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Case Study 1: Insertion Sort
Case Study 2: Mergesort

The Sorting Problem

Problem: Sort real numbers in ascending order

Problem Statement:

Input: A sequence of n numbers 〈a1, . . . , an〉
Output: A permutation 〈a′

1, . . . , a
′

n〉 s.t. a
′

1 ≤ a
′

2 ≤ . . . ≤ a
′

n

There are many sorting algorithms. How many can you list?
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An Incomplete List of Sorting Algorithms

Selection sort

Insertion sort

Library sort

Shell sort

Gnome sort

Bubble sort

Comb sort

Flash sort

Bucket sort

Radix sort

Counting sort

Pigeonhole sort

Mergesort

Quicksort

Heap sort

Smooth sort

Binary tree sort

Topological sort
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Outline of Today’s Class
Design and Analysis of Algorithms for Sorting

Efficiency: Insertion Sort vs. Mergesort

Case Study 1: Insertion Sort
Case Study 2: Mergesort

Case Study 1: Insertion Sort

Split in teams and recall the idea behind insertion sort

Hint:

If you ever sorted a deck of
cards, you have done
insertion sort

Move over a card, insert it
in correct position

j points to current element

1 . . . j − 1 are sorted deck of cards

j . . . n is yet unsorted (pile)

Basic operation: pick and insert
A[j ] correctly in A[1 . . . j − 1]

Termination: when j > n
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Insertion Sort: Pseudocode and Trace

InsertionSort(arrayA[1 . . . n])

1: for j ← 2 to n do
2: Temp ← A[j ]
3: i ← j − 1
4: while i > 0 and A[i ] > Temp

do
5: A[i + 1]← A[i ]
6: i ← i − 1
7: A[i + 1]← Temp

Loop invariant: At the start of
each iteration j , A[1 . . . j − 1] is
sorted.
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Case Study 1: Insertion Sort
Case Study 2: Mergesort

Insertion Sort: Formal Proof of Correctness

1 Initialization: At start of iteration j = 2, A[1 . . . 1] is sorted.
Yes, invariant holds.

2 Maintenance: Supposing that after iteration j the loop
invariant holds, show that it still holds after the next iteration.
Go over the pseudocode to convince yourselves of this.

3 Termination: The algorithm terminates when j = n + 1. At
this point, the loop invariant states that A[1 . . . n] is sorted.
That is, the entire sequence of elements is in sorted order.

Q. E. D

Note: the structure of the proof should remind you of proofs by
induction. You are expected to work through formal proofs of
correctness in this class.
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Properties of Insertion Sort

Insertion sort is stable. Why?

Insertion sort is an in-place algorithm. Why?

What does this mean for the space requirements of the
algorithm?

Insertion sort is an online algorithm. What does this mean?

Insertion sort implements the direct paradigm.

How efficient is insertion sort? Let’s analyze its running time.
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Insertion Sort: Running Time

Let T (n) =time it takes InsertionSort to sort a sequence of n
elements. Let ci denote the constant time it takes to execute
statement Si in line i . Start with T (n) = time(S1).

T (n) =
∑n

j=2{c1 + time(S2) + time(S3) + time(S4) + time(S7)}
=

∑n
j=2{c1 + c2 + c3 + time(S4) + time(S7)}

≤
∑n

j=2{c1 + c2 + c3 +
∑i=j−1

0 (c4 + c5 + c6) + c7}
= (n − 1) · (c1 + c2 + c3 + c7) +

∑n
j=2

∑i=j−1
0 (c4 + c5 + c6)

= (n − 1) · (c1 + c2 + c3 + c7) +
∑n

j=2 j(c4 + c5 + c6)

= (n − 1) · (c1 + c2 + c3 + c7) + (c4 + c5 + c6)
∑n

j=2 j
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Insertion Sort: Running Time

= (n − 1) · (c1 + c2 + c3 + c7) + (c4 + c5 + c6) · (n·(n+1)
2 − 1)

= (n − 1)A + (n·(n+1)
2 − 1)B

So: T (n) ≤ An − A + B n2

2 + B n
2 − B

What is T (n) in the best-case scenario?

What is the worst-case scenario? What is T (n) in that case?

What is the average running time T (n) of insertion sort?
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Case Study 2: Mergesort

Basic Idea behind Mergesort:

Mergesort implements the
divide and conquer paradigm

Each execution divides the
sequence of elements in two
halves until single element
subsequences remain

The sorted halves are then
merged in a way that
preserves the sorting order

Mergesort(arrayA, p, r)

1: if p < r then
2: q ← (p + r)/2
3: Mergesort(A, p, q)
4: Mergesort(A, q + 1, r)
5: Merge(A, p, q, r)

1 Trace Mergesort on the
sequence {5, 2, 4, 5, 6, 1}

2 Prove correctness (hint:
assume n = 2k and follow
the recursion to obtain a
simple proof by induction)
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Mergesort is stable. Why?

Mergesort is not an in-place algorithm. Why?

What does this mean for the space requirements of the
algorithm?

Mergesort is not an online algorithm. What does this mean?

Mergesort implements the divide and conquer paradigm.

How efficient is mergesort? Let’s analyze its running time.
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Mergesort: Running Time

Let T (n) =time it takes Mergesort to sort a sequence of n
elements. Let c denote the constant time it takes to sort a
sequence of length n = 1.

T (n) = c if n = 1
T (n) = T (n/2) + T (n/2) + time(Merge(n/2, n/2))

So:

T (n) =

{
c if n = 1
2T (n2 ) + cn if n > 1

where cn is the time to merge two subsequences of length n/2.
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Comparing Insertion sort to Mergesort

Which algorithm would you prefer and why?

Which one is faster?

What happens when you need in-place sorting?

What about online sorting?

What happens when the sequences are very long?

How does Mergesort scale vs. Insertion sort?
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Which algorithm would you prefer and why?

Which one is faster?

What happens when you need in-place sorting?
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What happens when the sequences are very long?
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Need to develop notations to compare functions
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