Lecture: Analysis of Algorithms (CS583-004)

Amarda Shehu

Spring 2019
(1) Outline of Today's Class
(2) Order Statistics

- Selection of Order Statistics in Expected Linear Time - Randomized Divide and Conquer
- Selection of Order Statistics in Worst-case Linear Time
- Median of Medians
- Analysis of Worst-case Running Time
- Order Statistics: Conclusions

Order Statistics

Some Order Statistics We Know

Select the $i^{\text {th }}$ smallest of n elements (the element with rank i):

- $i=1$: minimum
- $i=n$: maximum
- $i=(n+1) / 2$: median

Order Statistics

Some Order Statistics We Know

Select the $i^{\text {th }}$ smallest of n elements (the element with rank i):

- $i=1$: minimum
- $i=n$: maximum
- $i=(n+1) / 2$: median

Design a simple algorithm to find the element with rank i

Order Statistics

Some Order Statistics We Know

Select the $i^{\text {th }}$ smallest of n elements (the element with rank i):

- $i=1$: minimum
- $i=n$: maximum
- $i=(n+1) / 2$: median

Design a simple algorithm to find the element with rank i

Order Statistics

Some Order Statistics We Know

Select the $i^{\text {th }}$ smallest of n elements (the element with rank i):

- $i=1$: minimum
- $i=n$: maximum
- $i=(n+1) / 2$: median

Design a simple algorithm to find the element with rank i
Naive algorithm: Sort and index $i^{\text {th }}$ element.

Order Statistics

Some Order Statistics We Know

Select the $i^{\text {th }}$ smallest of n elements (the element with rank i):

- $i=1$: minimum
- $i=n$: maximum
- $i=(n+1) / 2$: median

Design a simple algorithm to find the element with rank i
Naive algorithm: Sort and index $i^{\text {th }}$ element.
Worst-case running time $\in \theta(n \cdot \lg n)+\theta(1)$

$$
\in \quad \theta(n \cdot \lg n)
$$

Order Statistics

Some Order Statistics We Know

Select the $i^{\text {th }}$ smallest of n elements (the element with rank i):

- $i=1$: minimum
- $i=n$: maximum
- $i=(n+1) / 2$: median

Design a simple algorithm to find the element with rank i
Naive algorithm: Sort and index $i^{\text {th }}$ element.
Worst-case running time $\in \theta(n \cdot \lg n)+\theta(1)$
$\in \theta(n \cdot \lg n)$
use mergesort or heapsort (not quicksort)

Order Statistics

Some Order Statistics We Know

Select the $i^{\text {th }}$ smallest of n elements (the element with rank i):

- $i=1$: minimum
- $i=n$: maximum
- $i=(n+1) / 2$: median

Design a simple algorithm to find the element with rank i
Naive algorithm: Sort and index $i^{\text {th }}$ element.
Worst-case running time $\in \theta(n \cdot \lg n)+\theta(1)$ $\in \theta(n \cdot \lg n)$
...use mergesort or heapsort (not quicksort)

Randomized Divide and Conquer Algorithm

RAND-SELECT(array A, p, q, i) $\triangleright i^{\text {th }}$ smallest of $A[p \ldots q]$
1: if $p=q$ then
2: return $A[p]$
3: $r \leftarrow \operatorname{RAND}-\mathrm{PARTITION}(A, p, q)$
4: $k \leftarrow r-p+1 \quad \triangleright k=\operatorname{rank}(\mathrm{A}[\mathrm{r}])$
5: if $i=k$ then
6: return $A[r]$
7: if $i<k$ then
8: return RAND-SELECT $(A, p, r-1, i)$
9: else return RAND-SELECT $(A, r+1, q, i-k)$

p
r

Randomized Select: Trace

Select the $i=7^{\text {th }}$ smallest element from the array below:

6	10	13	5	8	3	2	11

pivot

Partition:

Now select the 7-4 = $3^{\text {rd }}$ smallest element recursively.

Randomized Select: Running Time Analysis

- Analysis follows closely that of quicksort
- For simplicity, we will assume that all elements are distinct
- We will first gain intuition through lucky/unlucky scenarios

Lucky: [assume a 1:9 partition after RAND-PARTITION]

$$
\begin{aligned}
T(n) & =T(9 n / 10)+\theta(n) & & n^{\log _{10 / 9}(1)}=n^{0}=1 \\
& =\theta(n) & & \text { CASE } 3 \text { of master theorem }
\end{aligned}
$$

Unlucky: [assume one side of the partitioned array is empty]

$$
\begin{aligned}
T(n) & =T(n-1)+\theta(n) & & \text { arithmetic series } \\
& =\theta\left(n^{2}\right) & & \text { worse than sorting!!! }
\end{aligned}
$$

Randomized Select: Analysis of Expected Time

- Analysis similar to randomized quicksort
- Let $T(n)$ be the random variable for the running time of RAND-SELECT on an input of size n, assuming random numbers are independent
- To obtain upper bound, assume the $i^{\text {th }}$ smallest element always falls on the larger side of the partition:

$$
T(n)= \begin{cases}T(\max \{0, n-1\})+\theta(n) & \text { if } 0: n-1 \text { split } \\ T(\max \{1, n-2\})+\theta(n) & \text { if } 1: n-2 \text { split } \\ \cdots & \\ T(\max \{n-1,0\})+\theta(n) & \text { if } n-1: 0 \text { split }\end{cases}
$$

- Summing up we have:

$$
E[T(n)]=\frac{1}{n} \sum_{k=0}^{n-1} E[T(\max \{k, n-k-1\})+\theta(n)]
$$

Randomized Select: Those pesky expectations...

$$
\begin{array}{r}
E[T(n)]=\frac{1}{n} \sum_{k=0}^{n-1} E[T(\max \{k, n-k-1\})]+\theta(n) \\
=\frac{\operatorname{get} \theta(n) \text { outside }}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} E[T(k)]+\theta(n) \\
\text { upper terms appear twice }
\end{array}
$$

Outline of Today's Class

Randomized Select: Those pesky expectations...

$$
\begin{array}{r}
E[T(n)]=\frac{1}{n} \sum_{k=0}^{n-1} E[T(\max \{k, n-k-1\})]+\theta(n) \\
=\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} E[T(k)]+\theta(n) \\
\quad \text { upper terms appear twice } \theta(n) \text { outside }
\end{array}
$$

Prove: $E[T(n)] \leq c \cdot n$ for $c>0$ (c large enough for base cases)

Randomized Select: Those pesky expectations...

$$
\begin{array}{r}
E[T(n)]=\frac{1}{n} \sum_{k=0}^{n-1} E[T(\max \{k, n-k-1\})]+\theta(n) \\
=\frac{\operatorname{get} \theta(n) \text { outside }}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} E[T(k)]+\theta(n) \\
\text { upper terms appear twice }
\end{array}
$$

Prove: $E[T(n)] \leq c \cdot n$ for $c>0$ (c large enough for base cases) Assume: $E[T(k)] \leq c \cdot k$, where $k<n$

Randomized Select: Those pesky expectations...

$$
\begin{array}{r}
E[T(n)]=\frac{1}{n} \sum_{k=0}^{n-1} E[T(\max \{k, n-k-1\})]+\theta(n) \\
=\frac{\operatorname{get} \theta(n) \text { outside }}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} E[T(k)]+\theta(n) \\
\text { upper terms appear twice }
\end{array}
$$

Prove: $E[T(n)] \leq c \cdot n$ for $c>0$ (c large enough for base cases)
Assume: $E[T(k)] \leq c \cdot k$, where $k<n$
Then: $E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} c \cdot k+\theta(n)$

Randomized Select: Those pesky expectations...

$$
\begin{array}{r}
E[T(n)]=\frac{1}{n} \sum_{k=0}^{n-1} E[T(\max \{k, n-k-1\})]+\theta(n) \\
=\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} \theta(n) \text { outside } \\
\text { upper terms appear twice }
\end{array}
$$

Prove: $E[T(n)] \leq c \cdot n$ for $c>0$ (c large enough for base cases)
Assume: $E[T(k)] \leq c \cdot k$, where $k<n$
Then: $E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} c \cdot k+\theta(n)$

Randomized Select: Those pesky expectations...

$$
\begin{array}{r}
E[T(n)]=\frac{1}{n} \sum_{k=0}^{n-1} E[T(\max \{k, n-k-1\})]+\theta(n) \\
=\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} \theta(n) \text { outside } \\
\text { upper terms appear twice }
\end{array}
$$

Prove: $E[T(n)] \leq c \cdot n$ for $c>0$ (c large enough for base cases)
Assume: $E[T(k)] \leq c \cdot k$, where $k<n$
Then: $E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} c \cdot k+\theta(n)$

$$
\sum_{k=\lfloor n / 2\rfloor}^{n-1} k \leq \frac{3}{8} n^{2} \text { (exercise: show it) }
$$

So: $E[T(n)] \leq c n-\left(\frac{c n}{4}-\theta(n)\right) \leq c n$ if $\frac{c n}{4}-\theta(n) \geq 0$

Randomized Select: Those pesky expectations...

$$
\begin{array}{r}
E[T(n)]=\frac{1}{n} \sum_{k=0}^{n-1} E[T(\max \{k, n-k-1\})]+\theta(n) \\
=\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} \theta(n) \text { outside } \\
\text { upper terms appear twice }
\end{array}
$$

Prove: $E[T(n)] \leq c \cdot n$ for $c>0$ (c large enough for base cases)
Assume: $E[T(k)] \leq c \cdot k$, where $k<n$
Then: $E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} c \cdot k+\theta(n)$

$$
\sum_{k=\lfloor n / 2\rfloor}^{n-1} k \leq \frac{3}{8} n^{2} \text { (exercise: show it) }
$$

So: $E[T(n)] \leq c n-\left(\frac{c n}{4}-\theta(n)\right) \leq c n$ if $\frac{c n}{4}-\theta(n) \geq 0$

Randomized Select: Those pesky expectations...

$$
\begin{array}{r}
E[T(n)]=\frac{1}{n} \sum_{k=0}^{n-1} E[T(\max \{k, n-k-1\})]+\theta(n) \\
=\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} \theta(n) \text { outside } \\
\text { upper terms appear twice }
\end{array}
$$

Prove: $E[T(n)] \leq c \cdot n$ for $c>0$ (c large enough for base cases)
Assume: $E[T(k)] \leq c \cdot k$, where $k<n$
Then: $E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} c \cdot k+\theta(n)$

$$
\sum_{k=\lfloor n / 2\rfloor}^{n-1} k \leq \frac{3}{8} n^{2} \text { (exercise: show it) }
$$

So: $E[T(n)] \leq c n-\left(\frac{c n}{4}-\theta(n)\right) \leq c n$ if $\frac{c n}{4}-\theta(n) \geq 0$
Easy to find a large value of c such that $\frac{c n}{4}$ dominates $\theta(n)$

Randomized Select: Those pesky expectations...

$$
\begin{array}{r}
E[T(n)]=\frac{1}{n} \sum_{k=0}^{n-1} E[T(\max \{k, n-k-1\})]+\theta(n) \\
=\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor} \theta(n) \text { outside } \\
\text { upper terms appear twice }
\end{array}
$$

Prove: $E[T(n)] \leq c \cdot n$ for $c>0$ (c large enough for base cases)
Assume: $E[T(k)] \leq c \cdot k$, where $k<n$
Then: $E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} c \cdot k+\theta(n)$

$$
\sum_{k=\lfloor n / 2\rfloor}^{n-1} k \leq \frac{3}{8} n^{2} \text { (exercise: show it) }
$$

So: $E[T(n)] \leq c n-\left(\frac{c n}{4}-\theta(n)\right) \leq c n$ if $\frac{c n}{4}-\theta(n) \geq 0$
Easy to find a large value of c such that $\frac{c n}{4}$ dominates $\theta(n)$

Randomized Select: Summary

- Works fast in the average case: linear expected time
- Very simple and fast algorithm in practice
- But, worst-case behavior is $\theta\left(n^{2}\right)$
- Question: Is there an algorithm that runs in linear time even in the worst case?
- Answer: Yes - in 1973, Blum, Floyd, Pratt, and Rivest designed such an algorithm
- Basic Idea: Generate good pivots recursively to guarantee a good split

Worst-case Linear-time Order Statistics

SELECT(i,n)

1: Divide the n elements into groups of 5 . Find the median of each 5-element group by rote.
2: Recursively SELECT the median x of the $\lfloor n / 5\rfloor$ group medians to be the pivot
3: Partition around the pivot. Let $k=\operatorname{rank}(x)$
4: if $i=k$ then
5: return x
6: if $i<k$ then
7: recursively SELECT $i^{\text {th }}$ smallest element in lower part
8: if $i>k$ then
9: recursively SELECT $(i-k)^{\text {th }}$ smallest element in upper part
Note: lines 3.-9. are the same as in RAND-SELECT

Outline of Today's Class
Order Statistics

SELECT: Choosing the Pivot

Here is the input: n elements.

SELECT: Choosing the Pivot

(1) Divide the n elements into groups of 5 .

SELECT: Choosing the Pivot

lesser
(1) Divide the n elements into groups of 5 . Find the median of each 5 -element group by rote.

SELECT: Choosing the Pivot

lesser
 group medians to be the pivot.
(1) Divide the n elements into groups of 5 . Find the median of each 5 -element group by rote.
(2) Recursively SELECT the median x of the $\lfloor n / 5\rfloor$

Select: Running Time Analysis

lesser
At least half of the group medians are $\leq x$, which is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ elements.

Select: Running Time Analysis

lesser

greater

Select: Running Time Analysis

 is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ group medians.

- If we assume that all elements are distinct, then there are $3\lfloor n / 10\rfloor$ elements $\leq x$.
- Similarly, at least $3\lfloor n / 10$ 」 elements are $\geq x$

greater

Select: Running Time Analysis

- For $n \geq 50$, we have $3\lfloor n / 10\rfloor \geq n / 4$. So, the call to SELECT in lines 4 and on is executed recursively on at most $3 n / 4$ elements
- The recurrence for the running time can assume that lines 4 and on takes $T(3 n / 4)$ in the worst case
- For $n<50$, we know that the worst-case time is $T(n) \in \theta(1)$

The recurrence is: $T(n)=T(n / 5)+\theta(n)+T(3 n / 4)$

Breakdown:

- Line 1: $\theta(n)$
- Line 2: $T(n / 5)$
- Line 3: $\theta(n)$

Substitution:

$$
\begin{aligned}
T(n) & \leq \frac{1}{5} c \cdot n+\frac{3}{4} c \cdot n+\theta(n) \\
& =\frac{9}{20} c \cdot n+\theta(n) \\
& =c \cdot n-\left(\frac{1}{20} c \cdot n-\theta(n)\right) \\
& \leq c \cdot n
\end{aligned}
$$

- Lines \geq 4: $T(3 n / 4)$
if c is large enough to dominate $\theta(n)$

Order Statistics: Conclusions

- Since the work at each level of recursion is a constant fraction (19/20) smaller, the work per level is a geometric series dominated by the linear work at the root
- In practice, this algorithm runs slowly, because the constant in front of n is large
- The randomized algorithm is far more practical and simpler to implement
- Exercise: Why not divide into groups of 3 ?

