Lecture: Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Spring 2019

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class Sorting in O(n Ig n) Time: Heapsort

@ Outline of Today's Class
@ Sorting in O(n Ig n) Time: Heapsort

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class Sorting in O(n Ig n) Time: Heapsort

Heapsort

Desired property of Mergesort: Time complexity of O(nlgn)
Desired property of Insertion sort: Sorting in place
Heapsort combines these two properties

Heapsort illustrates a powerful algorithm design technique:
a data structure organizes information during execution
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Heap Data Structure

@ Array object regarded as nearly complete binary tree
@ Attributes:

o length(A): # elements in A

o heap_size(A): # elements in heap
@ Heap property: value of parent > values of children
o Filled from root to leaves, left to right

o Root of tree is stored in A[1]
e Given index i of a node:
e parent: PARENT(i) + |i/2]
o left child: LEFT(i) « 2i
e right child: RIGHT(i) < 2i+ 1
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Heaps as a Balanced Binary Tree

@ In a tree:

o Depth of a node is distance of node from root
o Depth of a tree is depth of deepest node
e Height is the opposite of depth

Height and depth are often confused

@ A binary tree of depth d is balanced if all nodes at depths 0
through d — 2 have two children

o lllustration of balanced and unbalanced binary trees:
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Heap as a Left-justified Balanced Binary Tree

@ A balanced binary tree of depth d is left-justified if:

@ It has 2¥ nodes at depth k Yk < d
@ All leaves at depth d are as far left as possible
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Back to the Heap Property

@ In a max-heap: A[PARENT(i)] > A[i], Vi > 1
@ In a min-heap: A[PARENT(i)] < A[i], Vi > 1
@ We will focus on the heap property in max-heaps for sorting:

Blue node has Blue node has  Blue node does not
heap property heap property  have heap property

o Leaf nodes automatically have the heap property. Why?
@ A binary tree is a heap if all nodes in it have the heap property
e What can you say about the root in a max/min-heap?
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Maintaining the Heap Property in a Max-heap

@ Given a node that does not have the heap property, one can
give it the heap property by exchanging its value with that of

the larger child:
O
(&) (1 (8) (12

Blue node does not Blue node has
have heap property heap property

@ Note: Upon the exchange, the heap property may be violated
in the subtree rooted at the child

@ The MAX — HEAPIFY subroutine restores the heap property
on the subtree rooted at index i

@ How? The value at A[i] is floated down in the max-heap
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MAX-HEAPIFY: Pseudocode and Time Complexity

MAX-HEAPIFY (array A, index i)

1. if i is not a leaf and A[LEFT(i)] (RISl asl= 2 20%)
or A[RIGHT(i)] > A[] then

2 let k denote larger child

swap(A[1], A[K])

MAX — HEAPIFY (A, k)

w

4.

Time Complexity: MAX-HEAPIFY

@ Let H(i) denote running time
e Show H(i) € O(lgn)

@ Hint: Down the tree we go
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BUILD-MAX-HEAP: Pseudocode and Time Complexity

Trace BUILD-MAX-HEAP(A,10)

BUILD-MAX-HEAP(A, size n)

Arra
1: for i + 2] to 1 do [o46]w0]2]u]6]1]15]s]
2:  MAX-HEAPIFY(A, i) 1 2 3 4 5 10

Time: BUILD-MAX-HEAP

e Why is | 5| bound sufficient?

@ Hint: # internal nodes in heap?
@ Let B(n) be running time

e Show B(n) € O(nlgn)

Figure: Trace on above array.
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Tighter Asymptotic Bound on BUILD-MAX-HEAP

@ Show that an n-element heap has depth (and height) |/gn].
@ Show that there are at most [n/2+1] nodes of height h.

B(n) = S72H(>I) =S {[510(h)}
e o(nylEl b

Note: Y2320 4 = 173 (A8)

Hence:

Ol by = oy, k)
O(n)

e Conclusion: A heap can be built in O(n) time.
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HEAPSORT: Pseudocode and Time Complexity

HEAPSORT(A)
1: BUILD-MAX-HEAP(A)

2: for i + A.length to 2 do Time:HEAPSORT

3. swap([A[1], A[i]]) o HEAPSORT takes O(nlgn).
4:  A.heap-size <~ A.heap-size - 1 o BUILD-MAX-HEAP runs in
5. MAX-HEAPIFY(A, 1) linear time - O(n)

Basic Idea Behind HEAPSORT e [nerelareints Iicalistte
MAX-HEAPIEY

@ What property holds for root .
after BUILD-MAX-HEAP? © Each call takes O(/gn) time
e So: T(HEAPSORT(A, n))
€O — 1)
@ Why do we need to run . OEZI+n§n )/gn)
MAX-HEAPIFY after swap? &

@ Why can we put it at index i?
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An Important Application of Heaps

@ A priority queue maintains a set S of elements, each one
associated with a key

@ Max- or min-priority queues help to rank jobs for scheduling
@ Operations for a max-priority queue:

INSERT(S, x) inserts element x in the set S

MAXIMUM(S) returns the element of S with the largest key
EXTRACT-MAX(S) removes from S and returns the element
with the largest key

INSERT-KEY(S, x, k) increases the value of the key of x to

the new value k, which is assumed to be at least as large as

the current value of the key of x
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