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Order Statistics

Some Order Statistics We Know

Select the i th smallest of n elements (the element with rank i):

i = 1: minimum

i = n: maximum

i = (n + 1)/2: median

Design a simple algorithm to find the element with rank i

Naive algorithm: Sort and index i th element.
Worst-case running time ∈ θ(n · lgn) + θ(1)

∈ θ(n · lgn)
...use mergesort or heapsort (not quicksort)
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Randomized Divide and Conquer Algorithm

RAND-SELECT(array A, p, q, i) Bi th smallest of A[p . . . q]

1: if p = q then
2: return A[p]
3: r ← RAND-PARTITION(A, p, q)
4: k ← r − p + 1 Bk = rank(A[r])
5: if i = k then
6: return A[r ]
7: if i < k then
8: return RAND-SELECT(A, p, r − 1, i)
9: else return RAND-SELECT(A, r + 1, q, i − k)
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Randomized Select: Trace

Select the i = 7th smallest element from the array below:

Partition:

Now select the 7− 4 = 3rd smallest element recursively.
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Randomized Select: Running Time Analysis

Analysis follows closely that of quicksort

For simplicity, we will assume that all elements are distinct

We will first gain intuition through lucky/unlucky scenarios

Lucky: [assume a 1 : 9 partition after RAND-PARTITION]

T (n) = T (9n/10) + θ(n) nlog10/9(1) = n0 = 1
= θ(n) CASE 3 of master theorem

Unlucky: [assume one side of the partitioned array is empty]

T (n) = T (n − 1) + θ(n) arithmetic series
= θ(n2) worse than sorting!!!

Amarda Shehu Lecture: Analysis of Algorithms (CS583 - 004)



Outline of Today’s Class
Order Statistics

Selection of Order Statistics in Expected Linear Time
Selection of Order Statistics in Worst-case Linear Time
Order Statistics: Conclusions

Randomized Select: Analysis of Expected Time

Analysis similar to randomized quicksort
Let T (n) be the random variable for the running time of
RAND-SELECT on an input of size n, assuming random
numbers are independent
To obtain upper bound, assume the i th smallest element
always falls on the larger side of the partition:

T (n) =


T (max{0, n − 1}) + θ(n) if 0:n − 1 split
T (max{1, n − 2}) + θ(n) if 1:n − 2 split
. . .
T (max{n − 1, 0}) + θ(n) if n − 1:0 split

Summing up we have:

E [T (n)] =
1

n

n−1∑
k=0

E [T (max{k , n − k − 1}) + θ(n)]
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Randomized Select: Those pesky expectations...

E [T (n)] = 1
n

∑n−1
k=0 E [T (max{k , n − k − 1})] + θ(n)

get θ(n) outside

= 2
n

∑n−1
k=bn/2c E [T (k)] + θ(n)

upper terms appear twice

Prove: E [T (n)] ≤ c · n for c > 0 (c large enough for base cases)

Assume: E [T (k)] ≤ c · k, where k < n

Then: E [T (n)] ≤ 2
n

∑n−1
k=bn/2c c · k + θ(n)∑n−1

k=bn/2c k ≤ 3
8
n2 (exercise: show it)

So: E [T (n)] ≤ cn − ( cn4 − θ(n)) ≤ cn if cn
4 − θ(n) ≥ 0

Easy to find a large value of c such that cn
4 dominates θ(n)
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Randomized Select: Summary

Works fast in the average case: linear expected time

Very simple and fast algorithm in practice

But, worst-case behavior is θ(n2)

Question: Is there an algorithm that runs in linear time even
in the worst case?

Answer: Yes - in 1973, Blum, Floyd, Pratt, and Rivest
designed such an algorithm

Basic Idea: Generate good pivots recursively to guarantee a
good split
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Worst-case Linear-time Order Statistics

SELECT(i,n)
1: Divide the n elements into groups of 5. Find the median of

each 5-element group by rote.
2: Recursively SELECT the median x of the bn/5c group medians

to be the pivot
3: Partition around the pivot. Let k = rank(x)
4: if i = k then
5: return x
6: if i < k then
7: recursively SELECT i th smallest element in lower part
8: if i > k then
9: recursively SELECT (i − k)th smallest element in upper part

Note: lines 3.-9. are the same as in RAND-SELECT
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SELECT: Choosing the Pivot

Here is the input: n elements.
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SELECT: Choosing the Pivot

1 Divide the n elements into groups of 5. Find the
median of each 5-element group by rote.

2 Recursively SELECT the median x of the bn/5c
group medians to be the pivot.
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Select: Running Time Analysis

At least half of the group medians are ≤ x ,
which is at least bbn/5c/2c = bn/10c elements.
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Select: Running Time Analysis

At least half the group medians are ≤ x , which
is at least bbn/5c/2c = bn/10c group medians.

If we assume that all elements are distinct, then
there are 3bn/10c elements ≤ x.
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Select: Running Time Analysis

At least half the group medians are ≤ x , which
is at least bbn/5c/2c = bn/10c group medians.

If we assume that all elements are distinct, then
there are 3bn/10c elements ≤ x.
Similarly, at least 3bn/10c elements are ≥ x
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Select: Running Time Analysis

For n ≥ 50, we have 3bn/10c ≥ n/4. So, the call to SELECT
in lines 4 and on is executed recursively on at most 3n/4
elements

The recurrence for the running time can assume that lines 4
and on takes T (3n/4) in the worst case

For n < 50, we know that the worst-case time is T (n) ∈ θ(1)

The recurrence is: T (n) = T (n/5) + θ(n) + T (3n/4)

Breakdown:

Line 1: θ(n)

Line 2: T (n/5)

Line 3: θ(n)

Lines ≥ 4: T (3n/4)

Substitution:
T (n) ≤ 1

5c · n + 3
4c · n + θ(n)

= 19
20c · n + θ(n)

= c · n − ( 1
20c · n − θ(n))

≤ c · n
if c is large enough to dominate θ(n)
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Order Statistics: Conclusions

Since the work at each level of recursion is a constant fraction
(19/20) smaller, the work per level is a geometric series
dominated by the linear work at the root

In practice, this algorithm runs slowly, because the constant in
front of n is large

The randomized algorithm is far more practical and simpler to
implement

Exercise: Why not divide into groups of 3?
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