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Obtaining a structural characterization of the biologically active (native) state of a protein is a long 
standing problem in computational biology. The high dimensionality of the conformational space and 
ruggedness of the associated energy surface are key challenges to algorithms in search of an ensemble 
of low-energy decoy conformations relevant for the native state. As the native structure does not 
often correspond to the global minimum energy, diversity is key. We present a memetic evolutionary 
algorithm to sample a diverse ensemble of conformations that represent low-energy local minima in 
the protein energy surface. Conformations in the algorithm are members of an evolving population. 
The molecular fragment replacement technique is employed to obtain children from parent 
conformations. A greedy search maps a child conformation to its nearest local minimum. Resulting 
minima and parent conformations are merged and truncated back to the initial population size based 
on potential energies. Results show that the additional minimization is key to obtaining a diverse 
ensemble of decoys, circumvent premature convergence to sub-optimal regions in the conformational 
space, and approach the native structure with lRMSDs comparable to state-of-the-art decoy sampling 
methods. 

Introduction 

“[...] the native conformation is determined by the totality of interatomic 
interactions and hence by the amino acid sequence, in a given 
environment.”   Anfinsen, C. B. Science 181, 1973 

Experimental techniques that are devoted to resolving the native structure of a protein sequence 
cannot keep pace with the exponential explosion in the number of new protein sequences deposited 
to databases. 
 

Determining the biologically-active structure of a protein sequence in-silico remains a central 
challenge in computational structural biology. 
 

Exploring the protein conformational space in search of conformations that populate the protein 
native state is an NP-hard problem. 
 

The protein conformational space is vast, continuous, and high-dimensional. 
 

The protein energy surface is funnel-like, but rich in local minima of varying sizes. 
 

The protein native state is associated with the basin of the protein energy surface. 
 

We propose to revisit evolutionary search strategies and combine them with the state-of-the-art  
fragment assembly in computational biophysics and the coarse-grained energy function in order to 
effective explore the protein conformational space and obtain lowest-energy conformations 
associated with the native state.  

These children copies of the parent are modified 
through asexual reproduction to produce a child 
conformation. A fragment configuration in the parent 
is replaced with a configuration selected from a pre-
built fragment configuration library to produce the 
child. The process is facilitated by fragment-based 
assembly, a state-of-the-art technique in computa-
tional biophysics that effectively obtains realistic 
conformations. 
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Results 

Conclusions 

Each algorithm was run independently 3 times 
on eleven proteins. The proteins used represent 
a variety of structure types with different folds 
and different lengths. The efficacy of the 
algorithm is evaluated by calculating the root 
mean square deviation (RMSD) from the native 
structure. Columns 3 and 4 represent the simple 
EA and MEA, respectively.  Column 5 represents, 
FeLTr, another local-minima sampling algorithm 
developed by our lab.  Column 6 represents the 
published results by the Sosnick lab's ItFix 
algorithm. The MEA does better than the EA by 
at least 0.5Å in 10 of the 11 proteins. The MEA 
compares favorably with FeLTr in 6 of 11 proteins 
and in 4 of the remaining targets, does 
significantly better. Lastly, the MEA finds lower 
RMSD values for 5 of 11 targets, while ItFix finds 
lower RMSDs for 3 proteins; the methods are 
comparable for the remaining 3 proteins. 
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The fitness of each individual is measured through a state-
of-the-art energy function. The children are integrated  into 
the original parent population, which is then sorted in 
descending order based on the energy fitness function 
Such a population is truncated to the original population 
size of n individuals and the process is repeated for each 
generation. 
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Each conformation represents a separate  individual in the population. 

The results show that the minimization step added  
in the MEA allows the algorithm to more effectively 
sample near-native conformations than  the basic EA. 
The basic EA is nonetheless effective at optimizing 
the AMW energy function and reaches much lower-
energy conformations than MEA since it is  highly 
exploitative and converges rapidly to a few particular 
basins in the energy surface.  The exploitation in 
MEA on the other hand, is limited by the greedy local 
search employed for minimization.  The MEA quickly 
reaches a low-energy floor, but then a fragment 
replacement allows it to jump out of that  local 
minima  to a higher energy. Therefore, the MEA 
avoids convergence and explores a breadth of 

conformations around the low-energy floor. Hence, the 
population maintains diversity better in the MEA than the 
EA. 
 

Comparison of MEA to other conformational search 
methods shows that the addition of the minimization step 
along with domain-specific techniques from the computa-
tional structural biology community make evolutionary 
search strategy comparable to other state-of-the-art decoy 
sampling methods for ab-initio protein structure prediction. 
Future work will investigate more advanced evolutionary 
search strategies that encourage greater diversity. 

From the N members of the population, M conformations  are chosen to be copied and act as the children of the popu-
lation. N = 1000 was used. For M, 4000 was used for the EA. Such a selection was made using fitness-proportional selection. 
The stochastic implementation precludes that the conformations with the higher fitness are more likely to have children. 

Child 

Implementation details:  The presented results were obtained by 
running the two algorithms on a 2.66GHz Opteron processor with 
8GB of memory for 30 to 50 hours depending on protein length. 
The method was implemented in C/C++. 
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Abstract 

The Memetic Evolutionary Algorithm  (MEA) 
The MEA employs an additional minimization 
step, implemented as a local greedy search, to 
map a child conformation sampled by the basic 
EA framework to a nearby local minimum. The 
corresponding conformation representing the 
minimum replaces the initial child conformation. 
Some of these minimized children will be 
members of the evolved population. In the next 
iteration,  some may be selected to be parents 
where a mutation to get the new child will be 
equivalent to a jump out of the current minimum. 
This resetting is crucial to obtain new nearby 
minima in the energy surface, avoid convergence, 
and enhance conformation diversity.  

Contributions 

  Evolving Population    Fragment Replacement  Coarse Graining Local Greedy Search 

Comparison to Other Groups 

2EZK – 4.8 Å 

The frequencies of the lRMSDs to the experimentally determined native structure are given 
for each conformation sampled during all three runs for four representative target proteins.  
The solid red line represents the simple EA and the dashed blue line represents the EA with 
minimization. The conformation of the lowest RMSD using the MEA for each protein is 
visualized in red and is superimposed on the native conformation which is displayed in silver.  

EA vs. MEA RMSD Distribution 

The Evolutionary Algorithm (EA) 
Avg(Min) lRMSD (Å) 

PDB  Size Fold EA MEA FeLTr ItFix 

1dtdB 61 α/β 8.1(7.3) 6.9(6.7) 7.7(7.6) 6.5 

1isuA 62 α/β 7.5(7.1) 6.5(6.1) 6.8(6.7) 6.5 

1c8cA 64 α/β 8.5(8.5) 7.2(6.8) 6.5(6.0) 3.7 

1sap 66 α/β 8.0(7.2) 6.7(6.2) 7.1(6.5) 4.6 

1hz6A 67 α/β 6.7(5.5) 6.2(6.0) 6.6(6.6) 3.8 

1wapA 68 β 9.3(8.8) 7.5(6.8) 7.8(7.3) 8 

1fwp 69 α/β 7.6(7.1) 6.8(6.6) 6.8(6.4) 8.1 

1ail 70 α 4.8(4.0) 3.5(3.4) 4.7(4.5) 5.4 

1aoy 78 α/β 7.0(6.2) 5.3(5.1) 5.1(4.6) 5.7 

1cc5 83 α 7.1(6.4) 5.7(5.5) 6.4(6.2) 6.5 

2ezk 93 α 6.1(5.0) 4.9(4.6) 6.4(6.0) 5.5 

1CC5 – 5.6 Å 

1ISUA – 6.5 Å  

1WAPA – 7.5 Å 
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