Lecture: Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Spring 2019

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today's Class

• Sorting in O(n lg n) Time: Heapsort

Heapsort

- Desired property of Mergesort: Time complexity of O(nlgn)
- Desired property of Insertion sort: Sorting in place
- Heapsort combines these two properties
- Heapsort illustrates a powerful algorithm design technique: a data structure organizes information during execution

Heap Data Structure

- Array object regarded as nearly complete binary tree
- Attributes:
 - length(A): # elements in A
 - heap_size(A): # elements in heap
- Heap property: value of parent \geq values of children
- Filled from root to leaves, left to right
 - Root of tree is stored in A[1]
 - Given index *i* of a node:
 - parent: PARENT(i) $\leftarrow \lfloor i/2 \rfloor$
 - left child: LEFT(i) $\leftarrow 2i$
 - right child: RIGHT(i) $\leftarrow 2i + 1$

Heaps as a Balanced Binary Tree

- In a tree:
 - Depth of a node is distance of node from root
 - Depth of a tree is depth of deepest node
 - Height is the opposite of depth
 - Height and depth are often confused
- A binary tree of depth d is balanced if all nodes at depths 0 through d - 2 have two children
- Illustration of balanced and unbalanced binary trees:

Heap as a Left-justified Balanced Binary Tree

• A balanced binary tree of depth d is left-justified if:

- **1** It has 2^k nodes at depth $k \ \forall k < d$
- All leaves at depth d are as far left as possible

Left-justified

Not left-justified

Back to the Heap Property

- In a max-heap: $A[PARENT(i)] \ge A[i], \forall i \ge 1$
- In a min-heap: $A[PARENT(i)] \le A[i], \forall i \ge 1$
- We will focus on the heap property in max-heaps for sorting:

Blue node has heap property

Blue node has heap property

Blue node does not have heap property

- Leaf nodes automatically have the heap property. Why?
- A binary tree is a heap if all nodes in it have the heap property
- What can you say about the root in a max/min-heap?

Maintaining the Heap Property in a Max-heap

• Given a node that does not have the heap property, one can give it the heap property by exchanging its value with that of the larger child:

- Note: Upon the exchange, the heap property may be violated in the subtree rooted at the child
- The MAX HEAPIFY subroutine restores the heap property on the subtree rooted at index *i*
- How? The value at A[i] is floated down in the max-heap

MAX-HEAPIFY: Pseudocode and Time Complexity

MAX-HEAPIFY(array A, index i)

- 1: if i is not a leaf and A[LEFT(i)]or A[RIGHT(i)] > A[i] then
- 2: let k denote larger child
- 3: swap(A[i], A[k])
- 4: MAX HEAPIFY(A, k)

Time Complexity: MAX-HEAPIFY

- Let H(i) denote running time
- Show $H(i) \in O(Ign)$
- Hint: Down the tree we go

BUILD-MAX-HEAP: Pseudocode and Time Complexity

BUILD-MAX-HEAP(A, size n)

- 1: for $i \leftarrow \lfloor \frac{n}{2} \rfloor$ to 1 do
- 2: MAX-HEAPIFY(A, i)

Time: BUILD-MAX-HEAP

- Why is $\lfloor \frac{n}{2} \rfloor$ bound sufficient?
- Hint: # internal nodes in heap?
- Let B(n) be running time
- Show $B(n) \in O(nlgn)$

Trace BUILD-MAX-HEAP(A,10)

Tighter Asymptotic Bound on BUILD-MAX-HEAP

- **1** Show that an *n*-element heap has depth (and height) $\lfloor lgn \rfloor$.
- **2** Show that there are at most $\lceil n/2^{h+1} \rceil$ nodes of height *h*.

$$B(n) = \sum_{i=1}^{n/2} H(i) = \sum_{h=0}^{\lfloor \lg n \rfloor} \{ \lceil \frac{n}{2^{h+1}} \rceil O(h) \}$$

$$\in O(n \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^{h}})$$

Note:
$$\sum_{h=0}^{\infty} \frac{h}{2^h} = \frac{1/2}{(1-1/2)^2}$$
 (A.8)

Hence:

$$O(n\sum_{h=0}^{\lfloor lgn\rfloor}\frac{h}{2^{h}}) = O(n\sum_{h=0}^{\infty}\frac{h}{2^{h}}) = O(n)$$

• Conclusion: A heap can be built in O(n) time.

HEAPSORT: Pseudocode and Time Complexity

HEAPSORT(A)

- 1: BUILD-MAX-HEAP(A)
- 2: for $i \leftarrow A$.length to 2 do
- 3: swap([A[1], A[i]])
- 4: A.heap-size \leftarrow A.heap-size 1
- 5: MAX-HEAPIFY(A, 1)

Basic Idea Behind HEAPSORT

- What property holds for root after BUILD-MAX-HEAP?
- Why can we put it at index i?
- Why do we need to run MAX-HEAPIFY after swap?

Time:HEAPSORT

- HEAPSORT takes O(nlgn).
- BUILD-MAX-HEAP runs in linear time O(n)
- There are *n* 1 calls to MAX-HEAPIFY
- Each call takes O(lgn) time
- So: T(HEAPSORT(A, n)) $\in O(n + (n - 1)lgn)$ $\in O(nlgn)$

An Important Application of Heaps

- A priority queue maintains a set *S* of elements, each one associated with a *key*
- Max- or min-priority queues help to rank jobs for scheduling
- Operations for a max-priority queue:
 - INSERT(S, x) inserts element x in the set S
 - MAXIMUM(S) returns the element of S with the largest key
 - EXTRACT-MAX(S) removes from S and returns the element with the largest key
 - INSERT-KEY(S, x, k) increases the value of the key of x to the new value k, which is assumed to be at least as large as the current value of the key of x