Lecture: Analysis of Algorithms (CS583 - 004)

Amarda Shehu

Spring 2019

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Outline of Today's Class

2 Order Statistics

- Selection of Order Statistics in Expected Linear Time
 Randomized Divide and Conquer
- Selection of Order Statistics in Worst-case Linear Time
 - Median of Medians
 - Analysis of Worst-case Running Time
- Order Statistics: Conclusions

Order Statistics

Some Order Statistics We Know

Select the i^{th} smallest of *n* elements (the element with rank *i*):

- i = 1: minimum
- *i* = *n*: maximum
- i = (n+1)/2: median

Order Statistics

Some Order Statistics We Know

Select the i^{th} smallest of *n* elements (the element with rank *i*):

- i = 1: minimum
- *i* = *n*: maximum
- i = (n+1)/2: median

Design a simple algorithm to find the element with rank *i*

Order Statistics

Some Order Statistics We Know

Select the i^{th} smallest of *n* elements (the element with rank *i*):

- i = 1: minimum
- *i* = *n*: maximum
- i = (n+1)/2: median

Design a simple algorithm to find the element with rank i

Order Statistics

Some Order Statistics We Know

Select the i^{th} smallest of *n* elements (the element with rank *i*):

- i = 1: minimum
- *i* = *n*: maximum
- i = (n+1)/2: median

Design a simple algorithm to find the element with rank *i*

Naive algorithm: Sort and index *i*th element.

Order Statistics

Some Order Statistics We Know

Select the i^{th} smallest of *n* elements (the element with rank *i*):

- i = 1: minimum
- *i* = *n*: maximum
- i = (n+1)/2: median

Design a simple algorithm to find the element with rank i

Naive algorithm: Sort and index i^{th} element. Worst-case running time $\in \quad \theta(n \cdot \lg n) + \theta(1)$ $\in \quad \theta(n \cdot \lg n)$

Order Statistics

Some Order Statistics We Know

Select the i^{th} smallest of *n* elements (the element with rank *i*):

- i = 1: minimum
- *i* = *n*: maximum
- i = (n+1)/2: median

Design a simple algorithm to find the element with rank i

Naive algorithm: Sort and index i^{th} element. Worst-case running time $\in \theta(n \cdot \lg n) + \theta(1)$ $\in \theta(n \cdot \lg n)$...use mergesort or heapsort (not quicksort)

Order Statistics

Some Order Statistics We Know

Select the i^{th} smallest of *n* elements (the element with rank *i*):

- i = 1: minimum
- *i* = *n*: maximum
- i = (n+1)/2: median

Design a simple algorithm to find the element with rank i

Naive algorithm: Sort and index i^{th} element. Worst-case running time $\in \theta(n \cdot \lg n) + \theta(1)$ $\in \theta(n \cdot \lg n)$...use mergesort or heapsort (not quicksort)

Randomized Divide and Conquer Algorithm

RAND-SELECT(array A, p, q, i) $\triangleright i^{\text{th}}$ smallest of $A[p \dots q]$

- 1: if p = q then
- 2: **return** *A*[*p*]
- 3: $r \leftarrow \mathsf{RAND}\text{-}\mathsf{PARTITION}(A, p, q)$
- 4: $k \leftarrow r p + 1$ $\triangleright k = \operatorname{rank}(A[r])$
- 5: if i = k then
- 6: **return** *A*[*r*]
- 7: if i < k then
- 8: **return** RAND-SELECT(A, p, r 1, i)
- 9: else return RAND-SELECT(A, r + 1, q, i k)

Randomized Select: Trace

Select the $i = 7^{\text{th}}$ smallest element from the array below:

Partition:

Now select the $7-4=3^{\rm rd}$ smallest element recursively.

Randomized Select: Running Time Analysis

- Analysis follows closely that of quicksort
- For simplicity, we will assume that all elements are distinct
- We will first gain intuition through lucky/unlucky scenarios

Lucky: [assume a 1 : 9 partition after RAND-PARTITION]

$$\begin{array}{rcl} T(n) & = & T(9n/10) + \theta(n) & n^{\log_{10/9}(1)} = n^0 = 1 \\ & = & \theta(n) & & \text{CASE 3 of master theorem} \end{array}$$

Unlucky: [assume one side of the partitioned array is empty]

$$T(n) = T(n-1) + \theta(n)$$
 arithmetic series
= $\theta(n^2)$ worse than sorting!!!

Randomized Select: Analysis of Expected Time

- Analysis similar to randomized quicksort
- Let T(n) be the random variable for the running time of RAND-SELECT on an input of size n, assuming random numbers are independent
- To obtain upper bound, assume the *i*th smallest element always falls on the larger side of the partition:

$$T(n) = \begin{cases} T(\max\{0, n-1\}) + \theta(n) & \text{if } 0:n-1 \text{ split} \\ T(\max\{1, n-2\}) + \theta(n) & \text{if } 1:n-2 \text{ split} \\ \cdots \\ T(\max\{n-1, 0\}) + \theta(n) & \text{if } n-1:0 \text{ split} \end{cases}$$

• Summing up we have:

$$E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(max\{k, n-k-1\}) + \theta(n)]$$

Randomized Select: Those pesky expectations...

$$E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n)$$

get $\theta(n)$ outside
$$= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n)$$

upper terms appear twice

Randomized Select: Those pesky expectations...

$$E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n)$$

get $\theta(n)$ outside
$$= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n)$$

upper terms appear twice

Prove: $E[T(n)] \leq c \cdot n$ for c > 0 (*c* large enough for base cases)

Randomized Select: Those pesky expectations...

$$E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n)$$

get $\theta(n)$ outside
$$= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n)$$

upper terms appear twice

Prove: $E[T(n)] \le c \cdot n$ for c > 0 (*c* large enough for base cases) Assume: $E[T(k)] \le c \cdot k$, where k < n

Randomized Select: Those pesky expectations...

$$E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n)$$

get $\theta(n)$ outside
$$= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n)$$

upper terms appear twice

Prove: $E[T(n)] \le c \cdot n$ for c > 0 (*c* large enough for base cases) **Assume:** $E[T(k)] \le c \cdot k$, where k < n**Then:** $E[T(n)] \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c \cdot k + \theta(n)$

Randomized Select: Those pesky expectations...

$$E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n)$$

get $\theta(n)$ outside
$$= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n)$$

upper terms appear twice

Prove: $E[T(n)] \le c \cdot n$ for c > 0 (*c* large enough for base cases) **Assume:** $E[T(k)] \le c \cdot k$, where k < n **Then:** $E[T(n)] \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c \cdot k + \theta(n)$ $\sum_{k=\lfloor n/2 \rfloor}^{n-1} k \le \frac{3}{8}n^2$ (exercise: show it)

Randomized Select: Those pesky expectations...

$$E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n)$$

get $\theta(n)$ outside
$$= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n)$$

upper terms appear twice

Prove: $E[T(n)] \le c \cdot n$ for c > 0 (c large enough for base cases) Assume: $E[T(k)] \le c \cdot k$, where k < nThen: $E[T(n)] \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c \cdot k + \theta(n)$ $\sum_{k=\lfloor n/2 \rfloor}^{n-1} k \le \frac{3}{8}n^2$ (exercise: show it) So: $E[T(n)] \le cn - (\frac{cn}{4} - \theta(n)) \le cn$ if $\frac{cn}{4} - \theta(n) \ge 0$

Randomized Select: Those pesky expectations...

$$E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n)$$

get $\theta(n)$ outside
$$= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n)$$

upper terms appear twice

Prove: $E[T(n)] \le c \cdot n$ for c > 0 (c large enough for base cases) Assume: $E[T(k)] \le c \cdot k$, where k < nThen: $E[T(n)] \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c \cdot k + \theta(n)$ $\sum_{k=\lfloor n/2 \rfloor}^{n-1} k \le \frac{3}{8}n^2$ (exercise: show it) So: $E[T(n)] \le cn - (\frac{cn}{4} - \theta(n)) \le cn$ if $\frac{cn}{4} - \theta(n) \ge 0$

Randomized Select: Those pesky expectations...

$$E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n)$$

get $\theta(n)$ outside
$$= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n)$$

upper terms appear twice

Prove: $E[T(n)] \le c \cdot n$ for c > 0 (c large enough for base cases) Assume: $E[T(k)] \le c \cdot k$, where k < nThen: $E[T(n)] \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c \cdot k + \theta(n)$ $\sum_{k=\lfloor n/2 \rfloor}^{n-1} k \le \frac{3}{8}n^2$ (exercise: show it) So: $E[T(n)] \le cn - (\frac{cn}{4} - \theta(n)) \le cn$ if $\frac{cn}{4} - \theta(n) \ge 0$ Easy to find a large value of c such that $\frac{cn}{4}$ dominates $\theta(n)$

Randomized Select: Those pesky expectations...

$$E[T(n)] = \frac{1}{n} \sum_{k=0}^{n-1} E[T(\max\{k, n-k-1\})] + \theta(n)$$

get $\theta(n)$ outside
$$= \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \theta(n)$$

upper terms appear twice

Prove: $E[T(n)] \le c \cdot n$ for c > 0 (c large enough for base cases) Assume: $E[T(k)] \le c \cdot k$, where k < nThen: $E[T(n)] \le \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} c \cdot k + \theta(n)$ $\sum_{k=\lfloor n/2 \rfloor}^{n-1} k \le \frac{3}{8}n^2$ (exercise: show it) So: $E[T(n)] \le cn - (\frac{cn}{4} - \theta(n)) \le cn$ if $\frac{cn}{4} - \theta(n) \ge 0$ Easy to find a large value of c such that $\frac{cn}{4}$ dominates $\theta(n)$

Randomized Select: Summary

- Works fast in the average case: linear expected time
- Very simple and fast algorithm in practice
- But, worst-case behavior is $\theta(n^2)$
- **Question:** Is there an algorithm that runs in linear time even in the worst case?
- **Answer:** Yes in 1973, Blum, Floyd, Pratt, and Rivest designed such an algorithm
- **Basic Idea:** Generate good pivots recursively to guarantee a good split

Worst-case Linear-time Order Statistics

SELECT(i,n)

- 1: Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- 2: Recursively SELECT the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot
- 3: Partition around the pivot. Let k = rank(x)
- 4: if i = k then
- 5: return x
- 6: **if** i < k **then**
- 7: recursively SELECT i^{th} smallest element in lower part
- 8: **if** i > k **then**
- 9: recursively SELECT $(i k)^{\text{th}}$ smallest element in upper part

Note: lines 3.-9. are the same as in RAND-SELECT

Selection of Order Statistics in Expected Linear Time Selection of Order Statistics in Worst-case Linear Time Order Statistics: Conclusions

SELECT: Choosing the Pivot

Here is the input: *n* elements.

Selection of Order Statistics in Expected Linear Time Selection of Order Statistics in Worst-case Linear Time Order Statistics: Conclusions

SELECT: Choosing the Pivot

1 Divide the *n* elements into groups of 5.

Selection of Order Statistics in Expected Linear Time Selection of Order Statistics in Worst-case Linear Time Order Statistics: Conclusions

lesser

greater

SELECT: Choosing the Pivot

• Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)

Selection of Order Statistics in Expected Linear Time Selection of Order Statistics in Worst-case Linear Time Order Statistics: Conclusions

SELECT: Choosing the Pivot

- Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- Recursively SELECT the median x of the [n/5] group medians to be the pivot.

Amarda Shehu

Lecture: Analysis of Algorithms (CS583 - 004)

lesser

greater

Selection of Order Statistics in Expected Linear Time Selection of Order Statistics in Worst-case Linear Time Order Statistics: Conclusions

Select: Running Time Analysis

At least half of the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor/2 \rfloor = \lfloor n/10 \rfloor$ elements.

greater

lesser

Selection of Order Statistics in Expected Linear Time Selection of Order Statistics in Worst-case Linear Time Order Statistics: Conclusions

Select: Running Time Analysis

At least half the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor/2 \rfloor = \lfloor n/10 \rfloor$ group medians.

 If we assume that all elements are distinct, then there are 3⌊n/10⌋ elements ≤ x. lesser

Selection of Order Statistics in Expected Linear Time Selection of Order Statistics in Worst-case Linear Time Order Statistics: Conclusions

lesser

greater

Select: Running Time Analysis

At least half the group medians are $\leq x$, which is at least $\lfloor \lfloor n/5 \rfloor/2 \rfloor = \lfloor n/10 \rfloor$ group medians.

- If we assume that all elements are distinct, then there are 3⌊n/10⌋ elements ≤ x.
- Similarly, at least $3\lfloor n/10 \rfloor$ elements are $\ge x$

Select: Running Time Analysis

- For $n \ge 50$, we have $3\lfloor n/10 \rfloor \ge n/4$. So, the call to SELECT in lines 4 and on is executed recursively on at most 3n/4 elements
- The recurrence for the running time can assume that lines 4 and on takes T(3n/4) in the worst case
- For n < 50, we know that the worst-case time is $T(n) \in \theta(1)$

The recurrence is: $T(n) = T(n/5) + \theta(n) + T(3n/4)$

Breakdown:	Substitution:
• Line 1: θ(n)	$T(n) \leq \frac{1}{5}c \cdot n + \frac{3}{4}c \cdot n + \theta(n)$
• Line 2: <i>T</i> (<i>n</i> /5)	$\begin{array}{rcl} T(n) & \leq & \frac{1}{5}c \cdot n + \frac{3}{4}c \cdot n + \theta(n) \\ & = & \frac{19}{20}c \cdot n + \theta(n) \\ & = & c \cdot n - \left(\frac{1}{20}c \cdot n - \theta(n)\right) \end{array}$
Line 3: θ(n)	$\leq c \cdot n$
• Lines \geq 4: $T(3n/4)$	if c is large enough to dominate $\theta(n)$

Order Statistics: Conclusions

- Since the work at each level of recursion is a constant fraction (19/20) smaller, the work per level is a geometric series dominated by the linear work at the root
- In practice, this algorithm runs slowly, because the constant in front of *n* is large
- The randomized algorithm is far more practical and simpler to implement
- Exercise: Why not divide into groups of 3?