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Definition (Random walk)

Let G = (V ,E) be a connected, undirected graph. A random walk on G ,
starting from vertex s ∈ V , is a random process to follow an outgoing edge
chosen uniformly at random. A Markov chain is similar, except the outgoing
edge is chosen according to an arbitrary distribution.

Algorithm 1 Random walk
1: u := s.
2: for i = 1 to T do
3: choose a neighbor v of u, uniformly at random;
4: u := v ;
5: end for

1 1D line

2 2D grid/graph

3 3D grid/graph

4 . . .
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Exercise

Let G be the complete graph Kn on n vertices. Let u and v be two vertices in
G . Prove that:

1 The expected number of steps in a simple random walk that begins at u
and ends upon first reaching v is n − 1.

2 The expected number of steps to visit all vertices in G starting from u is
(n − 1)Hn−1, where Hn−1 =

∑n−1
j=1 1/j is the Harmonic number.
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Example (Betting game)

A player bets $1, and either loses it or wins an addition dollar with probability
1/2.
Think of this as a random walk on a line graph, where each node represents the
amount of wealth at any point of time.
We can learn about the probability distribution of the amount of money at a
given time. We can also ask about the probability of the player running out of
money before winning a certain amount, and if that happens, what is the
expected amount of time before that happens.
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Random walk on a line

Lemma

Consider an infinite random walk on the integer line, starting from 0. The
expected number of times that such a walk visits 0 is unbounded.

Lemma

Consider a random walk on the integer line, starting from 0. If he walks at −1
or 3, then this random walk terminates. What is the probability that this walk
terminates?

Figure : from “Mathematics for Computer Science” by Tom Leighton et. al, MIT 2010
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Problem

Consider a random walk on the integer line, starting from n. The random walk
terminates when he stops at 0 or w. What is the probability that this random
walk terminates at w?

Proof.

Let Rn be the probability that this walker reaches w . We have

R0 = 0

Rw = 1

Rn =
1

2
Rn−1 +

1

2
Rn+1

Rn+1 = 2Rn − Rn−1

Assume Rn = a · n + b. Note R0 = a · 0 + b = b = 0 and Rw = a · w + b = 1.
We have a = 1/w and b = 0 and Rn = n/w .
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Problem

Consider a random walk on the integer line, starting from n. The random walk
terminates when he stops at 0 or w. What is the expected number of steps for
this random walker reaches 0 or w?

Proof.

Let Xn be the expected steps. We have

X0 = 0

Xw = 0

If he starts somewhere in the middle (0 < n < w), we can again break down
the analysis into two cases based on his first step:

1 If his first step is to the left, then he lands at position n − 1 and can
expect to move for another Xn−1 steps.

2 If his first step is to the right, then he lands at position n + 1 and can
expect to move for another Xn+1 steps.

So Xn = 1 + 1
2
Xn−1 + 1

2
Xn+1. We thus have Xn = w · n − n2.

Amarda Shehu, Fei Li Network Science: Principles and Applications



Summary (random walk on a line)

A gambler goes to Las Vegas with $n in her pocket. Her plan is to make only
$1 bets and somehow she has found a casino that she will win or lose $1 on
each bet with probability 1/2. She will play until she is broke or she has won
$m.

1 The gambler goes home broke with probability n
w

= m
n+m

.

2 The gambler goes home a winner with probability w−n
w

= n
n+w

.

3 The gambler goes home with probability n
n+m

+ m
n+m

= 1.

4 The number of bets before the gambler goes home is expected to be
n(w − n) = n ·m.

5 If the gambler gets greedy and keeps playing until she goes broke, then the
gambler eventually goes broke with probability 1, and the number of bets
before the gambler goes broke is expected to be infinite.
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Quantities associate with random walks

Definition (Stationary distribution, hitting time Hu,v , cover time Gu, cover time
C(G) of G)

Stationary distribution: What is the distribution if we run the random walk for
an infinite number of steps? (See the next page.)
Hitting time Hu,v : the (expected) hitting time from u to v , i.e., the expected
number of steps taken by a random walking starting from u to visit v for the
first time.
(Commute time Cu,v : the expected time to get from u to v , and back to u.)
Cover time Cu: the (expected) time from u, i.e., the expected number of steps
taken by a random walk starting from u to visit all vertices of G .
Cover time C(G) := maxu∈V Cu.
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Stationary distribution

Definition (Transition matrix)

A random walk (or Markov chain), is most conveniently represented by its
transition matrix P. P is a square matrix denoting the probability of
transitioning from any vertex in the graph to any other vertex. Formally,

Pu,v = Pr[going from u to v , given that we are at u].

For a random walk, Pu,v = 1/du if (u, v) ∈ E , and 0 otherwise (where du is the
degree of u).
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Definition (Stationary distribution)

If we have a distribution π over the nodes, we can obtain the distribution after
one step by computing π′ = PT · π (= (πT · P)T ) (PT is P’s transpose). A
stationary distribution πs is a distribution with the property that PT · πs = πs .

Remark

Stationary distributions are not always unique, but under certain conditions,
they are. It also is the case that under certain conditions, limt→∞(PT )tπ = πs

for all starting distributions π.
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Lemma

Consider G = (V ,E) with |E | = m. Pv,u = dv
2m

= 1 if (v , u) ∈ E and 0
otherwise. P is a stationary distribution.

Proof.

(PT · π)u =
∑
v

Pv,u · πv

=
∑

v :(v,u)∈E

dv
2m
· 1

dv

=
∑

v :(v,u)∈E

1

2m

= πu
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Commute time

Lemma

∀(u, v) : (u, v) ∈ E, we have Cu,v ≤ 2m.

Proof.

(Sketch.) If we view the process as a random walk on sequence of edges, we
can bound the commute time by the expected amount of time between
consecutive occurrences of the edge u → v .
The expected length of the gap between consecutive occurrences if we run for t
steps is simply t divided by the actual number of times we see the edge u → v .
We also know that since the stationary distribution is uniform, we expect to see
the edge t/(2m) times. As t goes to infinity, the actual number of times we
see u → v approaches its expectation t/(2m) with probability 1 (due to the law
of large numbers). We can then approximate the actual number seen by the
expected number seen, and thus we expect the length of the gap to be
t/(t/(2m)) = 2m.
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Cover time

If we had a bound on the commute time for all pairs (u, v) (call this bound x),
we could get a bound (in expectation) on the cover time by running the random
walk for x · n steps. Unfortunately, the bound given by the previous lemma is
only valid for pairs (u, v) where there is an edge between u and v . However, we
can still come up with a different method for bounding the cover time.

Lemma

C(G) ≤ 2m(n − 1).
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Proof.

Let T be an arbitrary spanning tree of G . For each edge (u, v) in T , add the
edge (v , u). We can then bound the cover time of G with the expected time
needed to complete an Euler tour of T . Since each node in T has even degree
(due to the doubling of the edges), we know that an Euler tour must exist. If
we list the vertices visited as v0, v1, v2, . . . , vk = v0, we have
C(G) ≤ h(v0, v1) + h(v1, v2) + · · ·+ h(vk−1, v0) =∑

(u,v)∈T (h(u, v) + h(v , u)) =
∑

(u,v)∈T Cu,v ≤ 2m(n − 1), since each of the

(n − 1) edges that was in T originally shows up in both directions.

Amarda Shehu, Fei Li Network Science: Principles and Applications



Markov chains

Definition (Irreducible chain)

A Markov chain is irreducible if all states belong to one communicating class.

Definition (Recurrent state)

A recurrent state i is positive recurrent if hi,i <∞. Otherwise, it is null
recurrent.

Definition (Periodic, aperiodic state/chain)

A state j in a discrete time Markov chain is periodic if there exists an integer
∆ > 1 such that Pr(Xt+s = j |Xt = j) = 0 unless s is divisible by ∆. A discrete
time Markov chain is periodic if any state in the chain is periodic. A state or
chain that is not periodic is aperiodic.

Definition (Ergodic state/chain)

An aperiodic, positive recurrent state is an ergodic state. A Markov chain is
ergodic if all its states are ergodic.
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Theorem

Any finite, irreducible, and ergodic Markov chain has the following properties:

1 the chain has a unique stationary distribution π̄ = (π0, π1, . . . , πn);

2 for all j and i , the limit limt→∞ P t
j,i exists and it is independent of j;

3 πi = limt→∞ P t
j,i = 1

hi,i
.
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Application: an s-t connectivity algorithm

Algorithm 2 s-t Connectivity Algorithm

1: Start a random walk from s.
2: if the walk reaches t within 2n3 steps then
3: return there is a path;
4: else
5: return there is no path.
6: end if
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Theorem

The s-t connectivity algorithm returns the correct answer with probability 1/2
and it only errs by returning that there is no path from s to t when there is
such a path.

Proof.

1 The expected time to reach t from s (if there is a path) is bounded from
the cover time of their shared component, which is 2 · n ·m < n3.

2 By Markov’s inequality, the probability that a walk takes more than 4n3

steps to reach t from s is at most 1/2.
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Application: the Internet

View the Web as a Markov chain. Take a random walk on the web viewed as a
directed graph with an edge corresponding to each hypertext link and rank
pages according to their stationary probability.

1 Assume there is a vertex with no out edges.
When the walk encounters this vertex, the walk disappears.

2 Assume a vertex or a strongly connected component with no in edges is
never reached.
Introduce a random restart condition.
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Application: PageRank

The intuition behind PageRank starts with simple voting based on in-links, and
refines it using the Principle of Repeated Improvement. In particular, the
Principle is applied here by having nodes repeatedly pass endorsements across
their out-going links, with the weight of a node’s endorsement based on the
current estimate of its PageRank: nodes that are currently viewed as more
important get to make stronger endorsements.
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Algorithm 3 PageRank by Jon Kleinberg

1: In a network with n nodes, assign all nodes the same initial PageRank, set
to be 1/n.

2: Choose a number of steps k.
3: Perform a sequence of k updates to the PageRank values, using the following

rule for each update:
Basic PageRank Update Rule:
Each page divides its current PageRank equally across its out-going
links, and passes these equal shares to the pages it points to. (If a
page has no out-going links, it passes all its current PageRank to
itself.)
Each page updates its new PageRank to be the sum of the shares it
receives.

Notice that the total PageRank in the network will remain constant as we apply
these steps.
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Consider someone who is randomly browsing a network of Web pages. They
start by choosing a page at random, picking each page with equal probability.
They then follow links for a sequence of k steps: in each step, they pick a
random out-going link from their current page, and follow it to where it leads.
(If their current page has no out-going links, they just stay where they are.)

Claim

The probability of being at a page X after k steps of this random walk is
precisely the PageRank of X after k applications of the Basic PageRank
Update Rule.
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