Network Science: Principles and Applications

CS 695 - Spring 2019

Amarda Shehu

[amarda](AT)gmu.edu
Department of Computer Science
George Mason University

© Outline of Today's Class

© Graphs
@ Definition of a Graph
@ Types of Graphs
@ Asymptotic Notations

© Graph Representations
@ Adjacency List Representation
@ Adjacency Matrix Representation
o Alternative Graph Representations

@ Elementary Graph Algorithms for Path Searching

© (Uninformed and Informed) Graph Search Algorithms
@ Uninformed Search
@ Breadth-first Search (BFS)
@ Depth-first Search (DFS)
@ Depth-limited Search (DLS)
@ Iterative Deepening Search (IDS)

@ A* Search

Amarda Shehu () Outline of Today’s Class 2

Components of a Complex System

e components: nodes, vertices (V)
o interactions: links, arcs, edges (L, E)

e system: network, graph (N, G)

Amarda Shehu () Outline of Today’s Class 3

Components of a Complex System

e components: nodes, vertices (V)
o interactions: links, arcs, edges (L, E)

e system: network, graph (N, G)

Networks, or Graphs?

Amarda Shehu () Outline of Today’s Class 3

Components of a Complex System

e components: nodes, vertices (V)
o interactions: links, arcs, edges (L, E)

e system: network, graph (N, G)

Networks, or Graphs?

Network = real systems

Graph = mathematical representation of network

@ www
@ social network
@ metabolic network

@ Language: Network, node, link

Amarda Shehu ()

o web graph
o social graph (Facebook term)
@ metabolic graph

@ Language: Graph, vertex, edge

Outline of Today's Class

Components of a Complex System

e components: nodes, vertices (V)
o interactions: links, arcs, edges (L, E)

e system: network, graph (N, G)

Networks, or Graphs?

Network = real systems Graph = mathematical representation of network
o www @ web graph
@ social network @ social graph (Facebook term)
@ metabolic network @ metabolic graph
@ Language: Network, node, link @ Language: Graph, vertex, edge

We will try to make this distinction whenever appropriate, but in most cases the two
terms will be interchangeable.

Amarda Shehu () Outline of Today’s Class

What is a Graph?

Graph G = (V,E)
o V : set of vertices
@ E : set of edges consisting of pairs of vertices from V

V ={w,vi, v, v, v}
E = {(v0,), (. vs), (v, 2). (v,)}

Vi

Vo Vi

Vs Ve

Amarda Shehu () Graphs 4

First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once. Posed by
Leonard Euler [1707 - 1783].

Vo Ve

Va

modified from wikipedia

Amarda Shehu () Graphs 5

First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once. Posed by
Leonard Euler [1707 - 1783].

Vo Ve

‘ V.
modified from wikipedia ’

Specifically:
What is the minimum number of bridges that need to be added so that there exists a
route that crosses each bridge exactly once?

Amarda Shehu () Graphs

First Graph Problem

Seven Bridges of Koenigsberg [1736]:

Find a route that crosses each bridge exactly once. Posed by
Leonard Euler [1707 - 1783].

Vo Ve

‘ V.
modified from wikipedia ’

Specifically:

What is the minimum number of bridges that need to be added so that there exists a
route that crosses each bridge exactly once?
Iff there are exactly two or zero nodes of odd degree

Amarda Shehu () Graphs 5

Applications of Graphs Beyond Network Science

Compilers
Databases

Neural Networks
Machine Learning

@ Artificial Intelligence
@ Robotics

o Computational Biology

Amarda Shehu () Graphs 6

Applications of Graphs Beyond Network Science

Compilers

Databases

Neural Networks
Machine Learning
Artificial Intelligence
Robotics
Computational Biology

Focus of this Lecture:

Primer on Graphs
Terminology, Characteristics, and Algorithms Relevant to Networks

Amarda Shehu () Graphs 6

Formal Definition of a Graph

A graph G = (V, E) is a pair consisting of:

@ a set V of vertices (or nodes)
@ aset E C V x V of edges (or arcs)
e edge ¢ € E is a pair (u, v) connecting vertices u and v

Amarda Shehu () Graphs 7

Formal Definition of a Graph

A graph G = (V, E) is a pair consisting of:

@ a set V of vertices (or nodes)
@ aset E C V x V of edges (or arcs)
e edge ¢ € E is a pair (u, v) connecting vertices u and v

A graph G = (V,E) is:

o directed (referred to as a digraph) if E is a set of ordered pairs of vertices. The
edges here are often referred to as directed edges or arrows.

o undirected if E is a set of unordered pairs of vertices.

o weighted if there are weights associated with the edges.

Amarda Shehu () Graphs 7

Formal Definition of a Graph

A graph G = (V, E) is a pair consisting of:

@ a set V of vertices (or nodes)
@ aset E C V x V of edges (or arcs)

e edge ¢ € E is a pair (u, v) connecting vertices u and v
D

A graph G = (V,E) is:

o directed (referred to as a digraph) if E is a set of ordered pairs of vertices. The
edges here are often referred to as directed edges or arrows.

o undirected if E is a set of unordered pairs of vertices.

o weighted if there are weights associated with the edges.

We typically reserve:

@ N for number of vertices, |V/|

@ |E| indicates number of edges

Amarda Shehu () Graphs 7

Amarda Shehu ()

Vo

Vo

[llustrations of Types of Graphs

Figure: undirected graph

]

Figure: multigraph

Graphs

Vi

Vs

Figure: directed graph

Figure: weighted graph

More Definitions, Conventions, Nomenclature

@ Two vertices are adjacent if they are connected by an edge.
@ The neighbors of a vertex are all the vertices adjacent to it.

@ The degree of a vertex is the number of its neighbors.

Amarda Shehu () Graphs 9

More Definitions, Conventions, Nomenclature

@ Two vertices are adjacent if they are connected by an edge.

@ The neighbors of a vertex are all the vertices adjacent to it.

The degree of a vertex is the number of its neighbors.

o A path is a sequence of vertices, where each pair of successive vertices is connected
by an edge.

The length of the path is the number of edges in the path.

A simple path contains unique vertices.

A cycle is a simple path with the same first and last vertex.

Amarda Shehu () Graphs 9

More Definitions, Conventions, Nomenclature

@ Two vertices are adjacent if they are connected by an edge.

@ The neighbors of a vertex are all the vertices adjacent to it.

The degree of a vertex is the number of its neighbors.

o A path is a sequence of vertices, where each pair of successive vertices is connected
by an edge.

The length of the path is the number of edges in the path.

A simple path contains unique vertices.

A cycle is a simple path with the same first and last vertex.

@ A graph is connected if 3 a path between every pair of vertices.

A tree is a connected graph with no cycles.

Amarda Shehu () Graphs 9

More Definitions, Conventions, Nomenclature

@ Two vertices are adjacent if they are connected by an edge.

@ The neighbors of a vertex are all the vertices adjacent to it.

The degree of a vertex is the number of its neighbors.

o A path is a sequence of vertices, where each pair of successive vertices is connected
by an edge.

The length of the path is the number of edges in the path.

A simple path contains unique vertices.

A cycle is a simple path with the same first and last vertex.

@ A graph is connected if 3 a path between every pair of vertices.

A tree is a connected graph with no cycles.

o A subgraph H of G = (V,E) is H= (V4, E1) where Vi C V and E; C E, where
Ve = (k,j) € E, k,je Wi

Amarda Shehu () Graphs 9

Focusing on Simple Graphs

Simple Graphs

@ A simple graph, or a strict graph, is an unweighted, undirected graph containing no
loops or multiple edges

o Given that EC V x V, |E| € O(|V]?).
e If a graph is connected, |E| > |V| —1

e Combining the two, show that Ig(|E|) € 0(/g(|V])))
Short Detour:
Asymptotic Notations

Amarda Shehu () Graphs 10

Big-Oh: An Asymptotic Upper Bound

Definition Graphical lllustration

A function g(n) € O(f(n)) if \
3 constants ¢ > 0 and ng s.t g(n) < c-f(n)
Vn > no. cf(n)
Note: O(f(n)) denotes a set.
g(n)
no Vn

little-oh: Tight Asymptotic Upper Bound
g(n) € o(f(n)) when the upper bound < holds for all constants ¢ > 0. Alternative

definition: limp— oo % =0

Amarda Shehu () Graphs

Big-Omega: An Asymptotic Lower Bound

Definition Graphical lllustration

A function g(n) € Q(f(n)) if \
3 constants ¢ > 0 and ng s.t g(n) > c- f(n)
Vn > no. g(n)
Note: Q(f(n)) denotes a set.
cf(n)
no Vn

little-omega: Tight Asymptotic Lower Bound
g(n) € w(f(n)) when the lower bound > holds for all constants ¢ > 0. Alternative

definition: limp— oo % =00

Amarda Shehu () Graphs

Theta: Asymptotic Upper and Lower Bounds

Definition Graphical lllustration

A function g(n) € ©(f(n)) if \ ¢, f(n)
g(n) € O(f(n)) and g(n) € Q(f(n)).
Alternatively, g(n) € ©(f(n)) if 3 positive g(n)

constants ¢, ¢ and ng s.t.
a-f(n) <g(n) <c-f(n)Vn> ng.

Alternative Definition

g(n) € ©(f(n)) when lim,_ % = 0(1)

Amarda Shehu () Graphs

Back to Graphs

Amarda Shehu () Graphs 14

General Definition of a Graph

In a graph G = (V, E):

@ E may be a set of unorderered pairs of vertices not necessarily distinct. More than
one edge can connect two vertices.

@ An edge in E may connect more than two vertices.
@ These graphs are referred to as multigraphs or pseudo-graphs.
v

Amarda Shehu () Graphs

General Definition of a Graph

In a graph G = (V,

@ E may be a set of unorderered pairs of vertices not necessarily distinct. More than
one edge can connect two vertices.

An edge in E may connect more than two vertices.

These graphs are referred to as multigraphs or pseudo-graphs.

When do we choose which vertices to connect and by how many edges?

[

@ Answer depends on what about the network one is trying to investigate.

Amarda Shehu () Graphs 15

General Definition of a Graph

In a graph G = (V, E):

@ E may be a set of unorderered pairs of vertices not necessarily distinct. More than
one edge can connect two vertices.

@ An edge in E may connect more than two vertices.

@ These graphs are referred to as multigraphs or pseudo-graphs.

@ When do we choose which vertices to connect and by how many edges?

@ Answer depends on what about the network one is trying to investigate.

@ Choice determines ability to use network theory successfully.

@ In some cases there is a unique, unambiguous representation; in others, the
representation is not unique.

o E.g. the way we assign the links between a group of individuals will determine the
nature of the question we can study.

Amarda Shehu () Graphs 15

General Definition of a Graph

In a graph G = (V,

@ E may be a set of unorderered pairs of vertices not necessarily distinct. More than
one edge can connect two vertices.

@ An edge in E may connect more than two vertices.

@ These graphs are referred to as multigraphs or pseudo-graphs.

@ When do we choose which vertices to connect and by how many edges?

@ Answer depends on what about the network one is trying to investigate.

@ Choice determines ability to use network theory successfully.

@ In some cases there is a unique, unambiguous representation; in others, the
representation is not unique.

o E.g. the way we assign the links between a group of individuals will determine the
nature of the question we can study.

@ Some examples next

Amarda Shehu () Graphs 15

Finding the Right Network Representation

Floin JF. Belda Duont

Henry B. Schacht =

ntel faer
Wiorn . Howel 3 e

e 2 ' 4 4

oo g
s Rren :
MoDonakd's Ernesto Zedilo % '
" = - -
) o P)
rles M. Vest 5 luan G. Seidenberg. Hans U, Becherer

Chor
Lowrence A Bossidy
Richard H Broun

0 * Russel £ Pamer Honeywel nl.
¥ s Jomes Metrnay, » ‘
Rozonne L Ridgusy Procter & Gamble Infl Buiness Machines ,
" b V. Ptter Amerioon Il Group. Microsoft
* Lucio R Noto Fitia Graup

Jobn E. ryson Bosing

General Motors Alon 6. Lofley OenerabIRE James L Cash Jr, PhD.

Josh On (2004) !
http://www.theyrule.net

™ . S

Dondld F. MoHenry Coca-Cala Roger 3, Penske Claudio Gonzblez
Kenneth 6. Langane.

R

Figure: If you connect individuals that work with each other, you will explore the professional

Amarda Shehu () Graphs 16

Finding the Right Network Representation

The structure qfudolescgnt .
romantic gnd° sexual netu?grcks WPooo. o

Oe o o ¢
o D _n C o . s “° &8
o g pee e U‘oc
b O o
ot 8By o
4 ‘.c o » o Z ve Ua"_’)
~ 16 T o ° b 6
o 0CI a : . e U, = ; (] ’ 5
] (-] L]
Bearman PS, Moody J; Stouel K o g - o
Institute for Social und Economic ReBe@rch and Policy - CDIur?ﬁbiu Unwersny
http://researchnews.oSu. edu/archwe/;humsplx htm
a %a ,:
-] % ® . e'. o

Amarda Shehu () Graphs 17

Finding the Right Network Representation

Undirected edges for symmetric Directed edges for asymmetric
relationships relationships

@ Co-authorship links @ URLs on the www

@ Actor network @ phone calls

@ Protein-protein interactions @ metabolic reactions

Amarda Shehu () Graphs 18

Finding the Right Network Representation

Bipartitle graph or bigraph is a graph

G = (V, E) whose vertices can be divided into
two disjoint sets V4 and V5 such that every edge
connects a vertex in Vi to one in V>

Specifically: V=ViUV, and ViNn Vo ={}

o Collaboration networks

@ Hollywood actor network

@ Disease network (diseasome)

Amarda Shehu () Graphs

Some More Examples

GENE NETWOR

(PIKACAY

SMADS

oHEKE
CONDY
SR

KAAS

Gene network

Goh, Cusick, Valle, Childs, Vidal & Barabdsi, PNAS (2007)

Amarda Shehu ()

E NETWORK

DISEASOME PHENOME

Clnlaryrganl e
§ Erauiman syrdeme

Farar GENOME

Vil e

BRCA
i TP53
BRIF
FogFlL
Lovhmmin
EThNET
Menama
£LC22A1E FaFRs Farsam arsmia
TXRCCT) C_BAAE - KRAE Pancranic cancar
s Blacder cancar
NEL
Brust cancer
EogFeL
AR

Lung cancor

Foljoo

Graphs

Jieanila palyposic

U Frasmani syndmm

Ofalaryngeal cancer
Palyposic
e WIm o
Prostate
Peutz-Jeghers syndom:

Fanconi anemia

Pancrestc cancel

Broast cancar
Adrenal corbcal
cargnoma

Lewsamia ="

Stomach cancer

Calon cancer Lung cancer

Hisliocytoma

Hepatic adenoms

Disease network

00¢

®w = 0 o,
& 8 28

YO G00e:?

Some More Examples

Graphs

Amarda Shehu ()

(Internal) Graph Representations

@ A graph can be represented as an adjacency list.

@ A graph can be represented as an adjacency matrix.

Amarda Shehu () Graph Representations 22

Adjacency List Representation

Vs

Vz

RS
(w83
(-3
MARI7REX
MR

s

Amarda Shehu ()

struct elist

{

int vto;

struct elist *next;

};

struct vlist

{

int v;

elist *edges;
struct vlist *next;

};

Graph Representations

Vs

MRS
A Ao

AR TARIARX
MARTARY
>23

Implementation of Adjacency-list Representation

The adjacency list of a vertex can be implemented as a linked list

The list of vertices themselves can be implemented using;:

@ A linked list
@ A binary search tree
@ A hash table

In a standard implementation, each edge list has two fields, a data field and a

pointer:
@ The data field contains adjacent vertex name and edge information

@ The pointer points to next adjacent vertex

Amarda Shehu () Graph Representations 24

Basic Graph Operations with Adjacency List Representation

Function Worst-case Running Time

find(v) o(V)

hasVertex(v) O(find(v))

hasEdge(v;, vj) O(find(vi) + deg(vi))

insertVertex(v) 0(1)

insertEdge(v;, v;) O(find(vi))

removeVertex(v) o(|V|+|E|) In undirected graphs:
removeEdge(vi, vj) | O(find(vi) + deg(vi)) lelist[v]| = degree(v).
f)utEdges(v) O(find(v) + deg(v)) In digraphs:
inEdges(v) o(|V|+|E|) listlvll — out-d
overall memory Oo(|V| +|E)) [elist[v]] = out-degree(v).

Handshaking Lemma:

> ey lelist(v)| = 2|E| for undirected graphs.
O(|V| + |E|) storage = sparse representation.

Amarda Shehu () Graph Representations 25

Adjacency Matrix Representation

Vs
Vs Ve

(M[il[j]=1 iff (v,v)€E|

ulve vi v v |LJ~QQV| MInInl | wlve vi v. v v

vw|fo 1 0 1 0 vw|jo 1 1 0 1

v o1 0o 1 |QQQJ KM, | vv|o 1 0o 0o o

Ve 1 0 o0 : v.|lo 1 0o 1 0
using namespace std;

Vs 0 0 v=|]0o o 0o o0 1

Vs 1 vector < vector<bool> >| v, |1 0 1 1 o0
M;

Amarda Shehu () Graph Representations 26

Basic Graph Operations with Adjacency Matrix Representation

Function Worst-case Running Time
find(v) 0(1)
hasVertex(v) 0o(1)
hasEdge(vi, v;) 0(1)
insertVertex(v) o(IV]?)
insertEdge(vi, v;) 0o(1)
removeVertex(v) o(|IV]?)
removeEdge(v;, v;) | O(1)
outEdges(v) o(|V])
inEdges(v) o(Iv))
overall memory Oo(IV])

O(|V|?) storage = dense representation. J

Amarda Shehu () Graph Representations 27

Comparing The Two Representations

Function Adjacency List Adjacency Matrix
find(v) o(| V1) o(1)
hasVertex(v) O(find(v)) 0(1)
hasEdge(v;, v;) O(find(vi) + deg(vi)) | O(1)
insertVertex(v) 0o(1) o(|V]?)
insertEdge(vi, v;) O(find(vi)) 0o(1)
removeVertex(v) o(|V|+ |E)) o(|V]?)
removeEdge(vi, v;) | O(find(vi) + deg(vi)) | O(1)
outEdges(v) O(find(v) + deg(v)) o(Iv))
inEdges(v) o(VI+EN o(vI)
overall memory o(|VI|+ |E)) o(|V]®)

Amarda Shehu ()

Graph Representations

Comparing The Two Representations

Function Adjacency List Adjacency Matrix
find(v) o(| V1) o(1)
hasVertex(v) O(find(v)) 0(1)
hasEdge(v;, v;) O(find(vi) + deg(vi)) | O(1)
insertVertex(v) 0o(1) o(|V]?)
insertEdge(vi, v;) O(find(vi)) 0o(1)
removeVertex(v) o(|V|+ |E)) o(|V]?)
removeEdge(vi, v;) | O(find(vi) + deg(vi)) | O(1)
outEdges(v) O(find(v) + deg(v)) o(Iv))
inEdges(v) o(VI+EN o(vI)
overall memory o(|VI|+ |E)) o(|V]®)

Time and Space

o What data structure choice to make to support faster, O(1) operations?

@ What happens when memory is a concern for the very large networks of millions or

more nodes?

Amarda Shehu ()

Graph Representations 28

Graph Representation: Hash Map

@ Vertex set as a hash map Vi

o key: vertex
o data: outgoing edges Vo

@ Outgoing edges of each vertex as a
hash set V.

Va

(vo [hash_set: v, v, v, |
using namespace std_ext; v, [hash_set: v;)
hash_map<key, hash _set<key> 3 v, [Fashset v vd)

vl \ll v, |hash_set: v4|

vertex outgoing edges
L, hash_set: v,, v, V3]

Amarda Shehu () Graph Representations 29

Graph Representation: Hashmap

Fast to query [hasVertex, hasEdge] 0(1)
Fast to scan [outEdges] o(|V])
Fast to insert [insertVertex, insertEdge] O(1)
Fast to remove [removeEdge] 0(1)

Amarda Shehu () Graph Representations 30

Comparing The Three Representations

Function Adj. List Adj. Matrix | Hash Map
find(v) o(|V]) 0o(1) 0o(1)
hasVertex(v) o(Iv)) 0o(1) 0o(1)
hasEdge(vi, v;) O(|V| + deg(vi)) | O(1) o(1)
insertVertex(v) 0(1) O(|V]?) 0(1)
insertEdge(vi, v;) o(|V)) 0o(1) 0o(1)
removeVertex(v) o(|V| + |E|) o(|V]?) o(|V])
removeEdge(vi, v;) | O(|V| + deg(vi)) | O(1) 0o(1)
outEdges(v) O(|V|+deg(v)) | O(|V]) O(deg(v))
inEdges(v) Oo(|V| +|E) o(|V]) o(vl)
overall memory o(|V| + |E]) o(IVP) linear-quadratic

Amarda Shehu ()

Graph Representations

Comparing The Three Representations

Function Adj. List Adj. Matrix | Hash Map
find(v) o(|V)) 0o(1) 0o(1)
hasVertex(v) o(Iv)) 0o(1) 0o(1)
hasEdge(vi, v;) O(|V| + deg(vi)) | O(1) o(1)
insertVertex(v) 0(1) O(|V]?) 0(1)
insertEdge(vi, v;) o(|V)) 0o(1) 0o(1)
removeVertex(v) o(|V| + |E|) o(|V]?) o(|V])
removeEdge(vi, v;) | O(|V| + deg(vi)) | O(1) 0o(1)
outEdges(v) O(|V|+deg(v)) | O(|V]) O(deg(v))
inEdges(v) Oo(|V| +|E) o(|V]) o(vl)
overall memory Oo(|V|+ |E|) o(IVP) linear-quadratic

What about space concerns?

@ Study/store specific subgraphs

o Consider distributed environment (example: Weaver — weaver.systems)

Amarda Shehu ()

Graph Representations

Finding Distances

Many measures of interest in a network involve distances, that are often related to the
length or weight of the shortest/least-weight path connecting two nodes of interest

Amarda Shehu () Elementary Graph Algorithms for Path Searching 32

Finding Distances

Many measures of interest in a network involve distances, that are often related to the
length or weight of the shortest/least-weight path connecting two nodes of interest

How do we find a path connecting two nodes?

Amarda Shehu () Elementary Graph Algorithms for Path Searching 32

Finding Distances

Many measures of interest in a network involve distances, that are often related to the
length or weight of the shortest/least-weight path connecting two nodes of interest

How do we find a path connecting two nodes?

Refresher: Graph Search Algorithms

Amarda Shehu () Elementary Graph Algorithms for Path Searching 32

General Search Template

o Important insight:

Any search algorithm constructs a tree, adding to it vertices of graph G in some order
G = (V,E) — look at it as split in two: set S on one side and V — S on the other

search proceeds as vertices are taken from V — S and added to S
search ends when V — S is empty or goal found

First vertex to be taken from V — S and added to S?
Next vertex? (... expansion ...)
Where to keep track of these vertices? (... fringe/frontier ...)

o Important ideas:

Fringe (frontier into V — S/border between S and V — S)
Expansion (neighbor generation so can add to fringe)
Exploration strategy (what order to grow S7)

@ Main question:

Amarda Shehu ()

which fringe/frontier nodes to explore/expand next?
strategy distinguishes search algorithms from one another

(Uninformed and Informed) Graph Search Algorithms 33

Search Strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
@ completeness—does it always find a solution if one exists?
@ time complexity—number of nodes generated/expanded
@ space complexity—maximum number of nodes in memory

@ optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of:
@ b—maximum branching factor of the search tree
@ d—depth of the least-cost solution

e m—maximum depth of the state space (may be ~)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 34

Uninformed Graph Search

Characteristics of Uninformed Graph Search/Traversal:

@ There is no additional information about states/vertices beyond what is provided in
the problem definition.

o All that the search does is generate successors/neighbors and distinguish a goal
state from a non-goal state.

v o v ‘(Pvg ys Va
The systematic search “lays out” all paths from initial Vi Vo
vertex; it traverses the search tree of the graph. d’ Vi Vs Ve é
Vi Ve
Vo Vz Vs Vi Wy

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt 35

Uninformed Graph Search

F: search data structure (fringe)
parent array: stores “edge comes from” to record visited states

: F.insert(v)

parent[v] < true

while not F.isEmpty do vo
u « F.extract()
if isGoal(u) then

for each v in outEdges(u) do
if no parent[v] then

© XN R N R

=
=4

Vo Ve
Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms

F.insert(v) /Q\
parent[v] « u ;(j’ ve

\@
Vs
return true

Uninformed Search Algorithms

@ Breadth-first Search (BFS)

@ Depth-first Search (DFS)

Depth-limited search (DLS)

Iterative Deepening Search (IDS)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 37

Breadth-first Search (BFS)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 38

Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:
fringe = first-in first-out (FIFO), i.e., unvisited successors go at end

F is a queue

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:
fringe = first-in first-out (FIFO), i.e., unvisited successors go at end

F is a queue

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:

fringe = first-in first-out (FIFO), i.e., unvisited successors go at end
F is a queue

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Breadth-first Search (BFS)

Strategy: Expand shallowest unexpanded node

Implementation:

fringe = first-in first-out (FIFO), i.e., unvisited successors go at end
F is a queue

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Breadth-first Search (BFS)

F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Breadth-first Search (BFS)

F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

Running Time?

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Breadth-first Search (BFS)

F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

Running Time?
Let V and E be vertices and edges in search tree

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Breadth-first Search (BFS)

F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

Running Time?
Let V and E be vertices and edges in search tree
o(IV|+ |E)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 43

Breadth-first Search (BFS)

F: search data structure (fringe)
F is a queue (FIFO) in BFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

Running Time?
Let V and E be vertices and edges in search tree
o(|V|+ |E)) What about in terms of b and m?

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 43

Properties of Breadth-first Search (BFS)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 44

Properties of Breadth-first Search (BFS)

Complete??

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 44

Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 44

Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time??

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 44

Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1+ b+ b+ b> + ...+ b% + b(b? —1) = O(b"™), i.e., exp. in d

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 44

Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1+ b+ b+ b> + ...+ b% + b(b? —1) = O(b"™), i.e., exp. in d

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt

Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1+ b+ b+ b> + ...+ b% + b(b? —1) = O(b"™), i.e., exp. in d

Space?? O(b?'!) (keeps every node in memory)

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt

Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1+ b+ b+ b> + ...+ b% + b(b? —1) = O(b"™), i.e., exp. in d

Space?? O(b?'!) (keeps every node in memory)

Optimal??

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1+ b+ b+ b> + ...+ b% + b(b? —1) = O(b"™), i.e., exp. in d

Space?? O(b?'!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1+ b+ b+ b> + ...+ b% + b(b? —1) = O(b"™), i.e., exp. in d

Space?? O(b?'!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt

Properties of Breadth-first Search (BFS)

Complete?? Yes (if b is finite)

Time?? 1+ b+ b+ b> + ...+ b% + b(b? —1) = O(b"™), i.e., exp. in d

Space?? O(b?'!) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general
Space is the big problem; can easily generate nodes at 100MB/sec

so 24hrs = 8640GB.

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 44

BFS Summary

Basic Behavior:
@ Expands all nodes at depth d before those at depth d + 1

@ The sequence is root, then children, then grandchildren in the search tree.

Problems:

o If the path cost is a non-decreasing function of the depth of the goal node, then
BFS is optimal

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 45

BFS Summary

Basic Behavior:
@ Expands all nodes at depth d before those at depth d + 1

@ The sequence is root, then children, then grandchildren in the search tree.

Problems:

o If the path cost is a non-decreasing function of the depth of the goal node, then
BFS is optimal (uniform cost search a generalization)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 45

BFS Summary

Basic Behavior:
@ Expands all nodes at depth d before those at depth d + 1

@ The sequence is root, then children, then grandchildren in the search tree.

Problems:

o If the path cost is a non-decreasing function of the depth of the goal node, then
BFS is optimal (uniform cost search a generalization)

@ A graph with no weights can be considered to have edges of weight 1. In this case,
BFS is optimal.

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 45

BFS Summary

Basic Behavior:
@ Expands all nodes at depth d before those at depth d + 1

@ The sequence is root, then children, then grandchildren in the search tree.

Problems:
o If the path cost is a non-decreasing function of the depth of the goal node, then
BFS is optimal (uniform cost search a generalization)
@ A graph with no weights can be considered to have edges of weight 1. In this case,
BFS is optimal.
@ BFS will find shallowest goal after expanding all shallower nodes (if branching
factor is finite). Hence, BFS is complete.

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

BFS Summary

Basic Behavior:
@ Expands all nodes at depth d before those at depth d + 1

@ The sequence is root, then children, then grandchildren in the search tree.

Problems:
o If the path cost is a non-decreasing function of the depth of the goal node, then
BFS is optimal (uniform cost search a generalization)

@ A graph with no weights can be considered to have edges of weight 1. In this case,
BFS is optimal.

@ BFS will find shallowest goal after expanding all shallower nodes (if branching
factor is finite). Hence, BFS is complete.

e BFS is not very popular because time and space complexity are exponential:
O(b¥*) and O(b9*?), respectively.

@ Memory requirements of BFS are a bigger problem.

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 45

Depth-first Search (DFS)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 46

Depth-first Search (DFS)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 47

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:
fringe = last-in first-out (LIFO), i.e., unvisited successors at front

F is a stack
10)

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:
fringe = last-in first-out (LIFO), i.e., unvisited successors at front

F is a stack
(4)
40 (5)

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:
fringe = last-in first-out (LIFO), i.e., unvisited successors at front

F is a stack
(4)
20

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

Strategy: Expand deepest unexpanded node

Implementation:

fringe = last-in first-out (LIFO), i.e., unvisited successors at front
F is a stack

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

Running Time?

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

Running Time?
Let V and E be vertices and edges in search tree

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Depth-first Search (DFS)

F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

Running Time?
Let V and E be vertices and edges in search tree
o(IV|+ |E)

marda Shehu ninformed and Informe raph Searc gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt 60

Depth-first Search (DFS)

F: search data structure (fringe)
F is a stack (LIFO) in DFS!
parent array: stores “edge comes from” to record visited states

F.insert(v)
parent[v] <+ true
while not F.isEmpty do
u < F.extract()
if isGoal(u) then
return true
for each v in outEdges(u) do
if no parent|v] then
F.insert(v)
10: parent[v] « u

Y XN T RN

Running Time?
Let V and E be vertices and edges in search tree
o(|V|+ |E)) What about in terms of b and m?

marda Shehu ninformed and Informe raph Searc gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt 60

Properties of Depth-first Search (DFS)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 61

Properties of Depth-first Search (DFS)

Complete??

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 61

Properties of Depth-first Search (DFS)

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 61

Properties of Depth-first Search (DFS)

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time??

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 61

Properties of Depth-first Search (DFS)

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than BFS

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 61

Properties of Depth-first Search (DFS)

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than BFS

Space??

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt

Properties of Depth-first Search (DFS)

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 61

Properties of Depth-first Search (DFS)

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

Optimal??

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt

Properties of Depth-first Search (DFS)

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

Optimal?? No

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt

Properties of Depth-first Search (DFS)

Complete?? No: fails in infinite-depth spaces, spaces with loops

Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than BFS

Space?? O(bm), i.e., linear space!

Optimal?? No Why?

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt

DFS Summary

Basic Behavior:
@ Expands the deepest node in the tree

@ Backtracks when reaches a non-goal node with no descendants

Problems:

@ Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex

marda Shehu ninformed and Informe raph Searc gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt (73

DFS Summary

Basic Behavior:
@ Expands the deepest node in the tree

@ Backtracks when reaches a non-goal node with no descendants

Problems:

@ Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex

o Hence, DFS is not optimal

marda Shehu ninformed and Informe raph Searc gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt (73

DFS Summary

Basic Behavior:
@ Expands the deepest node in the tree
@ Backtracks when reaches a non-goal node with no descendants

Problems:
@ Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex
o Hence, DFS is not optimal
@ If subtree is of unbounded depth and contains no solutions, DFS will never

terminate.

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

DFS Summary

Basic Behavior:
@ Expands the deepest node in the tree
@ Backtracks when reaches a non-goal node with no descendants

Problems:
@ Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex
o Hence, DFS is not optimal
@ If subtree is of unbounded depth and contains no solutions, DFS will never
terminate.

@ Hence, DFS is not complete

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

DFS Summary

Basic Behavior:
@ Expands the deepest node in the tree

@ Backtracks when reaches a non-goal node with no descendants

Problems:
@ Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex
o Hence, DFS is not optimal

@ If subtree is of unbounded depth and contains no solutions, DFS will never
terminate.

@ Hence, DFS is not complete

@ Let b be the maximum number of successors of any node (known as branching
factor), d be depth of shallowest goal, and m be maximum length of any path in
the search tree

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

DFS Summary

Basic Behavior:
@ Expands the deepest node in the tree

@ Backtracks when reaches a non-goal node with no descendants

Problems:
@ Make a wrong choice and can go down along an infinite path even though the
solution may be very close to initial vertex
o Hence, DFS is not optimal

@ If subtree is of unbounded depth and contains no solutions, DFS will never
terminate.

@ Hence, DFS is not complete

@ Let b be the maximum number of successors of any node (known as branching
factor), d be depth of shallowest goal, and m be maximum length of any path in
the search tree

e Time complexity is O(b™) and space complexity is O(b - m)

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

@ When will BFS outperform DFS?
@ When will DFS outperform BFS?

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 63

Another Advantage of DFS

RecursiveDFS(v)
1. if v is unmarked then
2 mark v =
3. for each edge v, u do Unfinished
4 RecursiveDFS(u) Active

Finished

Color arrays can be kept to indicate that a vertex is undiscovered, the first time it is
discovered, when its neighbors are in the process of being considered, and when all its
neighbors have been considered.

DFS can be used to timestamp vertices with when they are discovered and when they
are finished. These start and finish times are useful in various applications of DFS
regarding constraint satisfaction.

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 64

Depth-limited Search (DLS)

@ Problem with DFS is presence of infinite paths

DLS limits the depth of a path in search tree of DFS

o Modifies DFS by using a predetermined depth limit d;

DLS is incomplete if the shallowest goal is beyond the depth limit d;

DLS is not optimal if d < d|

@ Time complexity is O(b") and space complexity is O(b - d))

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt 65

Depth-limited Search (DLS)

= DFS with depth limit d, [i.e., nodes at depth d, are not expanded]

Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns
soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem,
limit)
function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? < false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result < RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt 66

Iterative Deepening Search (IDS)

@ Finds the best depth limit by incrementing d; until goal is found at d; = d
@ Can be viewed as running DLS with consecutive values of d;

@ IDS combines the benefits of both DFS and BFS

o Like DFS, its space complexity is O(b - d)

o Like BFS, it is complete when the branching factor is finite, and it is optimal if the
path cost is a non-decreasing function of the depth of the goal node

o Its time complexity is O(b9)

o IDS is the preferred uninformed search when the state space is large, and the depth
of the solution is not known

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 67

Iterative Deepening Search (IDS)

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
inputs: problem, a problem

for depth<+ 0 to oo do
result « DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

end

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt 68

Iterative Deepening Search (IDS) @

Limit =0 20) []

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt 69

Iterative Deepening Search (IDS) @

Limit=1 20) @ (D) /\.
»(® © »O

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 70

Iterative Deepening Search (IDS) @

Limit=2 30) @)
40 ©

@

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 71

Iterative Deepening Search (IDS) @

Limit =3 @ @

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 72

Summary of Uninformed Search Algorithms

Criterion Breadth- Depth- Depth- Iterative
First First Limited Deepening
Complete? Yes* No Yes, if d > d Yes
Time bt b™ b b?
Space bt bm bd, bd
Optimal? Yes™ No No Yes™

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 73

Uninformed Search Summary

@ Problem formulation usually requires abstracting away real-world details to define a
state space that can feasibly be explored

@ Variety of uninformed search strategies

@ IDS uses only linear space and not much more time than other uninformed
algorithms

@ Graph search can be exponentially more efficient than tree search

@ What about least-cost paths with non-uniform state-state costs?

e That is next

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms

Most popular: Dijkstra and A*

Differences from uninformed search algorithms:

work with weighted graphs

process nodes in order of attachment cost

employ priority queue (min-heap) for this purpose instead of stack or queue
Dijkstra: overkill, finds least-cost path from a given start node to all nodes in graph
A*: works only with given start and goal pair

Dijkstra: attachment cost of a node is current least cost from given start to that
node

A*: adds to this the estimated distance to goal node, where esimation uses an
optimistic heuristic

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms

Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 76

Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 76

Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v
@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 76

Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v
@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 76

Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v
@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time
Can terminate earlier? When? How does it relate to goal?

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 76

Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms
@ Associate a(n attachment) cost d[v] with each vertex v

@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time
Can terminate earlier? When? How does it relate to goal?

@ v extracted from F @ some iteration is one with lowest cost among all those in F

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms

Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms
@ Associate a(n attachment) cost d[v] with each vertex v

@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time
Can terminate earlier? When? How does it relate to goal?

@ v extracted from F @ some iteration is one with lowest cost among all those in F
. so, vertices extracted from F in order of their costs

marda Shehu ninformed and Informe raph Searc gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt

Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v
@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time
Can terminate earlier? When? How does it relate to goal?

@ v extracted from F @ some iteration is one with lowest cost among all those in F
. so, vertices extracted from F in order of their costs

@ When v extracted from F:

marda Shehu ninformed and Informe raph Searc gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt

Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v

@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time

@ v extracted from F @ some iteration is one with lowest cost among all those in F

Can terminate earlier? When? How does it relate to goal?

. so, vertices extracted from F in order of their costs

@ When v extracted from F:

Amarda Shehu ()

v has been “removed” from V — S and “added” to S

(Uninformed and Informed) Graph Search Algorithms

Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v

@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time

@ v extracted from F @ some iteration is one with lowest cost among all those in F

Can terminate earlier? When? How does it relate to goal?

. so, vertices extracted from F in order of their costs

@ When v extracted from F:

Amarda Shehu ()

v has been “removed” from V — S and “added” to S
get to reach/see v's neighbors and possibly update their costs

(Uninformed and Informed) Graph Search Algorithms

Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v
@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time
Can terminate earlier? When? How does it relate to goal?

@ v extracted from F @ some iteration is one with lowest cost among all those in F
. so, vertices extracted from F in order of their costs

@ When v extracted from F:
v has been “removed” from V — S and “added” to S
get to reach/see v's neighbors and possibly update their costs

The rest are details, such as:

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Essence of All Informed Search Algorithms

All you need to remember about informed search algorithms

@ Associate a(n attachment) cost d[v] with each vertex v

@ F becomes a priority queue: F keeps frontier vertices, prioritized by d[v]

@ Until F is empty, one vertex extracted from F at a time

@ v extracted from F @ some iteration is one with lowest cost among all those in F

Can terminate earlier? When? How does it relate to goal?

. so, vertices extracted from F in order of their costs

@ When v extracted from F:

v has been “removed” from V — S and “added” to S
get to reach/see v's neighbors and possibly update their costs

The rest are details, such as:
e What should d[v] be? There are options...

@ Which do | choose? This is how to you end up with different search algorithms

Amarda Shehu ()

backward cost (cost of s ~ v)
forward cost (estimate of cost of v ~ g)
back-+for ward cost (estimate of s ~» g through v)

(Uninformed and Informed) Graph Search Algorithms

Dijkstra's Algorithm in Pseudocode

@ Fringe: F is a priority queue/min-heap
@ arrays: d stores attachment (backward) costs, 7[v] stores parents
@ S not really needed, only for clarity below

Dijkstra(G, s, w) Relax(u, v, w)
1 F+s S+ {} 1 if d[v] > d[u] + w(u, v) then
: d[v] « oo for all v e V 2. d[v] + d[u] + w(u, V)
: d[s] + 0 3 wv]+u
while F # { } do
u + Extract-Min(F)
S+ Su{u}
for each v € Adj(u) do
F+v
Relax(u, v, w)

© ® NSO WD

@ The process of relaxing tests whether one can improve the shortest-path estimate
d[v] by going through the vertex u in the shortest path from s to v

o If d[u] + w(u, v) < d[v], then u replaces the predecessor of v

@ Where would you put an earlier termination to stop when s ~~ g found?

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 7

Dijkstra's Algorithm in Pseudocode

@ Fringe: F is a priority queue/min-heap
@ arrays: d stores attachment (backward) costs, 7[v] stores parents
@ S not really needed, only for clarity below

Dijkstra(G, s, w) Relax(u, v, w)
1 F+s S+ {} 1 if d[v] > d[u] + w(u, v) then
2. d[v] <~ oo forallve V 2. d[v] + d[u] + w(u, V)
3 d[s]+ 0 3 wv]+u
4: while F # {} do
5: u + Extract-Min(F) in another implementation, F is
6: S+ Su{u} initialized with all V, and line 8 is
7. for each v € Adj(u) do removed.
8: F+v
o: Relax(u, v, w)

@ The process of relaxing tests whether one can improve the shortest-path estimate
d[v] by going through the vertex u in the shortest path from s to v

o If d[u] + w(u, v) < d[v], then u replaces the predecessor of v

@ Where would you put an earlier termination to stop when s ~~ g found?

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 7

Dijsktra’s Algorithm in Action

s (®
0
+(©) OFR
8 G o 9
Figure: Shortest paths from B
Initial || Passl || Pass2 || Pass3 || Pass4 || Pass5 || Pass6
Vertex| d | n||d | n||d|n||d|n|ld|nw]||d| x| d| =«
A %) 3|/ B|3|B|3|B|3|B|3]|B|3]|B
B o| -0 —=||lO0O|—=}]JO| —=f/O|—=]O0]—=|0]—=
C 9 5| Bll4|A| 4] A|4]|A|4]A||4]|A
D 9 00) 6| Cl|l6|C|l6]|C|6]|C
E 9 00) 8| C|l8|C|8|C|8]|C
F 00 00 00 00 11 D|| 9 | E|| 9 | E

Amarda Shehu ()

(Uninformed and Informed) Graph Search Algorithms

Dijsktra’s Algorithm in Action

2 (a)
+©O—@s

8 (E) GE

Figure: Shortest paths from B

Initial Passl || Pass2 || Pass3 || Pass4 || Pass5 || Pass6
Vertex| d | n||d | n||d|n||d|n|ld|nw]||d| x| d| =«
A %) 3| B|3|B|3|B||3|B|3|B|3|B
B O —||O0O|—=||O|—=]]O|—=f|]O|—=f|O]|—=]|lO0]—
C 9 5| Bll4|A| 4] A|4]|A|4]A||4]|A
D 9 00) 6| Cl|l6|C|l6]|C|6]|C
E 9 00) 8| C|l8|C|8|C|8]|C
F 00 00 00 00 11 D|| 9 | E|| 9 | E

If not earlier goal termination criterion, Dijkstra’s search tree is spanning tree of shortest
paths from s to any vertex in the graph.

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 78

Take-home Exercise

@—g>—@
2% 4
$1 3

1 3e

Initial Passl || Pass2 || Pass3 || Pass4 || Passb
Vertex| d | m||d | n||d|nw||d|nw|d| x| d]| =«
a 0| —

b o0
C)
d o0
e o0

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 79

Analysis of Dijkstra's Algorithm

o Dijkstra's is optimal: proof relies on corollary that when a vertex v is extracted
from fringe F (thus “added” to S), shortest path from s to v has been found (not
true with negative weights).

Updating the heap takes at most O(/g(|V])) time
The number of updates equals the total number of edges
So, the total running time is O(|E| - Ig(|V]))

Running time can be improved depending on the actual implementation of the
priority queue

Time = (V) - T(Extract — Min) 4 0(E) - T(Decrease — Key)

F | T(Extr-Min) T(Decr.-Key) | Total

Array o(|v1) o(1) O(IV[*)

Binary heap | O(1) O(lg|V]) O(|E| - Ig|V])

Fib. heap O(lg|V]) 0o(1) O(|E|+ |VI|-Ig|V])

How does this compare with BFS?
How does BFS get away from a Ig(|V/|) factor?

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt 80

A* Search

Idea: avoid expanding paths that are already expensive

Evaluation function 7(v) = g(v) + h(v):

Combines Dijkstra’s/uniform cost with greedy best-first search
g(v) = (actual) cost to reach v from s

h(v) = estimated lowest cost from v to goal

f(v) = estimated lowest cost from s through v to goal

Same implementation as before, but prioritize vertices in min-heap by f[v]
A* is both complete and optimal provided h satisfies certain conditions:

for searching in a tree: admissible/optimistic
for searching in a graph: consistent (which implies admissibility)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 81

Admissible Heuristic

What do we want from f[v]?
not to overestimate cost of path from source to goal that goes through v

Since g[v] is actual cost from s to v, this “do not overestimate” criterion is for the
forward cost heuristic, h[v]

A* search uses an admissible/optimistic heuristic
i.e., h(v) < h*(v) where h*(v) is the true cost from v
(Also require h(v) > 0, so h(G) = 0 for any goal G)

Example of an admissible heuristic: crow-fly distance never overestimates the actual
road distance

A stronger, consistent heuristic: estimated cost of reaching goal from a vertex n is not
greater than cost to go from n to its successors and then the cost from them to the goal

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Admissible Heuristic

What do we want from f[v]?
not to overestimate cost of path from source to goal that goes through v

Since g[v] is actual cost from s to v, this “do not overestimate” criterion is for the
forward cost heuristic, h[v]

A* search uses an admissible/optimistic heuristic
i.e., h(v) < h*(v) where h*(v) is the true cost from v

(Also require h(v) > 0, so h(G) = 0 for any goal G)

Example of an admissible heuristic: crow-fly distance never overestimates the actual
road distance

A stronger, consistent heuristic: estimated cost of reaching goal from a vertex n is not
greater than cost to go from n to its successors and then the cost from them to the goal

Let's see A* with this heuristic in action

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

A* Search in Action

P hrad >

366=0+366

Amarda Shehu () informed and Informed) Graph Search Algorithms 83

A* Search in Action

»
393=140+253 447=118+329 449=75+374

Amarda Shehu () informed and Informed) Graph Search Algorithms 84

A* Search in Action

g) 447=118+329 449=75+374
646=280+366 415=239+176 671=291+380 413=220+193
Amarda Shehu () formed and Informed) Graph Search Algorithms 85

A* Search in Action

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380

> > CH>

526=366+160 417=317+100 553=300+253

Amarda Shehu () formed and Informed) Graph Search Algorithms 86

A* Search in Action

447=118+329 449=75+374

646=280+366 ‘_ 571 =291+380 T

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

Amarda Shehu () informed and Informed) Graph Search Algorithms 87

A* Search in Action

o it
(

g -) 447=118+329 449=75+374
646=280+366) 571 =291+380 .

591=338+253 450=450+0 526=366+160 _ - ~.._ 953=300+253

PEucharsd (Craioa> @
418=418+0 615=455+160 B07=414+193

Amarda Shehu () formed and Informed) Graph Search Algorithms 88

Optimality of A*

Skipping some details, but essentially if heuristic is consistent: A* expands nodes in
order of increasing f value®

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)
Contour / has all nodes with f = f;, where fi < fi ;1

So, why does this guarantee optimality?
First time we see goal will be the time it has lowest f = g (h is 0)

Other occurrences have no lower f (f non-decreasing)
Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 89

Summary of A* Search

marda Shehu ninformed and Informe raph Searc gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt 90

Summary of A* Search

Complete??

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt 90

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt 90

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)

Time??

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt 90

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)

Time?? Exponential in [path length x%]

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt 90

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length X§E%%i§§ﬂ]

Space??

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length x%]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length x%]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal??

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length x%]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f;.; until f; is finished

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length x%]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f;.; until f; is finished

Optimally efficient for any given consistent heuristic:

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length x%]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f;.; until f; is finished

Optimally efficient for any given consistent heuristic:
A* expands all nodes with f(v) < d(s, g)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length x%]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f;.; until f; is finished
Optimally efficient for any given consistent heuristic:

A* expands all nodes with f(v) < d(s, g)
A* expands some nodes with f(v) = d(s, g)

marda Shehu ninformed and Informe raph Searcl gorithms
Amarda Sheh Uninfe d and Inf d) Graph S h Algoritt 90

Summary of A* Search

Complete?? Yes, unless there are infinitely many nodes with ¥ < 7(G)
Time?? Exponential in [path length x%]

Space?? Keeps all generated nodes in memory (worse drawback than time)

Optimal?? Yes—cannot expand f;.; until f; is finished

Optimally efficient for any given consistent heuristic:
A* expands all nodes with (v) < i(s, g)

A* expands some nodes with f(v) = d(s, g)

A* expands no nodes with f(v) > d(s, g)

Amarda Shehu () (Uninformed and Informed) Graph Search Algorithms 90

End of Graph Search Algorithms

CS583 additionally considers scenarios where greedy substructure does not lead to
optimality

For instance, how can one modify Dijkstra and the other algorithms to deal with
negative weights?

How does one efficiently find all pairwise shortest/least-cost paths?

Dynamic Programming is the right alternative in these scenarios

More graph exploration and search algorithms considered in CS583

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt

Next Lecture: Measures of Interest in Networks

marda Shehu ninformed and Informe raph Searc| gorithms
Amarda Sheh Uninfc d and Inf d) Graph S h Algoritt 92

	Outline of Today's Class
	Graphs
	Definition of a Graph
	Types of Graphs
	Asymptotic Notations

	Graph Representations
	Adjacency List Representation
	Adjacency Matrix Representation
	Alternative Graph Representations

	Elementary Graph Algorithms for Path Searching
	(Uninformed and Informed) Graph Search Algorithms
	Uninformed Search
	A* Search

