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© Outline of Today's Class

© Graphs
@ Definition of a Graph
@ Types of Graphs
@ Asymptotic Notations

© Graph Representations
@ Adjacency List Representation
@ Adjacency Matrix Representation
o Alternative Graph Representations

@ Elementary Graph Algorithms for Path Searching

© (Uninformed and Informed) Graph Search Algorithms
@ Uninformed Search
@ Breadth-first Search (BFS)
@ Depth-first Search (DFS)
@ Depth-limited Search (DLS)
@ Iterative Deepening Search (IDS)

@ A* Search
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Components of a Complex System

e components: nodes, vertices (V)
o interactions: links, arcs, edges (L, E)

e system: network, graph (N, G)
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e components: nodes, vertices (V)
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e system: network, graph (N, G)

Networks, or Graphs?
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Components of a Complex System

e components: nodes, vertices (V)
o interactions: links, arcs, edges (L, E)

e system: network, graph (N, G)

Networks, or Graphs?

Network = real systems

Graph = mathematical representation of network

@ www
@ social network
@ metabolic network

@ Language: Network, node, link

Amarda Shehu ()

o web graph
o social graph (Facebook term)
@ metabolic graph

@ Language: Graph, vertex, edge
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Components of a Complex System

e components: nodes, vertices (V)
o interactions: links, arcs, edges (L, E)

e system: network, graph (N, G)

Networks, or Graphs?

Network = real systems Graph = mathematical representation of network
o www @ web graph
@ social network @ social graph (Facebook term)
@ metabolic network @ metabolic graph
@ Language: Network, node, link @ Language: Graph, vertex, edge

We will try to make this distinction whenever appropriate, but in most cases the two
terms will be interchangeable.
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What is a Graph?

Graph G = (V,E)
o V : set of vertices
@ E : set of edges consisting of pairs of vertices from V

V ={w,vi, v, v, v}
E = {(v0, ), (. vs), (v, 2). (v, )}

Vi

Vo Vi

Vs Ve
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First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once. Posed by
Leonard Euler [1707 - 1783].

Vo Ve

Va

modified from wikipedia
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First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once. Posed by
Leonard Euler [1707 - 1783].

Vo Ve

‘ V.
modified from wikipedia ’

Specifically:
What is the minimum number of bridges that need to be added so that there exists a
route that crosses each bridge exactly once?
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First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once. Posed by
Leonard Euler [1707 - 1783].

Vo Ve

‘ V.
modified from wikipedia ’

Specifically:

What is the minimum number of bridges that need to be added so that there exists a
route that crosses each bridge exactly once?
Iff there are exactly two or zero nodes of odd degree
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Applications of Graphs Beyond Network Science

Compilers
Databases

Neural Networks
Machine Learning

@ Artificial Intelligence
@ Robotics

o Computational Biology
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Applications of Graphs Beyond Network Science

Compilers

Databases

Neural Networks
Machine Learning
Artificial Intelligence
Robotics
Computational Biology

Focus of this Lecture:

Primer on Graphs
Terminology, Characteristics, and Algorithms Relevant to Networks
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Formal Definition of a Graph

A graph G = (V, E) is a pair consisting of:

@ a set V of vertices (or nodes)
@ aset E C V x V of edges (or arcs)
e edge ¢ € E is a pair (u, v) connecting vertices u and v
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Formal Definition of a Graph

A graph G = (V, E) is a pair consisting of:

@ a set V of vertices (or nodes)
@ aset E C V x V of edges (or arcs)
e edge ¢ € E is a pair (u, v) connecting vertices u and v

A graph G = (V,E) is:

o directed (referred to as a digraph) if E is a set of ordered pairs of vertices. The
edges here are often referred to as directed edges or arrows.

o undirected if E is a set of unordered pairs of vertices.

o weighted if there are weights associated with the edges.
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Formal Definition of a Graph

A graph G = (V, E) is a pair consisting of:

@ a set V of vertices (or nodes)
@ aset E C V x V of edges (or arcs)

e edge ¢ € E is a pair (u, v) connecting vertices u and v
D

A graph G = (V,E) is:

o directed (referred to as a digraph) if E is a set of ordered pairs of vertices. The
edges here are often referred to as directed edges or arrows.

o undirected if E is a set of unordered pairs of vertices.

o weighted if there are weights associated with the edges.

We typically reserve:

@ N for number of vertices, |V/|

@ |E| indicates number of edges

Amarda Shehu () Graphs 7



Amarda Shehu ()

Vo

Vo

[llustrations of Types of Graphs

Figure: undirected graph

]

Figure: multigraph

Graphs

Vi

Vs

Figure: directed graph

Figure: weighted graph



More Definitions, Conventions, Nomenclature

@ Two vertices are adjacent if they are connected by an edge.
@ The neighbors of a vertex are all the vertices adjacent to it.

@ The degree of a vertex is the number of its neighbors.
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More Definitions, Conventions, Nomenclature

@ Two vertices are adjacent if they are connected by an edge.

@ The neighbors of a vertex are all the vertices adjacent to it.

The degree of a vertex is the number of its neighbors.

o A path is a sequence of vertices, where each pair of successive vertices is connected
by an edge.

The length of the path is the number of edges in the path.

A simple path contains unique vertices.

A cycle is a simple path with the same first and last vertex.
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More Definitions, Conventions, Nomenclature

@ Two vertices are adjacent if they are connected by an edge.

@ The neighbors of a vertex are all the vertices adjacent to it.

The degree of a vertex is the number of its neighbors.

o A path is a sequence of vertices, where each pair of successive vertices is connected
by an edge.

The length of the path is the number of edges in the path.

A simple path contains unique vertices.

A cycle is a simple path with the same first and last vertex.

@ A graph is connected if 3 a path between every pair of vertices.

A tree is a connected graph with no cycles.
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More Definitions, Conventions, Nomenclature

@ Two vertices are adjacent if they are connected by an edge.

@ The neighbors of a vertex are all the vertices adjacent to it.

The degree of a vertex is the number of its neighbors.

o A path is a sequence of vertices, where each pair of successive vertices is connected
by an edge.

The length of the path is the number of edges in the path.

A simple path contains unique vertices.

A cycle is a simple path with the same first and last vertex.

@ A graph is connected if 3 a path between every pair of vertices.

A tree is a connected graph with no cycles.

o A subgraph H of G = (V,E) is H= (V4, E1) where Vi C V and E; C E, where
Ve = (k,j) € E, k,je Wi
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Focusing on Simple Graphs

Simple Graphs

@ A simple graph, or a strict graph, is an unweighted, undirected graph containing no
loops or multiple edges

o Given that EC V x V, |E| € O(|V]?).
e If a graph is connected, |E| > |V| —1

e Combining the two, show that Ig(|E|) € 0(/g(|V])) )
Short Detour:
Asymptotic Notations
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Big-Oh: An Asymptotic Upper Bound

Definition Graphical lllustration

A function g(n) € O(f(n)) if \
3 constants ¢ > 0 and ng s.t g(n) < c-f(n)
Vn > no. cf(n)
Note: O(f(n)) denotes a set.
g(n)
no Vn

little-oh: Tight Asymptotic Upper Bound
g(n) € o(f(n)) when the upper bound < holds for all constants ¢ > 0. Alternative

definition: limp— oo % =0
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Big-Omega: An Asymptotic Lower Bound

Definition Graphical lllustration

A function g(n) € Q(f(n)) if \
3 constants ¢ > 0 and ng s.t g(n) > c- f(n)
Vn > no. g(n)
Note: Q(f(n)) denotes a set.
cf(n)
no Vn

little-omega: Tight Asymptotic Lower Bound
g(n) € w(f(n)) when the lower bound > holds for all constants ¢ > 0. Alternative

definition: limp— oo % =00
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Theta: Asymptotic Upper and Lower Bounds

Definition Graphical lllustration

A function g(n) € ©(f(n)) if \ ¢, f(n)
g(n) € O(f(n)) and g(n) € Q(f(n)).
Alternatively, g(n) € ©(f(n)) if 3 positive g(n)

constants ¢, ¢ and ng s.t.
a-f(n) <g(n) <c-f(n)Vn> ng.

Alternative Definition

g(n) € ©(f(n)) when lim,_ % = 0(1)
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Back to Graphs
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General Definition of a Graph

In a graph G = (V, E):

@ E may be a set of unorderered pairs of vertices not necessarily distinct. More than
one edge can connect two vertices.

@ An edge in E may connect more than two vertices.
@ These graphs are referred to as multigraphs or pseudo-graphs.
v
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General Definition of a Graph

In a graph G = (V,

@ E may be a set of unorderered pairs of vertices not necessarily distinct. More than
one edge can connect two vertices.

An edge in E may connect more than two vertices.

These graphs are referred to as multigraphs or pseudo-graphs.

When do we choose which vertices to connect and by how many edges?

[

@ Answer depends on what about the network one is trying to investigate.
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General Definition of a Graph

In a graph G = (V, E):

@ E may be a set of unorderered pairs of vertices not necessarily distinct. More than
one edge can connect two vertices.

@ An edge in E may connect more than two vertices.

@ These graphs are referred to as multigraphs or pseudo-graphs.

@ When do we choose which vertices to connect and by how many edges?

@ Answer depends on what about the network one is trying to investigate.

@ Choice determines ability to use network theory successfully.

@ In some cases there is a unique, unambiguous representation; in others, the
representation is not unique.

o E.g. the way we assign the links between a group of individuals will determine the
nature of the question we can study.
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General Definition of a Graph

In a graph G = (V,

@ E may be a set of unorderered pairs of vertices not necessarily distinct. More than
one edge can connect two vertices.

@ An edge in E may connect more than two vertices.

@ These graphs are referred to as multigraphs or pseudo-graphs.

@ When do we choose which vertices to connect and by how many edges?

@ Answer depends on what about the network one is trying to investigate.

@ Choice determines ability to use network theory successfully.

@ In some cases there is a unique, unambiguous representation; in others, the
representation is not unique.

o E.g. the way we assign the links between a group of individuals will determine the
nature of the question we can study.

@ Some examples next
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Finding the Right Network Representation
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Finding the Right Network Representation
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Finding the Right Network Representation

Undirected edges for symmetric Directed edges for asymmetric
relationships relationships

@ Co-authorship links @ URLs on the www

@ Actor network @ phone calls

@ Protein-protein interactions @ metabolic reactions
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Finding the Right Network Representation

Bipartitle graph or bigraph is a graph

G = (V, E) whose vertices can be divided into
two disjoint sets V4 and V5 such that every edge
connects a vertex in Vi to one in V>

Specifically: V=ViUV, and ViNn Vo ={}

o Collaboration networks

@ Hollywood actor network

@ Disease network (diseasome)
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Some More Examples

GENE NETWOR

(PIKACAY

SMADS

oHEKE
CONDY
SR

KAAS

Gene network

Goh, Cusick, Valle, Childs, Vidal & Barabdsi, PNAS (2007)
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(Internal) Graph Representations

@ A graph can be represented as an adjacency list.

@ A graph can be represented as an adjacency matrix.
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Adjacency List Representation

Vs

Vz
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s
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struct elist

{

int vto;

struct elist *next;

};

struct vlist

{

int v;

elist *edges;
struct vlist *next;

};

Graph Representations
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Implementation of Adjacency-list Representation

The adjacency list of a vertex can be implemented as a linked list

The list of vertices themselves can be implemented using;:

@ A linked list
@ A binary search tree
@ A hash table

In a standard implementation, each edge list has two fields, a data field and a

pointer:
@ The data field contains adjacent vertex name and edge information

@ The pointer points to next adjacent vertex
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Basic Graph Operations with Adjacency List Representation

Function Worst-case Running Time

find(v) o(V)

hasVertex(v) O(find(v))

hasEdge(v;, vj) O(find(vi) + deg(vi))

insertVertex(v) 0(1)

insertEdge(v;, v;) O(find(vi))

removeVertex(v) o(|V|+|E|) In undirected graphs:
removeEdge(vi, vj) | O(find(vi) + deg(vi)) lelist[v]| = degree(v).
f)utEdges(v) O(find(v) + deg(v)) In digraphs:
inEdges(v) o(|V|+|E|) listlvll — out-d
overall memory Oo(|V| +|E)) [elist[v]] = out-degree(v).

Handshaking Lemma:

> ey lelist(v)| = 2|E| for undirected graphs.
O(|V| + |E|) storage = sparse representation.
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Adjacency Matrix Representation

Vs
Vs Ve

(M[il[j]=1 iff (v,v)€E|

ulve vi v v |LJ~QQV| MInInl | wlve vi v. v v

vw|fo 1 0 1 0 vw|jo 1 1 0 1

v o1 0o 1 |QQQJ KM, | vv|o 1 0o 0o o

Ve 1 0 o0 : v.|lo 1 0o 1 0
using namespace std;

Vs 0 0 v=|]0o o 0o o0 1

Vs 1 vector < vector<bool> >| v, |1 0 1 1 o0
M;
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Basic Graph Operations with Adjacency Matrix Representation

Function Worst-case Running Time
find(v) 0(1)
hasVertex(v) 0o(1)
hasEdge(vi, v;) 0(1)
insertVertex(v) o(IV]?)
insertEdge(vi, v;) 0o(1)
removeVertex(v) o(|IV]?)
removeEdge(v;, v;) | O(1)
outEdges(v) o(|V])
inEdges(v) o(Iv))
overall memory Oo(IV])

O(|V|?) storage = dense representation. J
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Comparing The Two Representations

Function Adjacency List Adjacency Matrix
find(v) o(| V1) o(1)
hasVertex(v) O(find(v)) 0(1)
hasEdge(v;, v;) O(find(vi) + deg(vi)) | O(1)
insertVertex(v) 0o(1) o(|V]?)
insertEdge(vi, v;) O(find(vi)) 0o(1)
removeVertex(v) o(|V|+ |E)) o(|V]?)
removeEdge(vi, v;) | O(find(vi) + deg(vi)) | O(1)
outEdges(v) O(find(v) + deg(v)) o(Iv))
inEdges(v) o(VI+EN o(vI)
overall memory o(|VI|+ |E)) o(|V]®)
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Comparing The Two Representations

Function Adjacency List Adjacency Matrix
find(v) o(| V1) o(1)
hasVertex(v) O(find(v)) 0(1)
hasEdge(v;, v;) O(find(vi) + deg(vi)) | O(1)
insertVertex(v) 0o(1) o(|V]?)
insertEdge(vi, v;) O(find(vi)) 0o(1)
removeVertex(v) o(|V|+ |E)) o(|V]?)
removeEdge(vi, v;) | O(find(vi) + deg(vi)) | O(1)
outEdges(v) O(find(v) + deg(v)) o(Iv))
inEdges(v) o(VI+EN o(vI)
overall memory o(|VI|+ |E)) o(|V]®)

Time and Space

o What data structure choice to make to support faster, O(1) operations?

@ What happens when memory is a concern for the very large networks of millions or

more nodes?

Amarda Shehu ()
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Graph Representation: Hash Map

@ Vertex set as a hash map Vi

o key: vertex
o data: outgoing edges Vo

@ Outgoing edges of each vertex as a
hash set V.

Va

(vo [hash_set: v, v, v, |
using namespace std_ext; v, [hash_set: v;)
hash_map<key, hash _set<key> 3 v, [Fashset v vd)

vl \ll v, |hash_set: v4|

vertex outgoing edges
L, hash_set: v,, v, V3 ]
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Graph Representation: Hashmap

Fast to query [hasVertex, hasEdge] 0(1)
Fast to scan [outEdges] o(|V])
Fast to insert [insertVertex, insertEdge] O(1)
Fast to remove  [removeEdge] 0(1)
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Comparing The Three Representations

Function Adj. List Adj. Matrix | Hash Map
find(v) o(|V]) 0o(1) 0o(1)
hasVertex(v) o(Iv)) 0o(1) 0o(1)
hasEdge(vi, v;) O(|V| + deg(vi)) | O(1) o(1)
insertVertex(v) 0(1) O(|V]?) 0(1)
insertEdge(vi, v;) o(|V)) 0o(1) 0o(1)
removeVertex(v) o(|V| + |E|) o(|V]?) o(|V])
removeEdge(vi, v;) | O(|V| + deg(vi)) | O(1) 0o(1)
outEdges(v) O(|V|+deg(v)) | O(|V]) O(deg(v))
inEdges(v) Oo(|V| +|E) o(|V]) o(vl)
overall memory o(|V| + |E]) o(IVP) linear-quadratic

Amarda Shehu ()
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Comparing The Three Representations

Function Adj. List Adj. Matrix | Hash Map
find(v) o(|V)) 0o(1) 0o(1)
hasVertex(v) o(Iv)) 0o(1) 0o(1)
hasEdge(vi, v;) O(|V| + deg(vi)) | O(1) o(1)
insertVertex(v) 0(1) O(|V]?) 0(1)
insertEdge(vi, v;) o(|V)) 0o(1) 0o(1)
removeVertex(v) o(|V| + |E|) o(|V]?) o(|V])
removeEdge(vi, v;) | O(|V| + deg(vi)) | O(1) 0o(1)
outEdges(v) O(|V|+deg(v)) | O(|V]) O(deg(v))
inEdges(v) Oo(|V| +|E) o(|V]) o(vl)
overall memory Oo(|V|+ |E|) o(IVP) linear-quadratic

What about space concerns?

@ Study/store specific subgraphs

o Consider distributed environment (example: Weaver — weaver.systems)

Amarda Shehu ()
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Finding Distances

Many measures of interest in a network involve distances, that are often related to the
length or weight of the shortest/least-weight path connecting two nodes of interest

Amarda Shehu () Elementary Graph Algorithms for Path Searching 32



Finding Distances

Many measures of interest in a network involve distances, that are often related to the
length or weight of the shortest/least-weight path connecting two nodes of interest

How do we find a path connecting two nodes?
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Finding Distances

Many measures of interest in a network involve distances, that are often related to the
length or weight of the shortest/least-weight path connecting two nodes of interest

How do we find a path connecting two nodes?

Refresher: Graph Search Algorithms

Amarda Shehu () Elementary Graph Algorithms for Path Searching 32



General Search Template

o Important insight:

Any search algorithm constructs a tree, adding to it vertices of graph G in some order
G = (V,E) — look at it as split in two: set S on one side and V — S on the other

search proceeds as vertices are taken from V — S and added to S
search ends when V — S is empty or goal found

First vertex to be taken from V — S and added to S?
Next vertex? (... expansion ...)
Where to keep track of these vertices? (... fringe/frontier ...)

o Important ideas:

Fringe (frontier into V — S/border between S and V — S)
Expansion (neighbor generation so can add to fringe)
Exploration strategy (what order to grow S7)

@ Main question:

Amarda Shehu ()

which fringe/frontier nodes to explore/expand next?
strategy distinguishes search algorithms from one another
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Search Strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
@ completeness—does it always find a solution if one exists?
@ time complexity—number of nodes generated/expanded
@ space complexity—maximum number of nodes in memory

@ optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of:
@ b—maximum branching factor of the search tree
@ d—depth of the least-cost solution

e m—maximum depth of the state space (may be ~)
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Uninformed Graph Search

Characteristics of Uninformed Graph Search/Traversal:

@ There is no additional information about states/vertices beyond what is provided in
the problem definition.

o All that the search does is generate successors/neighbors and distinguish a goal
state from a non-goal state.

v o v ‘(Pvg ys Va
The systematic search “lays out” all paths from initial Vi Vo
vertex; it traverses the search tree of the graph. d’ Vi Vs Ve é
Vi Ve
Vo Vz Vs Vi Wy

marda Shehu ninformed and Informe raph Searcl gorithms
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Uninformed Graph Search

F: search data structure (fringe)
parent array: stores “edge comes from” to record visited states

: F.insert(v)

parent[v] < true

while not F.isEmpty do vo
u « F.extract()
if isGoal(u) then

for each v in outEdges(u) do
if no parent[v] then

© XN R N R

=
=4

Vo Ve
Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms

F.insert(v) /Q\
parent[v] « u ;(j’ ve

\@
Vs
return true



Uninformed Search Algorithms

@ Breadth-first Search (BFS)

@ Depth-first Search (DFS)

Depth-limited search (DLS)

Iterative Deepening Search (IDS)
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Breadth-first Search (BFS)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 38



Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:
fringe = first-in first-out (FIFO), i.e., unvisited successors go at end

F is a queue

marda Shehu ninformed and Informe raph Searcl gorithms
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Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:
fringe = first-in first-out (FIFO), i.e., unvisited successors go at end

F is a queue
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Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:

fringe = first-in first-out (FIFO), i.e., unvisited successors go at end
F is a queue
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Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:

fringe = first-in first-out (FIFO), i.e., unvisited successors go at end
F is a queue
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Breadth-first Search (BFS)

F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u
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while not F.isEmpty do
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if isGoal(u) then
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for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

Running Time?
Let V and E be vertices and edges in search tree

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt
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parent array: stores “edge comes from” to record visited states
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parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
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o(IV|+ |E)
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Breadth-first Search (BFS)

F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

Running Time?
Let V and E be vertices and edges in search tree
o(|V|+ |E)) What about in terms of b and m?
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Properties of Breadth-first Search (BFS)
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Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1+ b+ b+ b> + ...+ b% + b(b? —1) = O(b"™), i.e., exp. in d

Space?? O(b?'!) (keeps every node in memory)
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Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1+ b+ b+ b> + ...+ b% + b(b? —1) = O(b"™), i.e., exp. in d

Space?? O(b?'!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general
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Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1+ b+ b+ b> + ...+ b% + b(b? —1) = O(b"™), i.e., exp. in d

Space?? O(b?'!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space
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Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1+ b+ b+ b> + ...+ b% + b(b? —1) = O(b"™), i.e., exp. in d

Space?? O(b?'!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general
Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.
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BFS Summary

Basic Behavior:
@ Expands all nodes at depth d before those at depth d + 1

@ The sequence is root, then children, then grandchildren in the search tree.

Problems:

o If the path cost is a non-decreasing function of the depth of the goal node, then
BFS is optimal
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BFS is optimal.
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BFS Summary

Basic Behavior:
@ Expands all nodes at depth d before those at depth d + 1

@ The sequence is root, then children, then grandchildren in the search tree.

Problems:
o If the path cost is a non-decreasing function of the depth of the goal node, then
BFS is optimal (uniform cost search a generalization)
@ A graph with no weights can be considered to have edges of weight 1. In this case,
BFS is optimal.
@ BFS will find shallowest goal after expanding all shallower nodes (if branching
factor is finite). Hence, BFS is complete.
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BFS Summary

Basic Behavior:
@ Expands all nodes at depth d before those at depth d + 1

@ The sequence is root, then children, then grandchildren in the search tree.

Problems:
o If the path cost is a non-decreasing function of the depth of the goal node, then
BFS is optimal (uniform cost search a generalization)

@ A graph with no weights can be considered to have edges of weight 1. In this case,
BFS is optimal.

@ BFS will find shallowest goal after expanding all shallower nodes (if branching
factor is finite). Hence, BFS is complete.

e BFS is not very popular because time and space complexity are exponential:
O(b¥*) and O(b9*?), respectively.

@ Memory requirements of BFS are a bigger problem.
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Depth-first Search (DFS)
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Depth-first Search (DFS)
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Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:
fringe = last-in first-out (LIFO), i.e., unvisited successors at front

F is a stack
10)
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Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:
fringe = last-in first-out (LIFO), i.e., unvisited successors at front

F is a stack
(4)
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Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:
fringe = last-in first-out (LIFO), i.e., unvisited successors at front

F is a stack
(4)
20
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Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack
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Implementation:
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Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack
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Depth-first Search (DFS)

F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN
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Depth-first Search (DFS)

F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u
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Running Time?
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u < F.extract()
if isGoal(u) then
return true
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Depth-first Search (DFS)

F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

Running Time?
Let V and E be vertices and edges in search tree
o(IV|+ |E)
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Depth-first Search (DFS)

F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

Running Time?
Let V and E be vertices and edges in search tree
o(|V|+ |E)) What about in terms of b and m?

marda Shehu ninformed and Informe raph Searc gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt 60



Properties of Depth-first Search (DFS)
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Properties of Depth-first Search (DFS)

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces
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Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than BFS
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Properties of Depth-first Search (DFS)

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than BFS
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Properties of Depth-first Search (DFS)

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

Optimal?? No Why?
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DFS Summary

Basic Behavior:
@ Expands the deepest node in the tree

@ Backtracks when reaches a non-goal node with no descendants

Problems:

@ Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex
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Basic Behavior:
@ Expands the deepest node in the tree

@ Backtracks when reaches a non-goal node with no descendants

Problems:

@ Make a wrong choice and can go down along an infinite path even though the
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o Hence, DFS is not optimal
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DFS Summary

Basic Behavior:
@ Expands the deepest node in the tree
@ Backtracks when reaches a non-goal node with no descendants

Problems:
@ Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex
o Hence, DFS is not optimal
@ If subtree is of unbounded depth and contains no solutions, DFS will never

terminate.
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DFS Summary

Basic Behavior:
@ Expands the deepest node in the tree
@ Backtracks when reaches a non-goal node with no descendants

Problems:
@ Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex
o Hence, DFS is not optimal
@ If subtree is of unbounded depth and contains no solutions, DFS will never
terminate.

@ Hence, DFS is not complete
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DFS Summary

Basic Behavior:
@ Expands the deepest node in the tree

@ Backtracks when reaches a non-goal node with no descendants

Problems:
@ Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex
o Hence, DFS is not optimal

@ If subtree is of unbounded depth and contains no solutions, DFS will never
terminate.

@ Hence, DFS is not complete

@ Let b be the maximum number of successors of any node (known as branching
factor), d be depth of shallowest goal, and m be maximum length of any path in
the search tree
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DFS Summary

Basic Behavior:
@ Expands the deepest node in the tree

@ Backtracks when reaches a non-goal node with no descendants

Problems:
@ Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex
o Hence, DFS is not optimal

@ If subtree is of unbounded depth and contains no solutions, DFS will never
terminate.

@ Hence, DFS is not complete

@ Let b be the maximum number of successors of any node (known as branching
factor), d be depth of shallowest goal, and m be maximum length of any path in
the search tree

e Time complexity is O(b™) and space complexity is O(b - m)
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@ When will BFS outperform DFS?
@ When will DFS outperform BFS?
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Another Advantage of DFS

RecursiveDFS(v)
1. if v is unmarked then
2 mark v =
3. for each edge v, u do Unfinished
4 RecursiveDFS(u) Active

Finished

Color arrays can be kept to indicate that a vertex is undiscovered, the first time it is
discovered, when its neighbors are in the process of being considered, and when all its
neighbors have been considered.

DFS can be used to timestamp vertices with when they are discovered and when they
are finished. These start and finish times are useful in various applications of DFS
regarding constraint satisfaction.
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Depth-limited Search (DLS)

@ Problem with DFS is presence of infinite paths

DLS limits the depth of a path in search tree of DFS

o Modifies DFS by using a predetermined depth limit d;

DLS is incomplete if the shallowest goal is beyond the depth limit d;

DLS is not optimal if d < d|

@ Time complexity is O(b") and space complexity is O(b - d))
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Depth-limited Search (DLS)

= DFS with depth limit d, [i.e., nodes at depth d, are not expanded]

Recursive implementation:

function DEPTH-LIMITED-SEARCH( problem, limit) returns
soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem,
limit)
function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? < false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result < RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure
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Iterative Deepening Search (IDS)

@ Finds the best depth limit by incrementing d; until goal is found at d; = d
@ Can be viewed as running DLS with consecutive values of d;

@ IDS combines the benefits of both DFS and BFS

o Like DFS, its space complexity is O(b - d)

o Like BFS, it is complete when the branching factor is finite, and it is optimal if the
path cost is a non-decreasing function of the depth of the goal node

o Its time complexity is O(b9)

o IDS is the preferred uninformed search when the state space is large, and the depth
of the solution is not known
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Iterative Deepening Search (IDS)

function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution
inputs: problem, a problem

for depth<+ 0 to oo do
result « DEPTH-LIMITED-SEARCH( problem, depth)
if result # cutoff then return result

end
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Iterative Deepening Search (IDS) @

Limit =0 20) [ ]
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Iterative Deepening Search (IDS) @
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Iterative Deepening Search (IDS) @

Limit=2 30) @)
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Iterative Deepening Search (IDS) @

Limit =3 @ @
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Summary of Uninformed Search Algorithms

Criterion Breadth- Depth- Depth- Iterative
First First Limited Deepening
Complete? Yes* No Yes, if d > d Yes
Time bt b™ b b?
Space bt bm bd, bd
Optimal? Yes™ No No Yes™
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Uninformed Search Summary

@ Problem formulation usually requires abstracting away real-world details to define a
state space that can feasibly be explored

@ Variety of uninformed search strategies

@ IDS uses only linear space and not much more time than other uninformed
algorithms

@ Graph search can be exponentially more efficient than tree search

@ What about least-cost paths with non-uniform state-state costs?

e That is next
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Most popular: Dijkstra and A*

Differences from uninformed search algorithms:

work with weighted graphs

process nodes in order of attachment cost

employ priority queue (min-heap) for this purpose instead of stack or queue
Dijkstra: overkill, finds least-cost path from a given start node to all nodes in graph
A*: works only with given start and goal pair

Dijkstra: attachment cost of a node is current least cost from given start to that
node

A*: adds to this the estimated distance to goal node, where esimation uses an
optimistic heuristic
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Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms
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Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v
@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time
Can terminate earlier? When? How does it relate to goal?
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All you need to remember about informed search algorithms
@ Associate a(n attachment) cost d[v] with each vertex v

@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]
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Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms
@ Associate a(n attachment) cost d[v] with each vertex v

@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time
Can terminate earlier? When? How does it relate to goal?

@ v extracted from F @ some iteration is one with lowest cost among all those in F
. so, vertices extracted from F in order of their costs
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Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v
@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time
Can terminate earlier? When? How does it relate to goal?

@ v extracted from F @ some iteration is one with lowest cost among all those in F
. so, vertices extracted from F in order of their costs

@ When v extracted from F:
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Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v

@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time

@ v extracted from F @ some iteration is one with lowest cost among all those in F

Can terminate earlier? When? How does it relate to goal?

. so, vertices extracted from F in order of their costs

@ When v extracted from F:
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Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v

@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time

@ v extracted from F @ some iteration is one with lowest cost among all those in F

Can terminate earlier? When? How does it relate to goal?

. so, vertices extracted from F in order of their costs

@ When v extracted from F:
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v has been “removed” from V — S and “added” to S
get to reach/see v's neighbors and possibly update their costs
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Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v
@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time
Can terminate earlier? When? How does it relate to goal?

@ v extracted from F @ some iteration is one with lowest cost among all those in F
. so, vertices extracted from F in order of their costs

@ When v extracted from F:
v has been “removed” from V — S and “added” to S
get to reach/see v's neighbors and possibly update their costs

The rest are details, such as:
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Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v

@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time

@ v extracted from F @ some iteration is one with lowest cost among all those in F

Can terminate earlier? When? How does it relate to goal?

. so, vertices extracted from F in order of their costs

@ When v extracted from F:

v has been “removed” from V — S and “added” to S
get to reach/see v's neighbors and possibly update their costs

The rest are details, such as:
e What should d[v] be? There are options...

@ Which do | choose? This is how to you end up with different search algorithms

Amarda Shehu ()

backward cost (cost of s ~ v)
forward cost (estimate of cost of v ~ g)
back-+for ward cost (estimate of s ~» g through v)
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Dijkstra's Algorithm in Pseudocode

@ Fringe: F is a priority queue/min-heap
@ arrays: d stores attachment (backward) costs, 7[v] stores parents
@ S not really needed, only for clarity below

Dijkstra(G, s, w) Relax(u, v, w)
1 F+s S+ {} 1 if d[v] > d[u] + w(u, v) then
: d[v] « oo for all v e V 2. d[v] + d[u] + w(u, V)
: d[s] + 0 3 wv]+u
while F # { } do
u + Extract-Min(F)
S+ Su{u}
for each v € Adj(u) do
F+v
Relax(u, v, w)

© ® NSO WD

@ The process of relaxing tests whether one can improve the shortest-path estimate
d[v] by going through the vertex u in the shortest path from s to v

o If d[u] + w(u, v) < d[v], then u replaces the predecessor of v

@ Where would you put an earlier termination to stop when s ~~ g found?
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Dijkstra's Algorithm in Pseudocode

@ Fringe: F is a priority queue/min-heap
@ arrays: d stores attachment (backward) costs, 7[v] stores parents
@ S not really needed, only for clarity below

Dijkstra(G, s, w) Relax(u, v, w)
1 F+s S+ {} 1 if d[v] > d[u] + w(u, v) then
2. d[v] <~ oo forallve V 2. d[v] + d[u] + w(u, V)
3 d[s]+ 0 3 wv]+u
4: while F # {} do
5: u + Extract-Min(F) in another implementation, F is
6: S+ Su{u} initialized with all V, and line 8 is
7. for each v € Adj(u) do removed.
8: F+v
o: Relax(u, v, w)

@ The process of relaxing tests whether one can improve the shortest-path estimate
d[v] by going through the vertex u in the shortest path from s to v

o If d[u] + w(u, v) < d[v], then u replaces the predecessor of v

@ Where would you put an earlier termination to stop when s ~~ g found?
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Dijsktra’s Algorithm in Action

s (®
0
+(©) OFR
8 G o 9
Figure: Shortest paths from B
Initial || Passl || Pass2 || Pass3 || Pass4 || Pass5 || Pass6
Vertex| d | n||d | n||d|n||d|n|ld|nw]||d| x| d| =«
A %) 3|/ B|3|B|3|B|3|B|3]|B|3]|B
B o| -0 —=||lO0O|—=}]JO| —=f/O|—=]O0]—=|0]—=
C 9 5| Bll4|A| 4] A|4]|A|4]A||4]|A
D 9 00 ) 6| Cl|l6|C|l6]|C|6]|C
E 9 00 ) 8| C|l8|C|8|C|8]|C
F 00 00 00 00 11 D|| 9 | E|| 9 | E
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Dijsktra’s Algorithm in Action
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+©O—@s

8 (E) GE

Figure: Shortest paths from B

Initial Passl || Pass2 || Pass3 || Pass4 || Pass5 || Pass6
Vertex| d | n||d | n||d|n||d|n|ld|nw]||d| x| d| =«
A %) 3| B|3|B|3|B||3|B|3|B|3|B
B O —||O0O|—=||O|—=]]O|—=f|]O|—=f|O]|—=]|lO0]—
C 9 5| Bll4|A| 4] A|4]|A|4]A||4]|A
D 9 00 ) 6| Cl|l6|C|l6]|C|6]|C
E 9 00 ) 8| C|l8|C|8|C|8]|C
F 00 00 00 00 11 D|| 9 | E|| 9 | E

If not earlier goal termination criterion, Dijkstra’s search tree is spanning tree of shortest
paths from s to any vertex in the graph.
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Take-home Exercise

@—g>—@
2% 4
$1 3

1 3e

Initial Passl || Pass2 || Pass3 || Pass4 || Passb
Vertex| d | m||d | n||d|nw||d|nw|d| x| d]| =«
a 0| —

b o0
C )
d o0
e o0
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Analysis of Dijkstra's Algorithm

o Dijkstra's is optimal: proof relies on corollary that when a vertex v is extracted
from fringe F (thus “added” to S), shortest path from s to v has been found (not
true with negative weights).

Updating the heap takes at most O(/g(|V])) time
The number of updates equals the total number of edges
So, the total running time is O(|E| - Ig(|V]))

Running time can be improved depending on the actual implementation of the
priority queue

Time = (V) - T(Extract — Min) 4 0(E) - T(Decrease — Key)

F | T(Extr-Min)  T(Decr.-Key) | Total

Array o(|v1) o(1) O(IV[*)

Binary heap | O(1) O(lg|V]) O(|E| - Ig|V])

Fib. heap O(lg|V]) 0o(1) O(|E|+ |VI|-Ig|V])

How does this compare with BFS?
How does BFS get away from a Ig(|V/|) factor?
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A* Search

Idea: avoid expanding paths that are already expensive

Evaluation function 7(v) = g(v) + h(v):

Combines Dijkstra’s/uniform cost with greedy best-first search
g(v) = (actual) cost to reach v from s

h(v) = estimated lowest cost from v to goal

f(v) = estimated lowest cost from s through v to goal

Same implementation as before, but prioritize vertices in min-heap by f[v]
A* is both complete and optimal provided h satisfies certain conditions:

for searching in a tree: admissible/optimistic
for searching in a graph: consistent (which implies admissibility)
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Admissible Heuristic

What do we want from f[v]?
not to overestimate cost of path from source to goal that goes through v

Since g[v] is actual cost from s to v, this “do not overestimate” criterion is for the
forward cost heuristic, h[v]

A* search uses an admissible/optimistic heuristic
i.e., h(v) < h*(v) where h*(v) is the true cost from v
(Also require h(v) > 0, so h(G) = 0 for any goal G)

Example of an admissible heuristic: crow-fly distance never overestimates the actual
road distance

A stronger, consistent heuristic: estimated cost of reaching goal from a vertex n is not
greater than cost to go from n to its successors and then the cost from them to the goal

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt



Admissible Heuristic

What do we want from f[v]?
not to overestimate cost of path from source to goal that goes through v

Since g[v] is actual cost from s to v, this “do not overestimate” criterion is for the
forward cost heuristic, h[v]

A* search uses an admissible/optimistic heuristic
i.e., h(v) < h*(v) where h*(v) is the true cost from v

(Also require h(v) > 0, so h(G) = 0 for any goal G)

Example of an admissible heuristic: crow-fly distance never overestimates the actual
road distance

A stronger, consistent heuristic: estimated cost of reaching goal from a vertex n is not
greater than cost to go from n to its successors and then the cost from them to the goal

Let's see A* with this heuristic in action
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A* Search in Action

P hrad >

366=0+366
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A* Search in Action
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A* Search in Action

g ) 447=118+329 449=75+374
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A* Search in Action

447=118+329 449=75+374
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A* Search in Action

447=118+329 449=75+374

646=280+366 ‘_ 571 =291+380 T

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253
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A* Search in Action

o it
(

g - ) 447=118+329 449=75+374
646=280+366 ) 571 =291+380 .

591=338+253 450=450+0 526=366+160 _ - ~.._ 953=300+253

PEucharsd (Craioa> @
418=418+0 615=455+160 B07=414+193
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Optimality of A*

Skipping some details, but essentially if heuristic is consistent: A* expands nodes in
order of increasing f value®

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour / has all nodes with f = f;, where fi < fi ;1

So, why does this guarantee optimality?
First time we see goal will be the time it has lowest f = g (h is 0)

Other occurrences have no lower f (f non-decreasing)
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Summary of A* Search
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Summary of A* Search

Complete??
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Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
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Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)

Time??
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Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)

Time?? Exponential in [path length x%]
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Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length X§E%%i§§ﬂ]

Space??
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Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length x%]

Space?? Keeps all generated nodes in memory (worse drawback than time)
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Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length x%]
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Optimal?? Yes—cannot expand f;.; until f; is finished
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Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length x%]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f;.; until f; is finished
Optimally efficient for any given consistent heuristic:

A* expands all nodes with f(v) < d(s, g)
A* expands some nodes with f(v) = d(s, g)
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Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length x%]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f;.; until f; is finished

Optimally efficient for any given consistent heuristic:
A* expands all nodes with (v) < i(s, g)

A* expands some nodes with f(v) = d(s, g)

A* expands no nodes with f(v) > d(s, g)
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End of Graph Search Algorithms

CS583 additionally considers scenarios where greedy substructure does not lead to
optimality

For instance, how can one modify Dijkstra and the other algorithms to deal with
negative weights?

How does one efficiently find all pairwise shortest/least-cost paths?

Dynamic Programming is the right alternative in these scenarios

More graph exploration and search algorithms considered in CS583
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Next Lecture: Measures of Interest in Networks
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