Network Science: Principles and Applications CS 695 - Spring 2019

Amarda Shehu

[amarda](AT)gmu.edu Department of Computer Science George Mason University

Outline of Today's Class

2 Graphs

- Definition of a Graph
- Types of Graphs
- Asymptotic Notations

Graph Representations

- Adjacency List Representation
- Adjacency Matrix Representation
- Alternative Graph Representations

Elementary Graph Algorithms for Path Searching

- (Uninformed and Informed) Graph Search Algorithms
 - Uninformed Search
 - Breadth-first Search (BFS)
 - Depth-first Search (DFS)
 - Depth-limited Search (DLS)
 - Iterative Deepening Search (IDS)
 - A* Search

- components: nodes, vertices (V)
- interactions: links, arcs, edges (L, E)
- system: network, graph (N, G)

- components: nodes, vertices (V)
- interactions: links, arcs, edges (L, E)
- system: network, graph (N, G)

Networks, or Graphs?

- components: nodes, vertices (V)
- interactions: links, arcs, edges (L, E)
- system: network, graph (N, G)

Networks, or Graphs?

Network = real systems	Graph = mathematical representation of network
• www	 web graph
 social network 	 social graph (Facebook term)
 metabolic network 	 metabolic graph
• Language: Network, node, link	• Language: Graph, vertex, edge

- components: nodes, vertices (V)
- interactions: links, arcs, edges (L, E)
- system: network, graph (N, G)

Networks, or Graphs?

Network = real systems	Graph = mathematical representation of network
• www	 web graph
 social network 	 social graph (Facebook term)
 metabolic network 	 metabolic graph
 Language: Network, node, link 	• Language: Graph, vertex, edge

We will try to make this distinction whenever appropriate, but in most cases the two terms will be interchangeable.

What is a Graph?

Graph G = (V, E)

- V : set of vertices
- E : set of edges consisting of pairs of vertices from V

$$V = \{v_0, v_1, v_2, v_3, v_4\}$$

$$E = \{(v_0, v_1), (v_0, v_3), (v_1, v_2), (v_1, v_4)\}$$

First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once. Posed by Leonard Euler [1707 - 1783].

modified from wikipedia

First Graph Problem

modified from wikipedia

Specifically:

What is the minimum number of bridges that need to be added so that there exists a route that crosses each bridge exactly once?

First Graph Problem

modified from wikipedia

Specifically:

What is the minimum number of bridges that need to be added so that there exists a route that crosses each bridge exactly once? Iff there are exactly two or zero nodes of odd degree

Applications of Graphs Beyond Network Science

- Compilers
- Databases
- Neural Networks
- Machine Learning
- Artificial Intelligence
- Robotics
- Computational Biology
- ...

Applications of Graphs Beyond Network Science

- Compilers
- Databases
- Neural Networks
- Machine Learning
- Artificial Intelligence
- Robotics
- Computational Biology
- ...

Focus of this Lecture:

Primer on Graphs

Terminology, Characteristics, and Algorithms Relevant to Networks

Formal Definition of a Graph

A graph G = (V, E) is a pair consisting of:

- a set V of vertices (or nodes)
- a set $E \subseteq V \times V$ of edges (or arcs)
 - edge $e_i \in E$ is a pair (u, v) connecting vertices u and v

Formal Definition of a Graph

A graph G = (V, E) is a pair consisting of:

- a set V of vertices (or nodes)
- a set $E \subseteq V \times V$ of edges (or arcs)
 - edge $e_i \in E$ is a pair (u, v) connecting vertices u and v

A graph G = (V, E) is:

- directed (referred to as a digraph) if *E* is a set of ordered pairs of vertices. The edges here are often referred to as directed edges or arrows.
- **undirected** if *E* is a set of unordered pairs of vertices.
- weighted if there are weights associated with the edges.

Formal Definition of a Graph

A graph G = (V, E) is a pair consisting of:

- a set V of vertices (or nodes)
- a set $E \subseteq V \times V$ of edges (or arcs)
 - edge $e_i \in E$ is a pair (u, v) connecting vertices u and v

A graph G = (V, E) is:

- directed (referred to as a digraph) if *E* is a set of ordered pairs of vertices. The edges here are often referred to as directed edges or arrows.
- **undirected** if *E* is a set of unordered pairs of vertices.
- weighted if there are weights associated with the edges.

We typically reserve:

- N for number of vertices, |V|
- |E| indicates number of edges

Illustrations of Types of Graphs

Figure: weighted graph

- Two vertices are **adjacent** if they are connected by an edge.
- The neighbors of a vertex are all the vertices adjacent to it.
- The degree of a vertex is the number of its neighbors.
- A **path** is a sequence of vertices, where each pair of successive vertices is connected by an edge.
- The length of the path is the number of edges in the path.
- A simple path contains unique vertices.
- A cycle is a simple path with the same first and last vertex.

- Two vertices are **adjacent** if they are connected by an edge.
- The neighbors of a vertex are all the vertices adjacent to it.
- The degree of a vertex is the number of its neighbors.
- A **path** is a sequence of vertices, where each pair of successive vertices is connected by an edge.
- The length of the path is the number of edges in the path.
- A simple path contains unique vertices.
- A cycle is a simple path with the same first and last vertex.
- A graph is connected if ∃ a path between every pair of vertices.
- A tree is a connected graph with no cycles.

- Two vertices are adjacent if they are connected by an edge.
- The neighbors of a vertex are all the vertices adjacent to it.
- The degree of a vertex is the number of its neighbors.
- A **path** is a sequence of vertices, where each pair of successive vertices is connected by an edge.
- The length of the path is the number of edges in the path.
- A simple path contains unique vertices.
- A cycle is a simple path with the same first and last vertex.
- A graph is **connected** if \exists a path between every pair of vertices.
- A tree is a connected graph with no cycles.
- A subgraph H of G = (V, E) is $H = (V_1, E_1)$ where $V_1 \subseteq V$ and $E_1 \subseteq E$, where $\forall e = (k, j) \in E_1, k, j \in V_1$.

- Two vertices are **adjacent** if they are connected by an edge.
- The neighbors of a vertex are all the vertices adjacent to it.
- The degree of a vertex is the number of its neighbors.
- A **path** is a sequence of vertices, where each pair of successive vertices is connected by an edge.
- The length of the path is the number of edges in the path.
- A simple path contains unique vertices.
- A cycle is a simple path with the same first and last vertex.
- A graph is **connected** if \exists a path between every pair of vertices.
- A tree is a connected graph with no cycles.
- A subgraph H of G = (V, E) is $H = (V_1, E_1)$ where $V_1 \subseteq V$ and $E_1 \subseteq E$, where $\forall e = (k, j) \in E_1, k, j \in V_1$.

Focusing on Simple Graphs

Simple Graphs

- A simple graph, or a strict graph, is an unweighted, undirected graph containing no loops or multiple edges
- Given that $E \subseteq V \times V$, $|E| \in O(|V|^2)$.
- If a graph is connected, $|E| \ge |V| 1$

• Combining the two, show that $lg(|E|) \in \theta(lg(|V|))$

Short Detour:

Asymptotic Notations

Big-Oh: An Asymptotic Upper Bound

little-oh: Tight Asymptotic Upper Bound

 $g(n) \in o(f(n))$ when the upper bound < holds for all constants c > 0. Alternative definition: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$

Big-Omega: An Asymptotic Lower Bound

little-omega: Tight Asymptotic Lower Bound

 $g(n) \in \omega(f(n))$ when the lower bound > holds for all constants c > 0. Alternative definition: $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$

Theta: Asymptotic Upper and Lower Bounds

Definition A function $g(n) \in \Theta(f(n))$ if $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$. Alternatively, $g(n) \in \Theta(f(n))$ if \exists positive constants c_1, c_2 and n_0 s.t. $c_1 \cdot f(n) \leq g(n) \leq c_2 \cdot f(n) \ \forall n \geq n_0$. **Graphical Illustration** $\int_{n_0}^{c_2f(n)} g(n) \int_{n_1}^{c_2f(n)} g(n) \int_{n_1}^{c_2f(n)} g(n) \int_{n_2}^{c_2f(n)} g(n) \int_{n_$

Alternative Definition

$$g(n) \in \Theta(f(n))$$
 when $\lim_{n \to \infty} rac{g(n)}{f(n)} = O(1)$

Back to Graphs

- *E* may be a set of unorderered pairs of vertices not necessarily distinct. More than one edge can connect two vertices.
- An edge in *E* may connect more than two vertices.
- These graphs are referred to as multigraphs or pseudo-graphs.

- *E* may be a set of unorderered pairs of vertices not necessarily distinct. More than one edge can connect two vertices.
- An edge in *E* may connect more than two vertices.
- These graphs are referred to as multigraphs or pseudo-graphs.
- When do we choose which vertices to connect and by how many edges?
- Answer depends on what about the network one is trying to investigate.

- *E* may be a set of unorderered pairs of vertices not necessarily distinct. More than one edge can connect two vertices.
- An edge in *E* may connect more than two vertices.
- These graphs are referred to as multigraphs or pseudo-graphs.
- When do we choose which vertices to connect and by how many edges?
- Answer depends on what about the network one is trying to investigate.
- Choice determines ability to use network theory successfully.
- In some cases there is a unique, unambiguous representation; in others, the representation is not unique.
- E.g. the way we assign the links between a group of individuals will determine the nature of the question we can study.

- *E* may be a set of unorderered pairs of vertices not necessarily distinct. More than one edge can connect two vertices.
- An edge in *E* may connect more than two vertices.
- These graphs are referred to as multigraphs or pseudo-graphs.
- When do we choose which vertices to connect and by how many edges?
- Answer depends on what about the network one is trying to investigate.
- Choice determines ability to use network theory successfully.
- In some cases there is a unique, unambiguous representation; in others, the representation is not unique.
- E.g. the way we assign the links between a group of individuals will determine the nature of the question we can study.
- Some examples next

Finding the Right Network Representation

Figure: If you connect individuals that work with each other, you will explore the professional

Amarda Shehu ()

Finding the Right Network Representation

The structure of adolescent romantic and sexual networks

Bearman PS, Moody J, Stovel K. Institute for Social and Economic Research and Policy - Columbia University http://researchnews.osu.edu/archive/chainspix.htm

Finding the Right Network Representation

Undirected edges for symmetric relationships

- Co-authorship links
- Actor network
- Protein-protein interactions

Directed edges for asymmetric relationships

- URLs on the www
- phone calls
- metabolic reactions

Bipartitle graph or bigraph is a graph G = (V, E) whose vertices can be divided into two disjoint sets V_1 and V_2 such that every edge connects a vertex in V_1 to one in V_2

Specifically: $V = V_1 \cup V_2$ and $V_1 \cap V_2 = \{\}$

Examples

- Collaboration networks
- Hollywood actor network
- Disease network (diseasome)

Some More Examples

GENE NETWORK – DISEASE NETWORK

Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)

Disease network

Some More Examples

HUMAN DISEASE NETWORK

(Internal) Graph Representations

- A graph can be represented as an adjacency list.
- A graph can be represented as an adjacency matrix.
Adjacency List Representation

Implementation of Adjacency-list Representation

The adjacency list of a vertex can be implemented as a linked list

The list of vertices themselves can be implemented using:

- A linked list
- A binary search tree
- A hash table

In a standard implementation, each edge list has two fields, a data field and a pointer:

- The data field contains adjacent vertex name and edge information
- The pointer points to next adjacent vertex

Basic Graph Operations with Adjacency List Representation

Function	Worst-case Running Time	
find(v)	O(V)	
hasVertex(<i>v</i>)	O(find(v))	
$hasEdge(v_i, v_j)$	$O(\mathrm{find}(\mathrm{v_i}) + \mathrm{deg}(\mathrm{v_i}))$	
insertVertex(v)	<i>O</i> (1)	
$insertEdge(v_i, v_j)$	$O(\text{find}(v_i))$	
removeVertex(v)	O(V + E)	In undirected graphs:
$removeEdge(v_i, v_j)$	$O(\mathrm{find}(\mathrm{v_i}) + \mathrm{deg}(\mathrm{v_i}))$	elist[v] = degree(v).
outEdges(v)	$O(\operatorname{find}(v) + \operatorname{deg}(v))$	In diawanha
inEdges(v)	O(V + E)	In digraphs: a at[x] = aut degree(x)
overall memory	O(V + E)	$ \operatorname{enst}[v] = \operatorname{out-degree}(v).$

Handshaking Lemma:

$$\begin{split} &\sum_{v \in V} |\operatorname{elist}(v)| = 2|E| \text{ for undirected graphs.} \\ &O(|V| + |E|) \text{ storage } \Rightarrow \text{sparse representation.} \end{split}$$

Adjacency Matrix Representation

Basic Graph Operations with Adjacency Matrix Representation

Function	Worst-case Running Time
find(v)	<i>O</i> (1)
hasVertex(v)	O(1)
$hasEdge(v_i, v_j)$	O(1)
insertVertex(v)	$O(V ^2)$
$insertEdge(v_i, v_j)$	O(1)
removeVertex(v)	$O(V ^2)$
$removeEdge(v_i, v_j)$	O(1)
outEdges(v)	O(V)
inEdges(v)	O(V)
overall memory	$O(V ^2)$

 $O(|V|^2)$ storage \Rightarrow **dense** representation.

Comparing The Two Representations

Function	Adjacency List	Adjacency Matrix
find(v)	O(V)	<i>O</i> (1)
hasVertex(v)	O(find(v))	O(1)
$hasEdge(v_i, v_j)$	$O(\operatorname{find}(v_i) + \operatorname{deg}(v_i))$	O(1)
insertVertex(v)	O(1)	$O(V ^2)$
$insertEdge(v_i, v_j)$	$O(\text{find}(v_i))$	O(1)
removeVertex(v)	O(V + E)	$O(V ^2)$
$removeEdge(v_i, v_j)$	$O(\operatorname{find}(v_i) + \operatorname{deg}(v_i))$	O(1)
outEdges(v)	O(find(v) + deg(v))	O(V)
inEdges(v)	O(V + E)	O(V)
overall memory	O(V + E)	$O(V ^2)$

Comparing The Two Representations

Function	Adjacency List	Adjacency Matrix
find(v)	O(V)	<i>O</i> (1)
hasVertex(v)	O(find(v))	O(1)
$hasEdge(v_i, v_j)$	$O(\operatorname{find}(v_i) + \operatorname{deg}(v_i))$	O(1)
insertVertex(v)	O(1)	$O(V ^2)$
$insertEdge(v_i, v_j)$	$O(\text{find}(v_i))$	O(1)
removeVertex(v)	O(V + E)	$O(V ^2)$
$removeEdge(v_i, v_j)$	$O(\operatorname{find}(v_i) + \operatorname{deg}(v_i))$	O(1)
outEdges(v)	O(find(v) + deg(v))	O(V)
inEdges(v)	O(V + E)	O(V)
overall memory	O(V + E)	$O(V ^2)$

Time and Space

- What data structure choice to make to support faster, O(1) operations?
- What happens when memory is a concern for the very large networks of millions or more nodes?

Graph Representation: Hash Map

- Vertex set as a hash map
 - key: vertex
 - data: outgoing edges
- Outgoing edges of each vertex as a hash set

Graph Representation: Hashmap

HashMap			
Fast to query	[hasVertex, hasEdge]	O(1)	
Fast to scan	[outEdges]	O(V)	
Fast to insert	[insertVertex, insertEdge]	O(1)	
Fast to remove	[removeEdge]	<i>O</i> (1)	

Comparing The Three Representations

Function	Adj. List	Adj. Matrix	Hash Map
find(v)	O(V)	O(1)	O(1)
hasVertex(v)	O(V)	O(1)	O(1)
$hasEdge(v_i, v_j)$	$O(V + \deg(v_i))$	O(1)	O(1)
insertVertex(v)	O(1)	$O(V ^2)$	O(1)
$insertEdge(v_i, v_j)$	O(V)	O(1)	O(1)
removeVertex(v)	O(V + E)	$O(V ^2)$	O(V)
removeEdge (v_i, v_j)	$O(V + \deg(v_i))$	O(1)	O(1)
outEdges(v)	$O(V + \deg(v))$	O(V)	$O(\deg(v))$
inEdges(v)	O(V + E)	O(V)	O(V)
overall memory	O(V + E)	$O(V ^2)$	linear-quadratic

Comparing The Three Representations

Function	Adj. List	Adj. Matrix	Hash Map
find(v)	O(V)	O(1)	O(1)
hasVertex(v)	O(V)	O(1)	O(1)
$hasEdge(v_i, v_j)$	$O(V + \deg(v_i))$	O(1)	O(1)
insertVertex(v)	O(1)	$O(V ^2)$	O(1)
$insertEdge(v_i, v_j)$	O(V)	O(1)	O(1)
removeVertex(v)	O(V + E)	$O(V ^2)$	O(V)
removeEdge (v_i, v_j)	$O(V + \deg(v_i))$	O(1)	O(1)
outEdges(v)	$O(V + \deg(v))$	O(V)	$O(\deg(\mathrm{v}))$
inEdges(v)	O(V + E)	O(V)	O(V)
overall memory	O(V + E)	$O(V ^2)$	linear-quadratic

What about space concerns?

- Study/store specific subgraphs
- Consider distributed environment (example: Weaver weaver.systems)

Many measures of interest in a network involve distances, that are often related to the length or weight of the shortest/least-weight path connecting two nodes of interest

How do we find a path connecting two nodes?

Many measures of interest in a network involve distances, that are often related to the length or weight of the shortest/least-weight path connecting two nodes of interest

How do we find a path connecting two nodes?

Refresher: Graph Search Algorithms

Many measures of interest in a network involve distances, that are often related to the length or weight of the shortest/least-weight path connecting two nodes of interest

How do we find a path connecting two nodes?

Refresher: Graph Search Algorithms

General Search Template

• Important insight:

- Any search algorithm constructs a tree, adding to it vertices of graph G in some order
- G = (V, E) look at it as split in two: set S on one side and V S on the other
- search proceeds as vertices are taken from V-S and added to S
- search ends when V S is empty or goal found
- First vertex to be taken from V S and added to S?
- Next vertex? (... expansion ...)
- Where to keep track of these vertices? (... fringe/frontier ...)

• Important ideas:

- Fringe (frontier into V S/border between S and V S)
- Expansion (neighbor generation so can add to fringe)
- Exploration strategy (what order to grow S?)

• Main question:

- which fringe/frontier nodes to explore/expand next?
- · strategy distinguishes search algorithms from one another

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:

- completeness—does it always find a solution if one exists?
- time complexity—number of nodes generated/expanded
- space complexity-maximum number of nodes in memory
- optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of:

- b-maximum branching factor of the search tree
- *d*—depth of the least-cost solution
- *m*—maximum depth of the state space (may be ∞)

Characteristics of Uninformed Graph Search/Traversal:

- There is no additional information about states/vertices beyond what is provided in the problem definition.
- All that the search does is generate successors/neighbors and distinguish a goal state from a non-goal state.

The systematic search "lays out" all paths from initial vertex; it traverses the search tree of the graph.

F: search data structure (fringe) parent array: stores "edge comes from" to record visited states

1: F.insert(v) 2: parent[v] \leftarrow true 3: while not F.isEmpty do $u \leftarrow F.extract()$ 4: if isGoal(u) then 5. 6: return true 7: for each v in outEdges(u) do if no parent[v] then 8. F.insert(v)9: $parent[v] \leftarrow u$ 10:

Uninformed Search Algorithms

- Breadth-first Search (BFS)
- Depth-first Search (DFS)
- Depth-limited search (DLS)
- Iterative Deepening Search (IDS)

Breadth-first Search (BFS)

Implementation:

fringe = first-in first-out (FIFO), i.e., unvisited successors go at end F is a queue

Implementation:

fringe = first-in first-out (FIFO), i.e., unvisited successors go at end F is a queue

Implementation:

fringe = first-in first-out (FIFO), i.e., unvisited successors go at end F is a queue

Implementation:

fringe = first-in first-out (FIFO), i.e., unvisited successors go at end F is a queue $% \left({F_{\rm s}} \right) = 0$

- 1: F.insert(v)
- 2: parent[v] \leftarrow true
- 3: while not F.isEmpty do
- 4: $u \leftarrow F.extract()$
- 5: if isGoal(u) then
- 6: return true
- 7: for each v in outEdges(u) do
- 8: if no parent[v] then
- 9: F.insert(v)
- 10: $parent[v] \leftarrow u$

Running Time?

- 1: F.insert(v)
- 2: parent[v] \leftarrow true
- 3: while not F.isEmpty do
- 4: $u \leftarrow F.extract()$
- 5: if isGoal(u) then
- 6: return true
- 7: for each v in outEdges(u) do
- 8: **if** no parent[v] **then**
- 9: F.insert(v)
- 10: $parent[v] \leftarrow u$

Running Time?

Let V and E be vertices and edges in search tree

- 1: F.insert(v)
- 2: parent[v] \leftarrow true
- 3: while not F.isEmpty do
- 4: $u \leftarrow F.extract()$
- 5: if isGoal(u) then
- 6: return true
- 7: for each v in outEdges(u) do
- 8: **if** no parent[v] **then**
- 9: F.insert(v)
- 10: $parent[v] \leftarrow u$

Running Time?

Let V and E be vertices and edges in search tree $\mathcal{O}(|\mathcal{V}|+|\mathcal{E}|)$

- 1: F.insert(v)
- 2: parent[v] \leftarrow true
- 3: while not F.isEmpty do
- 4: $u \leftarrow F.extract()$
- 5: if isGoal(u) then
- 6: return true
- 7: for each v in outEdges(u) do
- 8: **if** no parent[v] **then**
- 9: F.insert(v)
- 10: $parent[v] \leftarrow u$

Running Time?

Let V and E be vertices and edges in search tree O(|V| + |E|)

- 1: F.insert(v)
- 2: parent[v] \leftarrow true
- 3: while not F.isEmpty do
- 4: $u \leftarrow F.extract()$
- 5: if isGoal(u) then
- 6: return true
- 7: for each v in outEdges(u) do
- 8: **if** no parent[v] **then**
- 9: F.insert(v)
- 10: $parent[v] \leftarrow u$

Running Time?

Let V and E be vertices and edges in search tree O(|V| + |E|)

What about in terms of b and m?

Complete??

Complete?? Yes (if *b* is finite)

Complete?? Yes (if *b* is finite)

Time??

Complete?? Yes (if *b* is finite)

<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Complete?? Yes (if *b* is finite)

<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space??

Complete?? Yes (if b is finite)

<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Complete?? Yes (if *b* is finite)

<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal??
<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space

<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Basic Behavior:

- Expands all nodes at depth d before those at depth d + 1
- The sequence is root, then children, then grandchildren in the search tree.

Problems:

• If the path cost is a non-decreasing function of the depth of the goal node, then BFS is optimal (uniform cost search a generalization)

Basic Behavior:

- Expands all nodes at depth d before those at depth d + 1
- The sequence is root, then children, then grandchildren in the search tree.

- If the path cost is a non-decreasing function of the depth of the goal node, then BFS is optimal (uniform cost search a generalization)
- A graph with no weights can be considered to have edges of weight 1. In this case, BFS is optimal.

Basic Behavior:

- Expands all nodes at depth d before those at depth d + 1
- The sequence is root, then children, then grandchildren in the search tree.

- If the path cost is a non-decreasing function of the depth of the goal node, then BFS is optimal (uniform cost search a generalization)
- A graph with no weights can be considered to have edges of weight 1. In this case, BFS is optimal.
- BFS will find shallowest goal after expanding all shallower nodes (if branching factor is finite). Hence, BFS is complete.

Basic Behavior:

- Expands all nodes at depth d before those at depth d + 1
- The sequence is root, then children, then grandchildren in the search tree.

- If the path cost is a non-decreasing function of the depth of the goal node, then BFS is optimal (uniform cost search a generalization)
- A graph with no weights can be considered to have edges of weight 1. In this case, BFS is optimal.
- BFS will find shallowest goal after expanding all shallower nodes (if branching factor is finite). Hence, BFS is complete.
- BFS is not very popular because time and space complexity are exponential: $O(b^{d+1})$ and $O(b^{d+1})$, respectively.
- Memory requirements of BFS are a bigger problem.

Basic Behavior:

- Expands all nodes at depth d before those at depth d + 1
- The sequence is root, then children, then grandchildren in the search tree.

- If the path cost is a non-decreasing function of the depth of the goal node, then BFS is optimal (uniform cost search a generalization)
- A graph with no weights can be considered to have edges of weight 1. In this case, BFS is optimal.
- BFS will find shallowest goal after expanding all shallower nodes (if branching factor is finite). Hence, BFS is complete.
- BFS is not very popular because time and space complexity are exponential: $O(b^{d+1})$ and $O(b^{d+1})$, respectively.
- Memory requirements of BFS are a bigger problem.

Depth-first Search (DFS)

Depth-first Search (DFS)

Implementation:

- 1: F.insert(v)
- $\textbf{2: parent[v]} \gets true$
- 3: while not F.isEmpty do
- 4: $u \leftarrow F.extract()$
- 5: if isGoal(u) then
- 6: return true
- 7: for each v in outEdges(u) do
- 8: **if** no parent[v] **then**
- 9: F.insert(v)
- 10: $parent[v] \leftarrow u$

Running Time?

- 1: F.insert(v)
- $\textbf{2:} \hspace{0.1cm} parent[v] \leftarrow true$
- 3: while not F.isEmpty do
- 4: $u \leftarrow F.extract()$
- 5: if isGoal(u) then
- 6: return true
- 7: for each v in outEdges(u) do
- 8: **if** no parent[v] **then**
- 9: F.insert(v)
- 10: $parent[v] \leftarrow u$

Running Time?

Let V and E be vertices and edges in search tree

- 1: F.insert(v)
- $\textbf{2: parent[v]} \gets true$
- 3: while not F.isEmpty do
- 4: $u \leftarrow F.extract()$
- 5: if isGoal(u) then
- 6: return true
- 7: for each v in outEdges(u) do
- 8: **if** no parent[v] **then**
- 9: F.insert(v)
- 10: $parent[v] \leftarrow u$

Running Time?

Let V and E be vertices and edges in search tree $\mathcal{O}(|\mathcal{V}|+|\mathcal{E}|)$

- 1: F.insert(v)
- $\textbf{2: parent[v]} \gets true$
- 3: while not F.isEmpty do
- 4: $u \leftarrow F.extract()$
- 5: if isGoal(u) then
- 6: return true
- 7: for each v in outEdges(u) do
- 8: **if** no parent[v] **then**
- 9: F.insert(v)
- 10: $parent[v] \leftarrow u$

Running Time?

Let V and E be vertices and edges in search tree O(|V| + |E|)

What about in terms of b and m?

- 1: F.insert(v)
- $\textbf{2:} \hspace{0.1cm} parent[v] \leftarrow true$
- 3: while not F.isEmpty do
- 4: $u \leftarrow F.extract()$
- 5: if isGoal(u) then
- 6: return true
- 7: for each v in outEdges(u) do
- 8: **if** no parent[v] **then**
- 9: F.insert(v)
- 10: $parent[v] \leftarrow u$

Running Time?

Let V and E be vertices and edges in search tree O(|V| + |E|)

What about in terms of b and m?

Properties of Depth-first Search (DFS)

Complete??

Complete ?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path

 \Rightarrow complete in finite spaces

Properties of Depth-first Search (DFS)

 $\frac{\text{Complete}?? \text{ No: fails in infinite-depth spaces, spaces with loops}}{\frac{\text{Mod}}{\text{Mod}}}$ $\frac{\text{Mod}}{\text{Mod}}$ $\frac{\text{Mod}$

Time??

Properties of Depth-first Search (DFS)

<u>Time</u>?? $O(b^m)$: terrible if *m* is much larger than *d* but if solutions are dense, may be much faster than BFS Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path ⇒ complete in finite spaces

<u>Time</u>?? $O(b^m)$: terrible if *m* is much larger than *d* but if solutions are dense, may be much faster than BFS

Space??

<u>Time</u>?? $O(b^m)$: terrible if *m* is much larger than *d* but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

<u>Time</u>?? $O(b^m)$: terrible if *m* is much larger than *d* but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

Optimal??

<u>Time</u>?? $O(b^m)$: terrible if *m* is much larger than *d* but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

Optimal?? No
<u>Time</u>?? $O(b^m)$: terrible if *m* is much larger than *d* but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

Optimal?? No

Why?

<u>Time</u>?? $O(b^m)$: terrible if *m* is much larger than *d* but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

Optimal?? No

Why?

Basic Behavior:

- Expands the deepest node in the tree
- Backtracks when reaches a non-goal node with no descendants

- Make a wrong choice and can go down along an infinite path even though the solution may be very close to initial vertex
- Hence, DFS is not optimal

Basic Behavior:

- Expands the deepest node in the tree
- Backtracks when reaches a non-goal node with no descendants

- Make a wrong choice and can go down along an infinite path even though the solution may be very close to initial vertex
- Hence, DFS is not optimal
- If subtree is of unbounded depth and contains no solutions, DFS will never terminate.

Basic Behavior:

- Expands the deepest node in the tree
- Backtracks when reaches a non-goal node with no descendants

- Make a wrong choice and can go down along an infinite path even though the solution may be very close to initial vertex
- Hence, DFS is not optimal
- If subtree is of unbounded depth and contains no solutions, DFS will never terminate.
- Hence, DFS is not complete

Basic Behavior:

- Expands the deepest node in the tree
- Backtracks when reaches a non-goal node with no descendants

- Make a wrong choice and can go down along an infinite path even though the solution may be very close to initial vertex
- Hence, DFS is not optimal
- If subtree is of unbounded depth and contains no solutions, DFS will never terminate.
- Hence, DFS is not complete
- Let *b* be the maximum number of successors of any node (known as branching factor), *d* be depth of shallowest goal, and *m* be maximum length of any path in the search tree

Basic Behavior:

- Expands the deepest node in the tree
- Backtracks when reaches a non-goal node with no descendants

- Make a wrong choice and can go down along an infinite path even though the solution may be very close to initial vertex
- Hence, DFS is not optimal
- If subtree is of unbounded depth and contains no solutions, DFS will never terminate.
- Hence, DFS is not complete
- Let *b* be the maximum number of successors of any node (known as branching factor), *d* be depth of shallowest goal, and *m* be maximum length of any path in the search tree
- Time complexity is $O(b^m)$ and space complexity is $O(b \cdot m)$

Basic Behavior:

- Expands the deepest node in the tree
- Backtracks when reaches a non-goal node with no descendants

- Make a wrong choice and can go down along an infinite path even though the solution may be very close to initial vertex
- Hence, DFS is not optimal
- If subtree is of unbounded depth and contains no solutions, DFS will never terminate.
- Hence, DFS is not complete
- Let *b* be the maximum number of successors of any node (known as branching factor), *d* be depth of shallowest goal, and *m* be maximum length of any path in the search tree
- Time complexity is $O(b^m)$ and space complexity is $O(b \cdot m)$

BFS vs. DFS

- When will BFS outperform DFS?
- When will DFS outperform BFS?

Another Advantage of DFS

Recursive DFS(v)

- 1: if v is unmarked then
- 2: mark v
- 3: for each edge v, u do
- 4: Recursive DFS(u)

Color arrays can be kept to indicate that a vertex is undiscovered, the first time it is discovered, when its neighbors are in the process of being considered, and when all its neighbors have been considered.

DFS can be used to timestamp vertices with when they are discovered and when they are finished. These start and finish times are useful in various applications of DFS regarding constraint satisfaction.

Depth-limited Search (DLS)

- Problem with DFS is presence of infinite paths
- DLS limits the depth of a path in search tree of DFS
- \bullet Modifies DFS by using a predetermined depth limit d_1
- DLS is incomplete if the shallowest goal is beyond the depth limit d_l
- DLS is not optimal if $d < d_l$
- Time complexity is $O(b^{d_l})$ and space complexity is $O(b \cdot d_l)$

Depth-limited Search (DLS)

= DFS with depth limit d_i [i.e., nodes at depth d_i are not expanded]

Recursive implementation:

 function
 DEPTH-LIMITED-SEARCH(problem, limit)
 returns

 soln/fail/cutoff
 RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)
 returns

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff cutoff-occurred? ← false if GOAL-TEST(problem, STATE[node]) then return node else if DEPTH[node] = limit then return cutoff else for each successor in EXPAND(node, problem) do result ← RECURSIVE-DLS(successor, problem, limit) if result = cutoff then cutoff-occurred? ← true else if result ≠ failure then return result if cutoff-occurred? then return cutoff else return failure

- Finds the best depth limit by incrementing d_l until goal is found at $d_l = d$
- Can be viewed as running DLS with consecutive values of d_l
- IDS combines the benefits of both DFS and BFS
- Like DFS, its space complexity is $O(b \cdot d)$
- Like BFS, it is complete when the branching factor is finite, and it is optimal if the path cost is a non-decreasing function of the depth of the goal node
- Its time complexity is $O(b^d)$
- IDS is the preferred uninformed search when the state space is large, and the depth of the solution is not known

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
 inputs: problem, a problem

for depth ← 0 to ∞ do
 result ← DEPTH-LIMITED-SEARCH(problem, depth)
 if result ≠ cutoff then return result
end

Iterative Deepening Search (IDS) @ $d_l = 0$

Limit = 0

ÞA.

Iterative Deepening Search (IDS) @ $d_l = 1$

Iterative Deepening Search (IDS) @ $d_l = 2$

Iterative Deepening Search (IDS) @ $d_I = 3$

Summary of Uninformed Search Algorithms

Criterion	Breadth-	Depth-	Depth-	Iterative		
	First	First	Limited	Deepening		
Complete?	Yes*	No	Yes, if $d_l \geq d$	Yes		
Time	b^{d+1}	b^m	b^{d_l}	b^d		
Space	b^{d+1}	bm	bdı	bd		
Optimal?	Yes*	No	No	Yes*		

Uninformed Search Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored
- Variety of uninformed search strategies
- IDS uses only linear space and not much more time than other uninformed algorithms
- Graph search can be exponentially more efficient than tree search
- What about least-cost paths with non-uniform state-state costs?
 - That is next

Most popular: Dijkstra and A*

Differences from uninformed search algorithms:

- work with weighted graphs
- process nodes in order of attachment cost
- employ priority queue (min-heap) for this purpose instead of stack or queue
- Dijkstra: overkill, finds least-cost path from a given start node to all nodes in graph
- A*: works only with given start and goal pair
- Dijkstra: attachment cost of a node is current least cost from given start to that node
- A*: adds to this the estimated distance to goal node, where esimation uses an optimistic heuristic

All you need to remember about informed search algorithms

• Associate a(n attachment) cost d[v] with each vertex v

All you need to remember about informed search algorithms

- Associate a(n attachment) cost d[v] with each vertex v
- F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

- Associate a(n attachment) cost d[v] with each vertex v
- F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]
- Until F is empty, one vertex extracted from F at a time

All you need to remember about informed search algorithms

- Associate a(n attachment) cost d[v] with each vertex v
- F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]
- Until F is empty, one vertex extracted from F at a time

Can terminate earlier? When? How does it relate to goal?

All you need to remember about informed search algorithms

- Associate a(n attachment) cost d[v] with each vertex v
- F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]
- Until F is empty, one vertex extracted from F at a time Can terminate earlier? When? How does it relate to goal?

• v extracted from F @ some iteration is one with lowest cost among all those in F

All you need to remember about informed search algorithms

- Associate a(n attachment) cost d[v] with each vertex v
- F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]
- Until F is empty, one vertex extracted from F at a time Can terminate earlier? When? How does it relate to goal?
- v extracted from F @ some iteration is one with lowest cost among all those in F ... so, vertices extracted from F in order of their costs

All you need to remember about informed search algorithms

- Associate a(n attachment) cost d[v] with each vertex v
- F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]
- Until F is empty, one vertex extracted from F at a time Can terminate earlier? When? How does it relate to goal?
- v extracted from F @ some iteration is one with lowest cost among all those in F ... so, vertices extracted from F in order of their costs
- When v extracted from F:

All you need to remember about informed search algorithms

- Associate a(n attachment) cost d[v] with each vertex v
- F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]
- Until F is empty, one vertex extracted from F at a time Can terminate earlier? When? How does it relate to goal?
- v extracted from F @ some iteration is one with lowest cost among all those in F ... so, vertices extracted from F in order of their costs
- When v extracted from F:

v has been "removed" from V - S and "added" to S

All you need to remember about informed search algorithms

- Associate a(n attachment) cost d[v] with each vertex v
- F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]
- Until F is empty, one vertex extracted from F at a time Can terminate earlier? When? How does it relate to goal?
- v extracted from F @ some iteration is one with lowest cost among all those in F ... so, vertices extracted from F in order of their costs
- When v extracted from F:

v has been "removed" from V-S and "added" to S

get to reach/see v's neighbors and possibly update their costs

- Associate a(n attachment) cost d[v] with each vertex v
- F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]
- Until F is empty, one vertex extracted from F at a time Can terminate earlier? When? How does it relate to goal?
- v extracted from F @ some iteration is one with lowest cost among all those in F ... so, vertices extracted from F in order of their costs
- When v extracted from F:

v has been "removed" from V - S and "added" to S get to reach/see v's neighbors and possibly update their costs

The rest are details, such as:

- Associate a(n attachment) cost d[v] with each vertex v
- F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]
- Until F is empty, one vertex extracted from F at a time Can terminate earlier? When? How does it relate to goal?
- v extracted from F @ some iteration is one with lowest cost among all those in F ... so, vertices extracted from F in order of their costs
- When v extracted from F:

v has been "removed" from V - S and "added" to S get to reach/see v's neighbors and possibly update their costs

The rest are details, such as:

- What should d[v] be? There are options...
 - backward cost (cost of $s \rightsquigarrow v$)
 - forward cost (estimate of cost of $v \rightsquigarrow g$)
 - back+for ward cost (estimate of $s \rightsquigarrow g$ through v)
- Which do I choose? This is how to you end up with different search algorithms

- Associate a(n attachment) cost d[v] with each vertex v
- F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]
- Until F is empty, one vertex extracted from F at a time Can terminate earlier? When? How does it relate to goal?
- v extracted from F @ some iteration is one with lowest cost among all those in F ... so, vertices extracted from F in order of their costs
- When v extracted from F:

v has been "removed" from V - S and "added" to S

get to reach/see v's neighbors and possibly update their costs

The rest are details, such as:

- What should d[v] be? There are options...
 - backward cost (cost of s → v)
 - forward cost (estimate of cost of $v \rightsquigarrow g$)
 - back+for ward cost (estimate of $s \rightsquigarrow g$ through v)
- Which do I choose? This is how to you end up with different search algorithms

Dijkstra's Algorithm in Pseudocode

- Fringe: F is a priority queue/min-heap
- arrays: *d* stores attachment (backward) costs, $\pi[v]$ stores parents
- S not really needed, only for clarity below

Dijkstra(G, s, w)

1:
$$F \leftarrow s, S \leftarrow \{\}$$

2: $d[v] \leftarrow \infty$ for all $v \in V$

3:
$$d[s] \leftarrow 0$$

4: while $F \neq \{\}$ do

5:
$$u \leftarrow \text{Extract-Min}(F)$$

6:
$$S \leftarrow S \cup \{u\}$$

7: for each
$$v \in Adj(u)$$
 do

8:
$$F \leftarrow v$$

9: $\operatorname{Relax}(u, v, w)$

Relax(u, v, w)1: if d[v] > d[u] + w(u, v) then 2: $d[v] \leftarrow d[u] + w(u, v)$ 3: $\pi[v] \leftarrow u$

- The process of relaxing tests whether one can improve the shortest-path estimate d[v] by going through the vertex u in the shortest path from s to v
- If d[u] + w(u, v) < d[v], then u replaces the predecessor of v
- Where would you put an earlier termination to stop when $s \rightsquigarrow g$ found?

Dijkstra's Algorithm in Pseudocode

- Fringe: F is a priority queue/min-heap
- arrays: *d* stores attachment (backward) costs, $\pi[v]$ stores parents
- S not really needed, only for clarity below

Dijkstra(G, s, w)

1:
$$F \leftarrow s, S \leftarrow \{ \}$$

2: $d[v] \leftarrow \infty$ for all $v \in V$

3:
$$d[s] \leftarrow 0$$

4: while $F \neq \{\}$ do

5:
$$u \leftarrow \text{Extract-Min}(F)$$

6:
$$S \leftarrow S \cup \{u\}$$

7: for each
$$v \in Adj(u)$$
 do

8:
$$F \leftarrow v$$

9:
$$\operatorname{Relax}(u, v, w)$$

Relax
$$(u, v, w)$$

1: if $d[v] > d[u] + w(u, v)$ then
2: $d[v] \leftarrow d[u] + w(u, v)$
3: $\pi[v] \leftarrow u$

in another implementation, ${\sf F}$ is initialized with all V, and line 8 is removed.

- The process of relaxing tests whether one can improve the shortest-path estimate d[v] by going through the vertex u in the shortest path from s to v
- If d[u] + w(u, v) < d[v], then u replaces the predecessor of v
- Where would you put an earlier termination to stop when $s \rightsquigarrow g$ found?

Dijsktra's Algorithm in Action

Figure: Shortest paths from B

	Initial		Pass1		Pass2		Pass3		Pass4		Pass5		Pass6	
Vertex	d	π	d	π	d	π	d	π	d	π	d	π	d	π
А	∞		3	В	3	В	3	В	3	В	3	В	3	В
В	0	—	0	-	0	—	0	—	0	-	0	—	0	—
С	∞		5	В	4	A	4	A	4	A	4	A	4	A
D	∞		∞		∞		6	С	6	С	6	С	6	С
E	∞		∞		∞		8	С	8	С	8	С	8	С
F	∞		∞		∞		∞		11	D	9	Ε	9	Ε
Dijsktra's Algorithm in Action

Figure: Shortest paths from B

	Init	tial	Pa	ss1	Pa	ss2	Pa	ss3	Pa	ss4	Pa	ss5	Pa	ssб
Vertex	d	π	d	π	d	π	d	π	d	π	d	π	d	π
А	∞		3	В	3	В	3	В	3	В	3	В	3	В
В	0	—	0	—	0	—	0	—	0	—	0	-	0	—
С	∞		5	В	4	A	4	Α	4	A	4	A	4	A
D	∞		∞		8		6	С	6	С	6	С	6	С
E	∞		∞		∞		8	С	8	С	8	С	8	С
F	∞		∞		∞		∞		11	D	9	Ε	9	Ε

If not earlier goal termination criterion, Dijkstra's search tree is spanning tree of shortest paths from s to any vertex in the graph.

Take-home Exercise

	Initial		Pass1		Pass2		Pass3		Pass4		Pass5	
Vertex	d	π	d	π	d	π	d	π	d	π	d	π
а	0	-										
b	∞											
С	∞											
d	∞											
e	∞											

Analysis of Dijkstra's Algorithm

- Dijkstra's is optimal: proof relies on corollary that when a vertex v is extracted from fringe F (thus "added" to S), shortest path from s to v has been found (not true with negative weights).
- Updating the heap takes at most O(lg(|V|)) time
- The number of updates equals the total number of edges
- So, the total running time is $O(|E| \cdot lg(|V|))$
- Running time can be improved depending on the actual implementation of the priority queue

$$\mathsf{Time} = \theta(\mathsf{V}) \cdot \mathsf{T}(\mathsf{Extract} - \mathsf{Min}) + \theta(\mathsf{E}) \cdot \mathsf{T}(\mathsf{Decrease} - \mathsf{Key})$$

F	T(ExtrMin)	T(DecrKey)	Total
Array	O(V)	<i>O</i> (1)	$O(V ^2)$
Binary heap	O(1)	O(lg V)	$O(E \cdot lg V)$
Fib. heap	O(lg V)	O(1)	$O(E + V \cdot lg V)$

How does this compare with BFS? How does BFS get away from a lg(|V|) factor?

(Uninformed and Informed) Graph Search Algorithms

A* Search

Idea: avoid expanding paths that are already expensive

Evaluation function f(v) = g(v) + h(v): Combines Dijkstra's/uniform cost with greedy best-first search g(v) = (actual) cost to reach v from sh(v) = estimated lowest cost from v to goal f(v) = estimated lowest cost from s through v to goal

Same implementation as before, but prioritize vertices in min-heap by f[v]

A* is both complete and optimal provided *h* satisfies certain conditions: for searching in a tree: admissible/optimistic for searching in a graph: consistent (which implies admissibility)

```
What do we want from f[v]?
not to overestimate cost of path from source to goal that goes through v
```

Since g[v] is actual cost from s to v, this "do not overestimate" criterion is for the forward cost heuristic, h[v]

A* search uses an admissible/optimistic heuristic i.e., $h(v) \le h^*(v)$ where $h^*(v)$ is the **true** cost from v(Also require $h(v) \ge 0$, so h(G) = 0 for any goal G)

Example of an admissible heuristic: crow-fly distance never overestimates the actual road distance

A stronger, consistent heuristic: estimated cost of reaching goal from a vertex n is not greater than cost to go from n to its successors and then the cost from them to the goal

```
What do we want from f[v]?
not to overestimate cost of path from source to goal that goes through v
```

Since g[v] is actual cost from s to v, this "do not overestimate" criterion is for the forward cost heuristic, h[v]

A* search uses an admissible/optimistic heuristic i.e., $h(v) \le h^*(v)$ where $h^*(v)$ is the **true** cost from v(Also require $h(v) \ge 0$, so h(G) = 0 for any goal G)

Example of an admissible heuristic: crow-fly distance never overestimates the actual road distance

A stronger, consistent heuristic: estimated cost of reaching goal from a vertex n is not greater than cost to go from n to its successors and then the cost from them to the goal

Let's see A* with this heuristic in action

Optimality of A*

Skipping some details, but essentially if heuristic is consistent: A* expands nodes in order of increasing f value*

Gradually adds "*f*-contours" of nodes (cf. breadth-first adds layers) Contour *i* has all nodes with $f = f_i$, where $f_i < f_{i+1}$

So, why does this guarantee optimality?

First time we see goal will be the time it has lowest f = g (h is 0) Other occurrences have no lower f (f non-decreasing)

Amarda Shehu ()

Summary of A* Search

Complete??

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time??

<u>Time</u>?? Exponential in [path length $\times \frac{\delta(s,g) - h(s)}{\delta(s,g)}$]

<u>Time</u>?? Exponential in [path length $\times \frac{\delta(s,g) - h(s)}{\delta(s,g)}$]

Space??

<u>Time</u>?? Exponential in [path length $\times \frac{\delta(s,g) - h(s)}{\delta(s,g)}$]

Space?? Keeps all generated nodes in memory (worse drawback than time)

<u>Time</u>?? Exponential in [path length $\times \frac{\delta(s,g) - h(s)}{\delta(s,g)}$]

Space?? Keeps all generated nodes in memory (worse drawback than time)
Optimal??

<u>Time</u>?? Exponential in [path length $\times \frac{\delta(s,g) - h(s)}{\delta(s,g)}$]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

<u>Time</u>?? Exponential in [path length $\times \frac{\delta(s,g) - h(s)}{\delta(s,g)}$]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

Optimally efficient for any given consistent heuristic:

<u>Time</u>?? Exponential in [path length $\times \frac{\delta(s,g) - h(s)}{\delta(s,g)}$]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

Optimally efficient for any given consistent heuristic: A* expands all nodes with $f(v) < \delta(s, g)$

<u>Time</u>?? Exponential in [path length $\times \frac{\delta(s,g) - h(s)}{\delta(s,g)}$]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

Optimally efficient for any given consistent heuristic: A* expands all nodes with $f(v) < \delta(s, g)$ A* expands some nodes with $f(v) = \delta(s, g)$

<u>Time</u>?? Exponential in [path length $\times \frac{\delta(s,g) - h(s)}{\delta(s,g)}$]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

Optimally efficient for any given consistent heuristic: A* expands all nodes with $f(v) < \delta(s,g)$ A* expands some nodes with $f(v) = \delta(s,g)$ A* expands no nodes with $f(v) > \delta(s,g)$

<u>Time</u>?? Exponential in [path length $\times \frac{\delta(s,g) - h(s)}{\delta(s,g)}$]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished

Optimally efficient for any given consistent heuristic: A* expands all nodes with $f(v) < \delta(s,g)$ A* expands some nodes with $f(v) = \delta(s,g)$ A* expands no nodes with $f(v) > \delta(s,g)$ $\mathsf{CS583}$ additionally considers scenarios where greedy substructure does not lead to optimality

For instance, how can one modify Dijkstra and the other algorithms to deal with negative weights?

How does one efficiently find all pairwise shortest/least-cost paths?

Dynamic Programming is the right alternative in these scenarios

More graph exploration and search algorithms considered in CS583

Next Lecture: Measures of Interest in Networks