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Heapsort

Desired property of Mergesort: Time complexity of O(nlgn)

Desired property of Insertion sort: Sorting in place

Heapsort combines these two properties

Heapsort illustrates a powerful algorithm design technique:
a data structure organizes information during execution
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Heap Data Structure

Array object regarded as nearly complete binary tree

Attributes:

length(A): # elements in A
heap size(A): # elements in heap

Heap property: value of parent ≥ values of children

Filled from root to leaves, left to right

Root of tree is stored in A[1]
Given index i of a node:

parent: PARENT(i)← bi/2c
left child: LEFT(i)← 2i
right child: RIGHT(i)← 2i+ 1
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Heaps as a Balanced Binary Tree

In a tree:

Depth of a node is distance of node from root
Depth of a tree is depth of deepest node
Height is the opposite of depth
Height and depth are often confused

A binary tree of depth d is balanced if all nodes at depths 0
through d − 2 have two children

Illustration of balanced and unbalanced binary trees:
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Heap as a Left-justified Balanced Binary Tree

A balanced binary tree of depth d is left-justified if:
1 It has 2k nodes at depth k ∀k < d
2 All leaves at depth d are as far left as possible

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class Sorting in O(n lg n) Time: Heapsort

Back to the Heap Property

In a max-heap: A[PARENT(i)] ≥ A[i], ∀i ≥ 1

In a min-heap: A[PARENT(i)] ≤ A[i], ∀i ≥ 1

We will focus on the heap property in max-heaps for sorting:

Leaf nodes automatically have the heap property. Why?

A binary tree is a heap if all nodes in it have the heap property

What can you say about the root in a max/min-heap?
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Maintaining the Heap Property in a Max-heap

Given a node that does not have the heap property, one can
give it the heap property by exchanging its value with that of
the larger child:

Note: Upon the exchange, the heap property may be violated
in the subtree rooted at the child

The MAX−HEAPIFY subroutine restores the heap property
on the subtree rooted at index i

How? The value at A[i ] is floated down in the max-heap
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MAX-HEAPIFY: Pseudocode and Time Complexity

MAX-HEAPIFY(array A, index i)

1: if i is not a leaf and A[LEFT(i)]
or A[RIGHT(i)] > A[i ] then

2: let k denote larger child
3: swap(A[i ],A[k])
4: MAX−HEAPIFY(A, k)

Time Complexity: MAX-HEAPIFY

Let H(i) denote running time

Show H(i) ∈ O(lgn)

Hint: Down the tree we go

Trace MAX-HEAPIFY(A,1)

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class Sorting in O(n lg n) Time: Heapsort

BUILD-MAX-HEAP: Pseudocode and Time Complexity

BUILD-MAX-HEAP(A, size n)

1: for i ← bn2c to 1 do
2: MAX-HEAPIFY(A, i)

Time: BUILD-MAX-HEAP

Why is bn2c bound sufficient?

Hint: # internal nodes in heap?

Let B(n) be running time

Show B(n) ∈ O(nlgn)

Trace BUILD-MAX-HEAP(A,10)

Figure: Trace on above array.
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Tighter Asymptotic Bound on BUILD-MAX-HEAP

1 Show that an n-element heap has depth (and height) blgnc.
2 Show that there are at most dn/2h+1e nodes of height h.

B(n) =
∑n/2

i=1H(i) =
∑blgnc

h=0 {d
n

2h+1 eO(h)}
∈ O(n

∑blgnc
h=0

h
2h

)

Note:
∑∞

h=0
h
2h

= 1/2
(1−1/2)2 (A.8)

Hence:
O(n

∑blgnc
h=0

h
2h

) = O(n
∑∞

h=0
h
2h

)

= O(n)

Conclusion: A heap can be built in O(n) time.
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HEAPSORT: Pseudocode and Time Complexity

HEAPSORT(A)

1: BUILD-MAX-HEAP(A)
2: for i ← A.length to 2 do
3: swap([A[1],A[i ]])
4: A.heap-size ← A.heap-size - 1
5: MAX-HEAPIFY(A, 1)

Basic Idea Behind HEAPSORT

What property holds for root
after BUILD-MAX-HEAP?

Why can we put it at index i?

Why do we need to run
MAX-HEAPIFY after swap?

Time:HEAPSORT

HEAPSORT takes O(nlgn).

BUILD-MAX-HEAP runs in
linear time - O(n)

There are n − 1 calls to
MAX-HEAPIFY

Each call takes O(lgn) time

So: T(HEAPSORT(A, n))
∈ O(n + (n − 1)lgn)
∈ O(nlgn)
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An Important Application of Heaps

A priority queue maintains a set S of elements, each one
associated with a key

Max- or min-priority queues help to rank jobs for scheduling

Operations for a max-priority queue:
1 INSERT(S, x) inserts element x in the set S
2 MAXIMUM(S) returns the element of S with the largest key
3 EXTRACT-MAX(S) removes from S and returns the element

with the largest key
4 INSERT-KEY(S, x, k) increases the value of the key of x to

the new value k, which is assumed to be at least as large as
the current value of the key of x
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