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Components of a Complex System

components: nodes, vertices (V)

interactions: links, arcs, edges (L, E)

system: network, graph (N, G)
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Components of a Complex System

components: nodes, vertices (V)

interactions: links, arcs, edges (L, E)

system: network, graph (N, G)

Networks, or Graphs?

Network = real systems

www

social network

metabolic network

Language: Network, node, link

Graph = mathematical representation of network

web graph

social graph (Facebook term)
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Language: Graph, vertex, edge
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Components of a Complex System

components: nodes, vertices (V)

interactions: links, arcs, edges (L, E)

system: network, graph (N, G)

Networks, or Graphs?

Network = real systems

www

social network

metabolic network

Language: Network, node, link

Graph = mathematical representation of network

web graph

social graph (Facebook term)

metabolic graph

Language: Graph, vertex, edge

We will try to make this distinction whenever appropriate, but in most cases the two
terms will be interchangeable.
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What is a Graph?

Graph G = (V ,E)

V : set of vertices

E : set of edges consisting of pairs of vertices from V

V = {v0, v1, v2, v3, v4}
E = {(v0, v1), (v0, v3), (v1, v2), (v1, v4)}
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First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once. Posed by
Leonard Euler [1707 - 1783].

modified from wikipedia
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First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once. Posed by
Leonard Euler [1707 - 1783].

modified from wikipedia

Specifically:

What is the minimum number of bridges that need to be added so that there exists a
route that crosses each bridge exactly once?
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First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once. Posed by
Leonard Euler [1707 - 1783].

modified from wikipedia

Specifically:

What is the minimum number of bridges that need to be added so that there exists a
route that crosses each bridge exactly once?
Iff there are exactly two or zero nodes of odd degree
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Applications of Graphs Beyond Network Science

Compilers

Databases

Neural Networks

Machine Learning

Artificial Intelligence

Robotics

Computational Biology

...
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Applications of Graphs Beyond Network Science

Compilers

Databases

Neural Networks

Machine Learning

Artificial Intelligence

Robotics

Computational Biology

...

Focus of this Lecture:

Primer on Graphs
Terminology, Characteristics, and Algorithms Relevant to Networks
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Formal Definition of a Graph

A graph G = (V ,E) is a pair consisting of:

a set V of vertices (or nodes)

a set E ⊆ V × V of edges (or arcs)
edge ei ∈ E is a pair (u, v) connecting vertices u and v
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Formal Definition of a Graph

A graph G = (V ,E) is a pair consisting of:

a set V of vertices (or nodes)

a set E ⊆ V × V of edges (or arcs)
edge ei ∈ E is a pair (u, v) connecting vertices u and v

A graph G = (V ,E) is:

directed (referred to as a digraph) if E is a set of ordered pairs of vertices. The
edges here are often referred to as directed edges or arrows.

undirected if E is a set of unordered pairs of vertices.

weighted if there are weights associated with the edges.
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Formal Definition of a Graph

A graph G = (V ,E) is a pair consisting of:

a set V of vertices (or nodes)

a set E ⊆ V × V of edges (or arcs)
edge ei ∈ E is a pair (u, v) connecting vertices u and v

A graph G = (V ,E) is:

directed (referred to as a digraph) if E is a set of ordered pairs of vertices. The
edges here are often referred to as directed edges or arrows.

undirected if E is a set of unordered pairs of vertices.

weighted if there are weights associated with the edges.

We typically reserve:

N for number of vertices, |V |
|E | indicates number of edges
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Illustrations of Types of Graphs

Figure: undirected graph

Figure: multigraph

Figure: directed graph

Figure: weighted graph
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More Definitions, Conventions, Nomenclature

Two vertices are adjacent if they are connected by an edge.

The neighbors of a vertex are all the vertices adjacent to it.

The degree of a vertex is the number of its neighbors.

A path is a sequence of vertices, where each pair of successive vertices is connected
by an edge.

The length of the path is the number of edges in the path.

A simple path contains unique vertices.

A cycle is a simple path with the same first and last vertex.

A graph is connected if ∃ a path between every pair of vertices.

A tree is a connected graph with no cycles.

A subgraph H of G = (V ,E) is H = (V1,E1) where V1 ⊆ V and E1 ⊆ E , where
∀e = (k, j) ∈ E1, k, j ∈ V1.
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Focusing on Simple Graphs

Simple Graphs

A simple graph, or a strict graph, is an unweighted, undirected graph containing no
loops or multiple edges

Given that E ⊆ V × V , |E | ∈ O(|V |2).

If a graph is connected, |E | ≥ |V | − 1

Combining the two, show that lg(|E |) ∈ θ(lg(|V |))

Short Detour:

Asymptotic Notations
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Big-Oh: An Asymptotic Upper Bound

Definition

A function g(n) ∈ O(f (n)) if
∃ constants c > 0 and n0 s.t g(n) ≤ c · f (n)
∀n ≥ n0.
Note: O(f (n)) denotes a set.

Graphical Illustration

little-oh: Tight Asymptotic Upper Bound

g(n) ∈ o(f (n)) when the upper bound < holds for all constants c > 0. Alternative

definition: limn→∞
g(n)
f (n)

= 0
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Big-Omega: An Asymptotic Lower Bound

Definition

A function g(n) ∈ Ω(f (n)) if
∃ constants c > 0 and n0 s.t g(n) ≥ c · f (n)
∀n ≥ n0.
Note: Ω(f (n)) denotes a set.

Graphical Illustration

little-omega: Tight Asymptotic Lower Bound

g(n) ∈ ω(f (n)) when the lower bound > holds for all constants c > 0. Alternative

definition: limn→∞
g(n)
f (n)

=∞
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Theta: Asymptotic Upper and Lower Bounds

Definition

A function g(n) ∈ Θ(f (n)) if
g(n) ∈ O(f (n)) and g(n) ∈ Ω(f (n)).
Alternatively, g(n) ∈ Θ(f (n)) if ∃ positive
constants c1, c2 and n0 s.t.
c1 · f (n) ≤ g(n) ≤ c2 · f (n) ∀n ≥ n0.

Graphical Illustration

Alternative Definition

g(n) ∈ Θ(f (n)) when limn→∞
g(n)
f (n)

= O(1)
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Back to Graphs
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General Definition of a Graph

In a graph G = (V ,E):

E may be a set of unorderered pairs of vertices not necessarily distinct. More than
one edge can connect two vertices.

An edge in E may connect more than two vertices.

These graphs are referred to as multigraphs or pseudo-graphs.
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E may be a set of unorderered pairs of vertices not necessarily distinct. More than
one edge can connect two vertices.

An edge in E may connect more than two vertices.

These graphs are referred to as multigraphs or pseudo-graphs.

When do we choose which vertices to connect and by how many edges?

Answer depends on what about the network one is trying to investigate.
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one edge can connect two vertices.

An edge in E may connect more than two vertices.

These graphs are referred to as multigraphs or pseudo-graphs.

When do we choose which vertices to connect and by how many edges?

Answer depends on what about the network one is trying to investigate.

Choice determines ability to use network theory successfully.

In some cases there is a unique, unambiguous representation; in others, the
representation is not unique.

E.g. the way we assign the links between a group of individuals will determine the
nature of the question we can study.
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General Definition of a Graph

In a graph G = (V ,E):

E may be a set of unorderered pairs of vertices not necessarily distinct. More than
one edge can connect two vertices.

An edge in E may connect more than two vertices.

These graphs are referred to as multigraphs or pseudo-graphs.

When do we choose which vertices to connect and by how many edges?

Answer depends on what about the network one is trying to investigate.

Choice determines ability to use network theory successfully.

In some cases there is a unique, unambiguous representation; in others, the
representation is not unique.

E.g. the way we assign the links between a group of individuals will determine the
nature of the question we can study.

Some examples next
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Finding the Right Network Representation

Figure: If you connect individuals that work with each other, you will explore the professional
network.
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Finding the Right Network Representation

Figure: If you connect those that have a romantic and sexual relationship, you will explore
the sexual networks.
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Finding the Right Network Representation

Undirected edges for symmetric
relationships

Co-authorship links

Actor network

Protein-protein interactions

Directed edges for asymmetric
relationships

URLs on the www

phone calls

metabolic reactions
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Finding the Right Network Representation

Bipartitle graph or bigraph is a graph
G = (V ,E) whose vertices can be divided into
two disjoint sets V1 and V2 such that every edge
connects a vertex in V1 to one in V2

Specifically: V = V1 ∪ V2 and V1 ∩ V2 = { }

Examples

Collaboration networks

Hollywood actor network

Disease network (diseasome)
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Some More Examples
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Some More Examples
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(Internal) Graph Representations

A graph can be represented as an adjacency list.

A graph can be represented as an adjacency matrix.
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Adjacency List Representation
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Implementation of Adjacency-list Representation

The adjacency list of a vertex can be implemented as a linked list

The list of vertices themselves can be implemented using:

A linked list

A binary search tree

A hash table

In a standard implementation, each edge list has two fields, a data field and a
pointer:

The data field contains adjacent vertex name and edge information

The pointer points to next adjacent vertex
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Basic Graph Operations with Adjacency List Representation

Function Worst-case Running Time
find(v) O(|V |)
hasVertex(v) O(find(v))
hasEdge(vi , vj) O(find(vi) + deg(vi))
insertVertex(v) O(1)
insertEdge(vi , vj) O(find(vi))
removeVertex(v) O(|V |+ |E |)
removeEdge(vi , vj) O(find(vi) + deg(vi))
outEdges(v) O(find(v) + deg(v))
inEdges(v) O(|V |+ |E |)
overall memory O(|V |+ |E |)

In undirected graphs:
|elist[v]| = degree(v).

In digraphs:
|elist[v]| = out-degree(v).

Handshaking Lemma:∑
v∈V |elist(v)| = 2|E| for undirected graphs.

O(|V |+ |E |) storage ⇒ sparse representation.
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Adjacency Matrix Representation
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Basic Graph Operations with Adjacency Matrix Representation

Function Worst-case Running Time
find(v) O(1)
hasVertex(v) O(1)
hasEdge(vi , vj) O(1)
insertVertex(v) O(|V |2)
insertEdge(vi , vj) O(1)
removeVertex(v) O(|V |2)
removeEdge(vi , vj) O(1)
outEdges(v) O(|V |)
inEdges(v) O(|V |)
overall memory O(|V |2)

O(|V |2) storage ⇒ dense representation.

Amarda Shehu () Graph Representations 27



Comparing The Two Representations

Function Adjacency List Adjacency Matrix
find(v) O(|V |) O(1)
hasVertex(v) O(find(v)) O(1)
hasEdge(vi , vj) O(find(vi) + deg(vi)) O(1)
insertVertex(v) O(1) O(|V |2)
insertEdge(vi , vj) O(find(vi)) O(1)
removeVertex(v) O(|V |+ |E |) O(|V |2)
removeEdge(vi , vj) O(find(vi) + deg(vi)) O(1)
outEdges(v) O(find(v) + deg(v)) O(|V |)
inEdges(v) O(|V |+ |E |) O(|V |)
overall memory O(|V |+ |E |) O(|V |2)
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Comparing The Two Representations

Function Adjacency List Adjacency Matrix
find(v) O(|V |) O(1)
hasVertex(v) O(find(v)) O(1)
hasEdge(vi , vj) O(find(vi) + deg(vi)) O(1)
insertVertex(v) O(1) O(|V |2)
insertEdge(vi , vj) O(find(vi)) O(1)
removeVertex(v) O(|V |+ |E |) O(|V |2)
removeEdge(vi , vj) O(find(vi) + deg(vi)) O(1)
outEdges(v) O(find(v) + deg(v)) O(|V |)
inEdges(v) O(|V |+ |E |) O(|V |)
overall memory O(|V |+ |E |) O(|V |2)

Time and Space

What data structure choice to make to support faster, O(1) operations?

What happens when memory is a concern for the very large networks of millions or
more nodes?
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Graph Representation: Hash Map

Vertex set as a hash map
key: vertex
data: outgoing edges

Outgoing edges of each vertex as a
hash set
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Graph Representation: Hashmap

HashMap

Fast to query [hasVertex, hasEdge] O(1)

Fast to scan [outEdges] O(|V |)

Fast to insert [insertVertex, insertEdge] O(1)

Fast to remove [removeEdge] O(1)
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Comparing The Three Representations

Function Adj. List Adj. Matrix Hash Map
find(v) O(|V |) O(1) O(1)
hasVertex(v) O(|V |) O(1) O(1)
hasEdge(vi , vj) O(|V |+ deg(vi)) O(1) O(1)
insertVertex(v) O(1) O(|V |2) O(1)
insertEdge(vi , vj) O(|V |) O(1) O(1)
removeVertex(v) O(|V |+ |E |) O(|V |2) O(|V |)
removeEdge(vi , vj) O(|V |+ deg(vi)) O(1) O(1)
outEdges(v) O(|V |+ deg(v)) O(|V |) O(deg(v))
inEdges(v) O(|V |+ |E |) O(|V |) O(|V |)
overall memory O(|V |+ |E |) O(|V |2) linear-quadratic
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Comparing The Three Representations

Function Adj. List Adj. Matrix Hash Map
find(v) O(|V |) O(1) O(1)
hasVertex(v) O(|V |) O(1) O(1)
hasEdge(vi , vj) O(|V |+ deg(vi)) O(1) O(1)
insertVertex(v) O(1) O(|V |2) O(1)
insertEdge(vi , vj) O(|V |) O(1) O(1)
removeVertex(v) O(|V |+ |E |) O(|V |2) O(|V |)
removeEdge(vi , vj) O(|V |+ deg(vi)) O(1) O(1)
outEdges(v) O(|V |+ deg(v)) O(|V |) O(deg(v))
inEdges(v) O(|V |+ |E |) O(|V |) O(|V |)
overall memory O(|V |+ |E |) O(|V |2) linear-quadratic

What about space concerns?

Study/store specific subgraphs

Consider distributed environment (example: Weaver – weaver.systems)
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Finding Distances

Many measures of interest in a network involve distances, that are often related to the
length or weight of the shortest/least-weight path connecting two nodes of interest

How do we find a path connecting two nodes?

Refresher: Graph Search Algorithms
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General Search Template

Important insight:
Any search algorithm constructs a tree, adding to it vertices of graph G in some order

G = (V ,E) —– look at it as split in two: set S on one side and V − S on the other

search proceeds as vertices are taken from V − S and added to S
search ends when V − S is empty or goal found

First vertex to be taken from V − S and added to S?
Next vertex? (... expansion ...)
Where to keep track of these vertices? (... fringe/frontier ...)

Important ideas:
Fringe (frontier into V − S/border between S and V − S)
Expansion (neighbor generation so can add to fringe)
Exploration strategy (what order to grow S?)

Main question:
which fringe/frontier nodes to explore/expand next?
strategy distinguishes search algorithms from one another
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Search Strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:

completeness—does it always find a solution if one exists?

time complexity—number of nodes generated/expanded

space complexity—maximum number of nodes in memory

optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of:

b—maximum branching factor of the search tree

d—depth of the least-cost solution

m—maximum depth of the state space (may be ∞)
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Uninformed Graph Search

Characteristics of Uninformed Graph Search/Traversal:

There is no additional information about states/vertices beyond what is provided in
the problem definition.

All that the search does is generate successors/neighbors and distinguish a goal
state from a non-goal state.

The systematic search “lays out” all paths from initial
vertex; it traverses the search tree of the graph.
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Uninformed Graph Search

F: search data structure (fringe)
parent array: stores “edge comes from” to record visited states

1: F.insert(v)
2: parent[v] ← true
3: while not F.isEmpty do
4: u ← F.extract()
5: if isGoal(u) then
6: return true
7: for each v in outEdges(u) do
8: if no parent[v] then
9: F.insert(v)

10: parent[v] ← u

Figure: Graph

Figure: Search Tree of Graph
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Uninformed Search Algorithms

Breadth-first Search (BFS)

Depth-first Search (DFS)

Depth-limited search (DLS)

Iterative Deepening Search (IDS)
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Breadth-first Search (BFS)
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Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:
fringe = first-in first-out (FIFO), i.e., unvisited successors go at end
F is a queue
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Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:
fringe = first-in first-out (FIFO), i.e., unvisited successors go at end
F is a queue

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 42



Breadth-first Search (BFS)

F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores “edge comes from” to record visited states

1: F.insert(v)
2: parent[v] ← true
3: while not F.isEmpty do
4: u ← F.extract()
5: if isGoal(u) then
6: return true
7: for each v in outEdges(u) do
8: if no parent[v] then
9: F.insert(v)

10: parent[v] ← u

Running Time?

Let V and E be vertices and edges in search tree
O(|V |+ |E |) What about in terms of b and m?
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Properties of Breadth-first Search (BFS)

Complete??

Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . .+ bd + b(bd − 1) = O(bd+1), i.e., exp. in d

Space?? O(bd+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.
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BFS Summary

Basic Behavior:

Expands all nodes at depth d before those at depth d + 1

The sequence is root, then children, then grandchildren in the search tree.

Problems:

If the path cost is a non-decreasing function of the depth of the goal node, then
BFS is optimal (uniform cost search a generalization)

A graph with no weights can be considered to have edges of weight 1. In this case,
BFS is optimal.

BFS will find shallowest goal after expanding all shallower nodes (if branching
factor is finite). Hence, BFS is complete.

BFS is not very popular because time and space complexity are exponential:
O(bd+1) and O(bd+1), respectively.

Memory requirements of BFS are a bigger problem.
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Depth-first Search (DFS)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 46



Depth-first Search (DFS)
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Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:
fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack
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Depth-first Search (DFS)

F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores “edge comes from” to record visited states

1: F.insert(v)
2: parent[v] ← true
3: while not F.isEmpty do
4: u ← F.extract()
5: if isGoal(u) then
6: return true
7: for each v in outEdges(u) do
8: if no parent[v] then
9: F.insert(v)

10: parent[v] ← u

Running Time?

Let V and E be vertices and edges in search tree
O(|V |+ |E |) What about in terms of b and m?
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Properties of Depth-first Search (DFS)

Complete??

No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

Optimal?? No Why?
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DFS Summary

Basic Behavior:

Expands the deepest node in the tree

Backtracks when reaches a non-goal node with no descendants

Problems:

Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex

Hence, DFS is not optimal

If subtree is of unbounded depth and contains no solutions, DFS will never
terminate.

Hence, DFS is not complete

Let b be the maximum number of successors of any node (known as branching
factor), d be depth of shallowest goal, and m be maximum length of any path in
the search tree

Time complexity is O(bm) and space complexity is O(b ·m)
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BFS vs. DFS

When will BFS outperform DFS?

When will DFS outperform BFS?
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Another Advantage of DFS

RecursiveDFS(v)

1: if v is unmarked then
2: mark v
3: for each edge v , u do
4: RecursiveDFS(u)

Color arrays can be kept to indicate that a vertex is undiscovered, the first time it is
discovered, when its neighbors are in the process of being considered, and when all its
neighbors have been considered.

DFS can be used to timestamp vertices with when they are discovered and when they
are finished. These start and finish times are useful in various applications of DFS
regarding constraint satisfaction.
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Depth-limited Search (DLS)

Problem with DFS is presence of infinite paths

DLS limits the depth of a path in search tree of DFS

Modifies DFS by using a predetermined depth limit dl

DLS is incomplete if the shallowest goal is beyond the depth limit dl

DLS is not optimal if d < dl

Time complexity is O(bdl ) and space complexity is O(b · dl)
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Depth-limited Search (DLS)

= DFS with depth limit dl [i.e., nodes at depth dl are not expanded]

Recursive implementation:

function Depth-Limited-Search( problem, limit) returns
soln/fail/cutoff

Recursive-DLS(Make-Node(Initial-State[problem]), problem,
limit)

function Recursive-DLS(node, problem, limit) returns soln/fail/cutoff
cutoff-occurred?← false
if Goal-Test(problem,State[node]) then return node
else if Depth[node] = limit then return cutoff
else for each successor in Expand(node, problem) do

result←Recursive-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred?← true
else if result 6= failure then return result

if cutoff-occurred? then return cutoff else return failure
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Iterative Deepening Search (IDS)

Finds the best depth limit by incrementing dl until goal is found at dl = d

Can be viewed as running DLS with consecutive values of dl

IDS combines the benefits of both DFS and BFS

Like DFS, its space complexity is O(b · d)

Like BFS, it is complete when the branching factor is finite, and it is optimal if the
path cost is a non-decreasing function of the depth of the goal node

Its time complexity is O(bd)

IDS is the preferred uninformed search when the state space is large, and the depth
of the solution is not known
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Iterative Deepening Search (IDS)

function Iterative-Deepening-Search( problem) returns a solution
inputs: problem, a problem

for depth← 0 to ∞ do
result←Depth-Limited-Search( problem, depth)
if result 6= cutoff then return result

end
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Iterative Deepening Search (IDS) @ dl = 0
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Iterative Deepening Search (IDS) @ dl = 1
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Iterative Deepening Search (IDS) @ dl = 2
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Iterative Deepening Search (IDS) @ dl = 3
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Summary of Uninformed Search Algorithms

Criterion Breadth- Depth- Depth- Iterative
First First Limited Deepening

Complete? Yes∗ No Yes, if dl ≥ d Yes
Time bd+1 bm bdl bd

Space bd+1 bm bdl bd
Optimal? Yes∗ No No Yes∗
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Uninformed Search Summary

Problem formulation usually requires abstracting away real-world details to define a
state space that can feasibly be explored

Variety of uninformed search strategies

IDS uses only linear space and not much more time than other uninformed
algorithms

Graph search can be exponentially more efficient than tree search

What about least-cost paths with non-uniform state-state costs?
That is next
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Most popular: Dijkstra and A*

Differences from uninformed search algorithms:

work with weighted graphs

process nodes in order of attachment cost

employ priority queue (min-heap) for this purpose instead of stack or queue

Dijkstra: overkill, finds least-cost path from a given start node to all nodes in graph

A*: works only with given start and goal pair

Dijkstra: attachment cost of a node is current least cost from given start to that
node

A*: adds to this the estimated distance to goal node, where esimation uses an
optimistic heuristic
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Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

Associate a(n attachment) cost d [v ] with each vertex v

F becomes a priority queue: F keeps frontier vertices, prioritized by d [v ]

Until F is empty, one vertex extracted from F at a time
Can terminate earlier? When? How does it relate to goal?

v extracted from F @ some iteration is one with lowest cost among all those in F
... so, vertices extracted from F in order of their costs

When v extracted from F :
v has been “removed” from V − S and “added” to S
get to reach/see v ’s neighbors and possibly update their costs

The rest are details, such as:

What should d [v ] be? There are options...
backward cost (cost of s  v)
forward cost (estimate of cost of v  g)
back+for ward cost (estimate of s  g through v)

Which do I choose? This is how to you end up with different search algorithms
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Dijkstra’s Algorithm in Pseudocode

Fringe: F is a priority queue/min-heap
arrays: d stores attachment (backward) costs, π[v ] stores parents
S not really needed, only for clarity below

Dijkstra(G, s, w)

1: F ← s, S ← {}
2: d[v] ←∞ for all v ∈ V
3: d [s]← 0
4: while F 6= { } do
5: u ← Extract-Min(F)
6: S ← S ∪ {u}
7: for each v ∈ Adj(u) do
8: F ← v
9: Relax(u, v ,w)

Relax(u, v ,w)

1: if d [v ] > d [u] + w(u, v) then
2: d [v ]← d [u] + w(u, v)
3: π[v]← u

The process of relaxing tests whether one can improve the shortest-path estimate
d [v ] by going through the vertex u in the shortest path from s to v
If d [u] + w(u, v) < d [v ], then u replaces the predecessor of v
Where would you put an earlier termination to stop when s  g found?
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Relax(u, v ,w)

1: if d [v ] > d [u] + w(u, v) then
2: d [v ]← d [u] + w(u, v)
3: π[v]← u

in another implementation, F is
initialized with all V, and line 8 is
removed.

The process of relaxing tests whether one can improve the shortest-path estimate
d [v ] by going through the vertex u in the shortest path from s to v
If d [u] + w(u, v) < d [v ], then u replaces the predecessor of v
Where would you put an earlier termination to stop when s  g found?
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Dijsktra’s Algorithm in Action

Figure: Graph G = (V , E) Figure: Shortest paths from B

Initial Pass1 Pass2 Pass3 Pass4 Pass5 Pass6
Vertex d π d π d π d π d π d π d π

A ∞ 3 B 3 B 3 B 3 B 3 B 3 B
B 0 − 0 − 0 − 0 − 0 − 0 − 0 −
C ∞ 5 B 4 A 4 A 4 A 4 A 4 A
D ∞ ∞ ∞ 6 C 6 C 6 C 6 C
E ∞ ∞ ∞ 8 C 8 C 8 C 8 C
F ∞ ∞ ∞ ∞ 11 D 9 E 9 E
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Initial Pass1 Pass2 Pass3 Pass4 Pass5 Pass6
Vertex d π d π d π d π d π d π d π

A ∞ 3 B 3 B 3 B 3 B 3 B 3 B
B 0 − 0 − 0 − 0 − 0 − 0 − 0 −
C ∞ 5 B 4 A 4 A 4 A 4 A 4 A
D ∞ ∞ ∞ 6 C 6 C 6 C 6 C
E ∞ ∞ ∞ 8 C 8 C 8 C 8 C
F ∞ ∞ ∞ ∞ 11 D 9 E 9 E

If not earlier goal termination criterion, Dijkstra’s search tree is spanning tree of shortest
paths from s to any vertex in the graph.
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Take-home Exercise

Initial Pass1 Pass2 Pass3 Pass4 Pass5
Vertex d π d π d π d π d π d π

a 0 −
b ∞
c ∞
d ∞
e ∞
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Analysis of Dijkstra’s Algorithm

Dijkstra’s is optimal: proof relies on corollary that when a vertex v is extracted
from fringe F (thus “added” to S), shortest path from s to v has been found (not
true with negative weights).

Updating the heap takes at most O(lg(|V |)) time

The number of updates equals the total number of edges

So, the total running time is O(|E | · lg(|V |))

Running time can be improved depending on the actual implementation of the
priority queue

Time = θ(V ) · T (Extract−Min) + θ(E) · T(Decrease−Key)

F T (Extr.-Min) T (Decr.-Key) Total

Array O(|V |) O(1) O(|V |2)
Binary heap O(1) O(lg |V |) O(|E | · lg |V |)
Fib. heap O(lg |V |) O(1) O(|E |+ |V | · lg |V |)

How does this compare with BFS?
How does BFS get away from a lg(|V |) factor?
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A* Search

Idea: avoid expanding paths that are already expensive

Evaluation function f (v) = g(v) + h(v):
Combines Dijkstra’s/uniform cost with greedy best-first search
g(v) = (actual) cost to reach v from s
h(v) = estimated lowest cost from v to goal
f (v) = estimated lowest cost from s through v to goal

Same implementation as before, but prioritize vertices in min-heap by f [v ]

A* is both complete and optimal provided h satisfies certain conditions:
for searching in a tree: admissible/optimistic
for searching in a graph: consistent (which implies admissibility)
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Admissible Heuristic

What do we want from f [v ]?
not to overestimate cost of path from source to goal that goes through v

Since g [v ] is actual cost from s to v , this “do not overestimate” criterion is for the
forward cost heuristic, h[v ]

A* search uses an admissible/optimistic heuristic
i.e., h(v) ≤ h∗(v) where h∗(v) is the true cost from v
(Also require h(v) ≥ 0, so h(G) = 0 for any goal G)

Example of an admissible heuristic: crow-fly distance never overestimates the actual
road distance

A stronger, consistent heuristic: estimated cost of reaching goal from a vertex n is not
greater than cost to go from n to its successors and then the cost from them to the goal
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What do we want from f [v ]?
not to overestimate cost of path from source to goal that goes through v

Since g [v ] is actual cost from s to v , this “do not overestimate” criterion is for the
forward cost heuristic, h[v ]

A* search uses an admissible/optimistic heuristic
i.e., h(v) ≤ h∗(v) where h∗(v) is the true cost from v
(Also require h(v) ≥ 0, so h(G) = 0 for any goal G)

Example of an admissible heuristic: crow-fly distance never overestimates the actual
road distance

A stronger, consistent heuristic: estimated cost of reaching goal from a vertex n is not
greater than cost to go from n to its successors and then the cost from them to the goal

Let’s see A* with this heuristic in action
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A* Search in Action
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A* Search in Action
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A* Search in Action
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A* Search in Action
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Optimality of A*

Skipping some details, but essentially if heuristic is consistent: A* expands nodes in
order of increasing f value∗

Gradually adds “f -contours” of nodes (cf. breadth-first adds layers)
Contour i has all nodes with f = fi , where fi < fi+1

So, why does this guarantee optimality?
First time we see goal will be the time it has lowest f = g (h is 0)
Other occurrences have no lower f (f non-decreasing)
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Summary of A* Search

Complete??

Yes, unless there are infinitely many nodes with f ≤ f (G)

Time?? Exponential in [path length × δ(s,g)−h(s)
δ(s,g)

]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand fi+1 until fi is finished

Optimally efficient for any given consistent heuristic:
A* expands all nodes with f (v) < δ(s, g)
A* expands some nodes with f (v) = δ(s, g)
A* expands no nodes with f (v) > δ(s, g)
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Optimally efficient for any given consistent heuristic:
A* expands all nodes with f (v) < δ(s, g)
A* expands some nodes with f (v) = δ(s, g)
A* expands no nodes with f (v) > δ(s, g)
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End of Graph Search Algorithms

CS583 additionally considers scenarios where greedy substructure does not lead to
optimality

For instance, how can one modify Dijkstra and the other algorithms to deal with
negative weights?

How does one efficiently find all pairwise shortest/least-cost paths?

Dynamic Programming is the right alternative in these scenarios

More graph exploration and search algorithms considered in CS583
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Next Lecture: Measures of Interest in Networks
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