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Three Central Quantities in Network Science

Degree distribution pk

Average path length 〈d〉

Clustering coefficient C
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Network Node Degrees

Node degree: nr. of links connected to node

kA = 1 kB = 4

Node degree: sum of in- and out-degree

k in
C = 2 kout

C = 1 kC = 3

Source: node with 0 in-degree
Sink: node with 0 out-degree
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Network Average Node Degrees

Node degree: nr. of links connected to node

〈k〉 = 1
N

∑N
i=1 ki 〈k〉 = 2L

N

N = |V | L = |E |

Node degree: sum of in- and out-degree

〈k in〉 = 1
N

∑N
i=1 k

in
i

〈kout〉 = 1
N

∑N
i=1 k

out
i

〈k in〉 = 〈kout〉 〈k〉 = L
N

Source: node with 0 in-degree
Sink: node with 0 out-degree
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Complete Graph

Maximum number of links in a network of
N nodes: Lmax =

(
N
2

)
= N·(N−1)

2

A graph with degree L = Lmax is a
complete graph

Its average degree is 〈k〉 = N − 1
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Real Networks are Sparse

Most networks observed in real systems are sparse

L << Lmax

or

〈k〉 << N − 1

WWW (ND Sample): N = 325, 729 L = 1.4106 Lmax = 1012 〈k〉 = 4.51
Protein (S. Cerevisiae): N = 1, 870 L = 4, 470 Lmax = 107 〈k〉 = 2.39
Coauthorship (Math): N = 70, 975 L = 2105 Lmax = 31010 〈k〉 = 3.9
Movie Actors: N = 212, 250 L = 6106 Lmax = 1.81013 〈k〉 = 28.78
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MetCalfe’s Law

Figure: The value of a telecommunications network is proportional to the square of the number
of connected users of the system.

Maximum number of links a network of N nodes:
Lmax =

(
N
2

)
= N·(N−1)

2
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Statistics Reminder

We have a sample of values x1, . . . , xN

Distribution of x (a.k.a. PDF): probability that a randomly chosen value is x

P(x) = (#valuesx)/N∑
i P(xi ) = 1 always!

Histogram
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Degree Distribution

We have a sample of values x1, . . . , xN

Degree distribution P(k): probability that a randomly chosen vertex has degree k

Nk = #nodes with degree k

P(k) = Nk/N plot
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Degree Distribution

discrete representation: pk is the probability that a node has degree k

continuum description: pk is the pdf of the degrees, where∫ k2

k1
pkdk represents the probability that a node’s degree is between k1 and k2

Normalization condtion:
∑∞

0 pk = 1 or
∫∞

0
pkdk = 1

Kmin is the minimal degree in the network
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Do Random Network Models Reproduce Deg. Distributions of Real Networks?

Depends on the model

Depends when we are satisfied

More next lecture

Let’s derive the first momenta of the degree distribution in one of the earliest
random models ... on the board
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Real Networks are Degree Correlated

The Erdos-Renyi model has a very narrow deviation, small σk , from 〈k〉, missing hubs.
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Real Networks are Degree Correlated

The Erdos-Renyi model has a very narrow deviation, small σk , from 〈k〉, missing hubs.

Moreover, a real network is often degree correlated:

The probability that a node of degree k is connected to another node of degree k
′

depends on k.
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Real Networks are Degree Correlated

The Erdos-Renyi model has a very narrow deviation, small σk , from 〈k〉, missing hubs.

Moreover, a real network is often degree correlated:

The probability that a node of degree k is connected to another node of degree k
′

depends on k.

Necessary to introduce the conditional probability P(k
′
|k), defined as the

probability that a link from a node of degree k points to a node of degree k
′
.

P(k
′
|k) satisfies the normalization

∑
k
′ P(k

′
|k) = 1

P(k
′
|k) satisfies the degree detailed balance condition

k · P(k
′
|k) · P(k) = k

′
· P(k|k

′
) · P(k

′
)

For uncorrelated graphs, where P(k
′
|k) does not depend on k, the detailed balance

condition and the normalization give P(k
′
|k) = k

′
P(k

′
)/〈k〉.a

aS. Boccaletti et al. Physics Reports 424:175-308, 2006.
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Real Networks are Correlated

Direct Evaluation of P(k
′
|k) is Noisy for Real Networks (Finite N)

Can be overcome by defining average nearest neighbors degree of a node i :

knn,i = 1
ki

∑
j∈Ni

kj = 1
ki

∑N
j=1 aij · kj ,

where Ni refers to set of first neighbors of i .

Then, average degree of nearest neighbors of nodes with degree k, knn(k) can be
expressed in terms of the conditional probability as:

knn(k) =
∑

k ′ k
′
P(k

′ |k).

In absence of corelations, knn(k) = 〈k2〉/〈k〉 (i.e., knn(k) is independent of k.

Correlated graphs are classified as:

assortative if knn(k) is an increasing function of k (nodes tend to connect to their
connectivity peers).
disassortative if knn(k) is a decresing function of k (nodes with low degree are more
likely connected with highly connected ones).

Degree correlations are quantified by reporting:
slope of knn(k) as a function of k.
Pearson correlation coefficient of degrees at either ends of a link.
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Three Central Quantities in Network Science

Degree distribution pk

Average path length 〈d〉

Clustering coefficient C
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Paths in Measures

Concepts of a path connecting two nodes and shortest path connecting two nodes are
central to various network measures. Let’s see some paths first.

Cycle Self-avoiding Path

A path with the same start and end node. A path that does not intersect itself.
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Paths and Measures

Eulerian Path Hamiltonian Path

A path that traverses each link exactly once. A path that visits each node exactly once.
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Eulerian Graph

Eulerian PATH or CIRCUIT: return to the starting point by traveling each link of the
graph once and only once.
Eulerian graph has an eulerian path.

Figure: Every vertex of this graph has an even degree, therefore this is an Eulerian graph.
Following the edges in alphabetical order gives an Eulerian circuit/cycle.
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Eulerian Circuits in Directed Graphs

If a digraph is strongly connected and the
in-degree of each node is equal to its
out-degree, then there is an Eulerian circuit

Otherwise there is no Eulerian circuit.
In a circuit we need to enter each node as
many times as we leave it.
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Distance in a Graph: Shortest Path, Geodesic Path

distance (shortest path, geodesic path)

between two nodes is defined as the
number of edges along the shortest
path connecting them.

If the two nodes are disconnected, the
distance is infinity.

distance (shortest path, geodesic path)

In directed graphs each path needs to
follow the direction of the arrows.

In a digraph the distance from node A
to B (on an AB path) is generally
different from the distance from node
B to A (on a BA path).
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Shortest Paths

Shortest paths play an important role in the transport and communication within a
network.
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Shortest Paths

Shortest paths play an important role in the transport and communication within a
network.

Suppose one needs to send a data packet from one computer to another through
the Internet: the geodesic provides an optimal path way, since one would achieve a
fast transfer and save system resources.
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Shortest Paths

Shortest paths play an important role in the transport and communication within a
network.

Suppose one needs to send a data packet from one computer to another through
the Internet: the geodesic provides an optimal path way, since one would achieve a
fast transfer and save system resources.

For such a reason, shortest paths have also played an important role in the
characterization of the internal structure of a graph.

It is useful to represent all the shortest path lengths of a graph G as a matrix D in
which the entry dij is the length of the geodesic from node i to node j .

How does one find the (shortest) distance between two nodes in a graph?

For unweighted graphs: BFS

For (non-negative) weighted graphs: Dijkstra, A*, D*, and variants.

How does one final all-pair shortest paths?

Floyd-Warshall
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Illustration

Path Shortest Path

A sequence of nodes such that each node is
connected to the next node along the path
by a link.

The path with the shortest length between
two nodes (distance).
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Network Diameter and Average Distance

Diameter dmax: the maximum distance (shortest path length) between any two nodes
in the graph (max{dij}), often also denoted as diam(G).

A measure of the typical separation between two nodes in a network is given by the
average shortest path length also known as the characteristic path length, defined as
the mean geodesic lengths over all pairs of nodes.

Average distance 〈d〉 for a connected graph:

〈d〉 = 1
2Lmax

∑
i 6=j dij , where dij is the distance from node i to node j

In undirected graph, dij = dji , so only counting once leads to:

〈d〉 = 1
Lmax

∑
i 6=j dij
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Illustration

Diameter Average Path Length

The longest shortest path in a graph The average of the shortest paths for all
pairs of nodes.
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Characteristic Path Length and Connectivity

Problem with 〈d〉 is that it diverges if there are disconnected components in the the
graph.

How to address?

First, let’s define connectivity.
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Connectivity of Undirected Graphs

Connected (undirected) graph: any two vertices can be joined by a path.

A disconnected graph is made up by two or more connected components.

Largest Component: giant component

The rest: isolates

Bridge: If we erase it, graph becomes disconnected
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Connectivity of Undirected Graphs: Adjacency Matrix

The adjacency matrix of a network with several components can be written in a
block-diagonal form, so that nonzero elements are confined to squares, with all other
elements being zero:
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Connectivity of Directed Graphs

Strongly-connected directed graph: has a path from each node to every other
node and vice-versa

Weakly-connected directed graph: connected if edge directions are disregarded.

Strongly-connected components (scc) can be identified (via DFS-based
algorithm), but not every node is part of a non-trivial scc.

In-component: nodes that can reach the scc

Out-component: nodes that can be reached from the scc
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From Characteristic Path Length to Network Efficiency

Issue can be addressed by limiting formulation to largest connected component, or by
considering the harmonic mean, so-called efficiency of G :

E = 1
2Lmax

∑
i 6=j

1
di j

Efficiency avoids divergence issue because any pair of nodes belonging to two different
components yields a contribution of 0 the summation.

Efficiency is an indicator of traffic capacity of a network.

Mathematical properties and extensions of efficiency have been studied by Criado et al.
J Comput. Appl. Math. 2005 and Vragovic et al. Phys. Rev. E. 2005.

Another useful measure is the closeness of a node, defined as the inverse of the average
distance from all other nodes.

All above quantities aim to measure communication in a network.
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Communication in a Network: Node Betweenness

The communication of two non-adjacent nodes, j and k, depends on the nodes
belonging to the paths connecting j and k.

A measure of the relevance of a given node can be obtained by counting the number of
geodesics going through it, and defining the so-called node betweenness.

Like degree and closeness, betweenness is a standard measure of node centrality,
originally introduced to quantify the importance of an individual in a social network1.

Betweenness bi of a node i , sometimes referred to also as load, is defined as:

bi =
∑

j 6=k
njk(i)

njk
where njk is the number of shortest paths connecting j and k, and njk(i) is the

number of shortest paths connecting j and k that go through i .

Betweenness distributions, betweennes-betweennes correlations, and betweenness-degree
correlationshave been investigated in many papers2

Concept extends to edges, defining edge betweenness as the number of shortest paths
utilizing an edge.

1Wasserman et al. Social Network Analysis, Cambridge University Press 1994
2see S. Boccaletti review for a list of references.
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originally introduced to quantify the importance of an individual in a social network1.

Betweenness bi of a node i , sometimes referred to also as load, is defined as:

bi =
∑

j 6=k
njk(i)

njk
where njk is the number of shortest paths connecting j and k, and njk(i) is the

number of shortest paths connecting j and k that go through i .

Betweenness distributions, betweennes-betweennes correlations, and betweenness-degree
correlationshave been investigated in many papers2

Concept extends to edges, defining edge betweenness as the number of shortest paths
utilizing an edge.

1Wasserman et al. Social Network Analysis, Cambridge University Press 1994
2see S. Boccaletti review for a list of references.
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Some Simple Formulas: Number of Paths Between Two Nodes

Let Nij be number of paths between nodes i and j:

Length n = 1: If there is a link between i and j , then Aij = 1 and Aij=0 otherwise.

Length n = 2: If there is a path of length two between i and j , then Aik · Akj=1,
and Aik · Akj = 0 otherwise.

Number of paths of length 2:

N2
ij =

∑N
k=1 Aik · Akj = [A2]ij

Length n: In general, if there is a path of length n between i and j , then
Aik · . . . · · ·Alj = 1 and Aik · . . . · · ·Alj = 0 otherwise.

Number of paths of length n between i and j :a:

Nn
ij =

∑N
k=1 Aik · Akj = [An]ij

afor both directed and undirected graphs
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A Fast Algorithm for Calculation of Betweenness Centrality

Published by Ulrik Brandes in J Mathematical Sociology 2001.

Lemma 1 (Bellman Criterion): A vertex v ∈ V lies on a shortest path between
vertices s, t ∈ V iff dG (s, t) = dG (s, v) + dG (v , t).

Given pairwise distances and shortest-path counts, the pair-dependency δst(v) = σst (v)
σst

of a pair s, t ∈ V on an intermediary v ∈ V , i.e. the ratio of shortest paths between s, t
on which v lies, can be derived from:

σst(v) = 0 if dG (s, t) < dG (s, v) + dG (v , t) and σsv · σvt otherwise.

To obtain the betweenness-centrality index of a vertex v , we simply sum the
pair-dependencies of all pairs on that vertex:
CB(v) =

∑
s 6=v 6=t∈V δst(v).
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A Fast Algorithm for Calculation of Betweenness Centrality

To compute betweenness-centrality, two steps are needed:

compute length and number of shortest paths between all pairs

sum all-pair dependencies.

Step 2. involves θ(n3) summations and θ(n2) storage of pair-dependencies.

Both BFS and Dijkstra’s algorithm can be easily augmented to count the number of
shortest paths:

BFS can run in O(m) time (unweighted graph).

DFS can run in time O(m + n · logn) for weighted graphs if priority queue is
implemented as a Fibonacci heap.

Corollary: Given a source s ∈ V , both the length and number of all shortest paths to
other vertices can be determined in time O(m + nlogn) for weighted graphs and O(m)
for unweighted graphs.

The explicit summation of all pair-dependencies can be avoided via a recursive
formulation of the dependency of a vertex δs∗(v) =

∑
t∈V δst(v).
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A Fast Algorithm for Calculation of Betweenness Centrality

Corollary: Given the directed acyclic graph of shortest paths from s ∈ V in G , the
dependencies of s on all other vertices can be computed in O(m) time and O(n + m)
space (details in Brandes paper).

Idea: Traverse the vertices in non-increasing order of their distance from s and
accumulate dependencies. Need to store a dependency per vertex, and lists of
predecessors. There is at most one element per edge in any of these lists.

The betweenness centrality index can be determined by solving one single-source
shortest-paths problem for each vertex. At the end of each iteration, the dependencies
of the source on each other vertex are added to the centrality score of that vertex.

Theorem: Betwennes centrality can be computed in O(nm + n2logn) time and n + m
space for weighted graphs and in O(nm) time for unweighted graphs.

Brandes also shows how to compute other centrality measures via a similar efficient
process.
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Central Quantities in Network Science

Degree distribution pk

Average path length 〈d〉

Clustering coefficient C
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Clustering

Clustering, also known as transitivity, is a typical property of acquaintance networks,
where two individuals with a common friend are likely to know each other3.

Transitivity means the presence of a high number of triangles.

This can be quantified by defining the transitivity T of a graph G as the relative
number of transitive triples, i.e. the fraction of connected triples of nodes (triads) which
also form triangles4.

T = 3×#triangles inG
#connected components inG

The factor 3 compensates for the fact that each complete triangle of three nodes
contributes three connected triples, one centered on each of the three nodes, and
ensures that 0 ≤ T ≤ 1 with T = 1 for KN (a complete graph of N nodes).

An alternative measure is the clustering coefficient, introduced by Watts and Strogatz.

3Wasserman et al. Social Network Analysis, Cambridge University Press 1994
4Newman, SIAM Rev 2003
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Clustering Coefficient of a Node

Clustering Coefficient of a Node:

What portion of your neighbors are connected?

Introduced by Watts and Strogatz in Nature 1998.

Local clustering coefficient ci of node i is introduced, expressing how likely
ajm = 1 for two neighbors j ,m of node i .

ci of a node with degree ki is obtained by counting actual number of edges ei in
subgraph Gi induced by neighbors of i normalizing by maximum possible number of
edges in Gi :

ci = 2ei
ki (ki−1) 0 ≤ ci ≤ 1

Fast algorithms to compute ci are presented in Alon et al. Algorithmica 1997.
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Clustering Coefficient of a Graph G and Variants

Clustering coefficient of a graph G is then the average of ci over all nodes in G :

C = 〈ci 〉 = 1
N

∑
i ci 0 ≤ C ≤ 1

Clustering coefficient of a connectivity class k, c(k) is defined as the average of ci taken
over all nodes with a given degree k

HIgher-order clustering coefficients have been proposed, such as the k-clustering
coefficient that acccounts for k-neighbors, other measures based on internal structure of
cycles of order 4, or on the number of cycles of a generic order.

An alternative of the clustering properties of G is the local efficiency:

Eloc = 1
N

∑
i E (Gi ) E(Gi ) is the efficiency of Gi

Let’s look at some simple examples.
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Example: Three Quantities
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1D Lattice

Pk = δ(k − 4) k = 4 for each node here

C = 1/2 for each node if N > 6

1 +
∑lmax

l=1 4 ≈ N ⇒ dmax = N
4

〈d〉 =
4
∑dmax

d=1
d

N
⇒ 〈d〉 ≈ N

8

The average path length varies as 〈d〉 ≈ N

Constant degree

Constant clustering coefficient
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2D Lattice

Pk = δ(k − 6) k = 6 for inside nodes

C = 6/15 for inside nodes

1 +
∑lmax

l=1 6l ≈ N ⇒ lmax ∝ N
0.5

〈l〉 ≈ L ≈ N1/2

In general, the average distance varies as 〈l〉 ≈ L ≈ N1/D

where D is the dimensionality of the lattice

Constant degree (coordination number) Constant clustering coefficient
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Motifs in Networks

A Motif M

is a pattern of interconnections occurring either in a undirected or in a directed
graph G at a number significantly higher than in randomized versions of the graph,
i.e. in graphs with the same number of nodes, links and degree distribution as the
original one, but where the links are distributed at random.

As a pattern of interconnections, M is usually meant as a connected (undirected or
directed) n-node graph which is a subgraph of G .

Figure: All possible 3-node connected directed graphs
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Motifs

The concept of motifs was introduced by Alon and co-workers, who studied small n
motifs in biological networks and more.

Significant motifs in a graph G are found by using matching algorithms that count
the total number of occurrences of each n-node subgraph M in G and compare
that to the count in randomized graphs.

Statistical significance is determined by Z -score, defined as:

Zm =
nM−〈nrandM 〉

σrand
nM

where nM is the number of times the subgraph M appears in G , and 〈nrandM 〉 and

σrand
nM

are the average and standard deviations of the number of occurrences in a
randomized network ensemble.
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Community Structures

Notion of community (or cluster, cohesive subgraph) first proposed in social
sciences as a subgraph whose nodes are tighly conneced, i.e., cohesive.

Figure: Communities can be defined as groups of nodes such that there is a higher density of edges within

groups than between them. In the case shown in figure there are three communities, denoted by the dashed

circles. c©2004 by the American Physical Society6.

5Newman, Girvan Phys Rev E. 2004
6Newman, Girvan Phys Rev E. 2004

Amarda Shehu () Central Quantities in Network Science 44



Structural Cohesion Measures

Structural cohesion of the subgraph can be quantified in several ways, so there are
different definitions of community structures.

Strongest definition is that of a clique, a maximally-complete subgraph of three or
more nodes.

Weaker requirement uses reachability: an n-clique s a maximal subgraph in which
the largest geodesic between any two nodes is no greater than n.

n = 1: this is just a clique.

n = 2: not all nodes are adjacent, but are reachable through at most one
intermediate node.

n = 3: non-adjacent nodes are reachable through at most 2 intermediate nodes.

and so on.

Alternative weakening involves reducing the number of nodes to which each node
must be connected: a k-plex is a maximal subgraph containing n nodes, in which
each node is adjacent to no fewer than n − k nodes in the subgraph.
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More Structural Cohesion Measures

A different definition is based on the frequency of links; in this case communities
are seen as groups of nodes within which connections are dense, and between which
connections are sparse (previous figure was an example of this).

Simplest formal definition has been proposed in Seidman, Social Network, 1983.

Less stringent definition: G
′

is a community if the sum of degrees within G
′

is
larger than the sum of all degrees towards G − G

′
.

Several other definitions are available, as in Wasserman et al. Social Network
Analysis 1994.
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Graph Spectra

The Spectrum of a Graph

Is the set of eigenvalues of its adjacency matrix A

a Graph GN,K (of N vertices and K edges) has N eigenvalues µi and N associated
eigenvectors vi .

When G is a simpled undirected graph, A is real and symmetrix, so the eigenvalues
are real, and the eigenvectors corresponding to distinct eigenvalues are orthogonal.

When G is directed, the eigenvalues can have immaginary parts, as for instance in
the tournament graph with 3 nodes; ordering and properties of eigenvalues and
eigenvectors here is more complicated.
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More on Graph Spectra

The spectrum of the normal and Laplacian matrix of a graph G reveals important
information regarding its connectivity.

The normal matrix is defined as N = D−1 · A, where D is the diagonal matrix
with Dii =

∑
j aij = ki .

The Laplacian matrix ∆, also known as the Kirchhoff matrix is defined as
∆ = D −A.

The multiplicity of the eigenvalue 0 of ∆ equals the number of connected
components in G .

The second smallest eigenvalue λ2 is important, too; several theorems from spectral
graph theory prove that the larger λ2, the more difficult it is to cut G into pieces.

The spectrum of A and N have been used to discover cohesive subgroups and other
local features of real networks, as we will cover later in this course.
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Topology of Real Networks

Despite inherent differences, most of the real networks are characterized by the
same topological properties, such as:

relatively small characteristic path lengths

high clustering coefficients

fat tailed shapes in the degree distributions

degree correlations

presence of motifs and community structures.

These features make real networks radically different from regular lattices and
random graphs, the standard models studied in mathematical graph theory.

This observation has led to a large attention towards:

understanding of the evolution mechanisms that have shaped the topology of a
network

design of new models retaining the most significant properties empirically observed
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Topology of Real Networks

Specifically, two properties observed about real networks are:

Small-world property (∗-degree separation)

Scale-free degree distributions (power-law shaped degree distribution)

The focus of the next 2 lectures will be on random network models that can reproduce
the topology of real networks in partially or fully.
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