base-216 digits

How many passes should one make?
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Radix Sort: Running Time Analysis

Note: Counting sort takes θ(n + k) time to sort n numbers in the
range 0 to k − 1.
If each b-bit word is broken into r -bit pieces, each pass of counting
sort takes θ(n + 2r ) time. Since there are b/r passes, we have:

T (n, b) ∈ θ(
b

r
(n + 2r ))

Choose r to minimize T (n, b)

Increasing r means fewer passes, but as r >> lgn, the time
grows exponentially
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Radix Sort Runs in Linear Time: Choosing r

T (n, b) ∈ θ(
b

r
(n + 2r ))

Minimize T (n, b) by differentiating and setting the first derivative
to 0. Recall that this is the technique to find minima or maxima
for a function.
Alternatively, observe that we do not want 2r >> n, and so we can
safely choose r to be as large as possible without violating this
constraint.
Choosing r = lgn implies that T (n, b) ∈ θ(bn/lgn)

For numbers in the range 0 to nd − 1, we have that b = d · lgn
Hence, radix sort runs in θ(d · n) time
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Final Words on Radix Sort and Sorting Algorithms

In practice, radix sort is fast for large inputs, as well as simple to
implement and maintain

Example: 32-bit numbers

At most 3 passes when sorting ≥ 2000 numbers

Mergesort and quicksort do at least dlg2000e passes

Not all Rosy:

Unlike quicksort, radix sort displays little locality of reference

A well-tuned quicksort does better on modern processors that
feature steep memory hierarchies
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