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ABSTRACT
Return-Oriented Programming (ROP) has emerged as one
of the most widely used techniques to exploit software vul-
nerabilities. Unfortunately, existing ROP protections suf-
fer from a number of shortcomings: they require access to
source code and compiler support, focus on specific types of
gadgets, depend on accurate disassembly and construction
of Control Flow Graphs, or use hardware-dependent (mi-
croarchitectural) characteristics. In this paper, we propose
EigenROP, a novel system to detect ROP payloads based
on unsupervised statistical learning of program character-
istics. We study, for the first time, the feasibility and ef-
fectiveness of using microarchitecture-independent program
characteristics — namely, memory locality, register traffic,
and memory reuse distance — for detecting ROP. We pro-
pose a novel directional statistics based algorithm to identify
deviations from the expected program characteristics during
execution. EigenROP works transparently to the protected
program, without requiring debug information, source code
or disassembly. We implemented a dynamic instrumenta-
tion prototype of EigenROP using Intel Pin and measured it
against in-the-wild ROP exploits and on payloads generated
by the ROP compiler ROPC. Overall, EigenROP achieved
significantly higher accuracy than prior anomaly-based so-
lutions. It detected the execution of the ROP gadget chains
with 81% accuracy, 80% true positive rate, only 0.8% false
positive rate, and incurred comparable overhead to similar
Pin-based solutions.
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1. INTRODUCTION
Since its introduction by Shacham in 2007 [19], Return-

Oriented Programming (ROP) has become an increasingly
popular technique for bypassing Data Execution Prevention
(DEP) defenses on modern operating systems. DEP en-
sures that all writable memory pages of a program are non-
executable, which prevents the execution of any input data,
effectively mitigating all classic code injection attacks. In a
ROP attack, on the other hand, the attacker does not in-
ject new code. Instead, existing sequences of instructions in
the process executable memory, called gadgets, are chained
together to perform the intended computation. While the
traditional Address Space Layout Randomization (ASLR)
randomizes the location of most libraries and executables,
ROP attacks can still bypass ASLR by finding a few code
segments in statically known locations, or through brute-
forcing and de-randomization by exploiting memory disclo-
sure vulnerabilities.

Present ROP detection solutions aim at detecting ROP at-
tacks at runtime, via means of signature-based or anomaly-
based detection. Signature-based solutions detect ROP at-
tacks by identifying static signatures (patterns) in the exe-
cution trace of programs. The most common method is to
detect gadgets execution by enforcing predefined constraints
over the program counter and the call stack, either through
dynamic instrumentation [7, 12, 9] or by leveraging existing
hardware branch tracing features [6]. These solutions incur
very low overhead, but the employed signatures are often
incomplete due to strong constraints on the ROP structure,
allowing the defenses to be bypassed by attackers (e.g., [5]).

Anomaly-based detection, on the other hand, learns a
baseline of normal (clean) behavior and detects attacks by
measuring statistical deviations from the normal behavior.
This approach has the significant advantage of being able to
protect against a broad spectrum of attacks, including zero-
day. Recent anomaly-based ROP defenses utilized hardware
characteristics to detect attacks [14, 8, 15, 22]. They gen-
erally used two classes of characteristics: 1) architectural
characteristics, which are dependent on the instruction set
architecture (ISA), such as the number of load and store
instructions retired. And, 2) microarchitectural characteris-
tics, meaning characteristics that depend on the underlying
microarchitecture configurations, such as branches mispre-
diction rate and cache misses. These characteristics were
typically measured by reading the hardware performance
counters (HPC) of the underlying processor. However, a
common pitfall is that characteristics measured using HPC
may actually hide the underlying program behavior, making
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the HPC-based metrics appear similar for inherently differ-
ent behaviors [10].

In this paper, we introduce EigenROP, a novel system for
detecting ROP attacks. We study, for the first time, the
feasibility and value of using microarchitecture-independent
program characteristics for the detection of ROP attacks.
We propose a new type of anomaly-based ROP detectors
that leverages microarchitecture-independent program char-
acteristics, including memory reuse distance, register traffic
load, memory locality, among others, in addition to tradi-
tional hardware characteristics (see Section 4).

EigenROP employs a novel anomaly detection algorithm
that builds on concepts from directional statistics (see Sec-
tion 5). The fundamental idea is that strong relationships
among the different program characteristics will appear as
principal axes in some high-dimensional space. Since ROP
executes against the control flow of the program, it is reason-
able to assume that it causes some unexpected changes in the
relationships between the program characteristics learned
from benign runs. Such changes can be detected as statis-
tically significant deviations in the directions of the axes in
the high-dimensional space. We investigate if and to what
extent ROP causes changes in program characteristics, and
verify our hypothesis with extensive experiments using mul-
tiple in-the-wild ROP payloads and payloads generated by
the ROPC ROP compiler.

We implemented a prototype of EigenROP on Linux, us-
ing the dynamic instrumentation framework Pin [13]. We
conducted several experiments to quantify the accuracy of
EigenROP, the effect of involved parameters and the in-
curred performance overhead (see Section 6). In our ex-
periments, microarchitecture-independent characteristics re-
sulted in 11% increase on average in detection accuracy, rela-
tive to using only microarchitectural characteristics. Eigen-
ROP achieved an overall accuracy of 81%, 80% true positive
rate, and only 0.8% false positive rate. The incurred per-
formance overhead decayed exponentially as the sampling
interval increases, and faster than the deterioration in accu-
racy.

To summarize, we make the following contributions:
• We study the effectiveness of combining microarchitec-

ture-independent program characteristics with typical
hardware characteristics for the detection of ROP at-
tacks.
• We propose a novel anomaly detection algorithm using

directional statistics of program characteristics, em-
bedded in high-dimensional space.
• We present EigenROP, a working prototype of our ap-

proach.
• We quantify the security effectiveness of EigenROP us-

ing in-the-wild ROP attacks against common Linux
programs, as well as the accuracy-performance trade-
off.

2. BACKGROUND

2.1 Return-Oriented Programming
Return Oriented Programming (ROP) enables attackers

to execute arbitrary code without injecting new code into
the victim process, by returning to arbitrary instruction se-
quences in the executable memory of the program.

A typical ROP attack operates as follows: first, the at-
tacker overwrites the stack contents with addresses of the de-

sired ROP gadgets. Once the ret instruction of the current
routine is executed, the first return address of the current
stack frame is used as a return target. Instruction sequences
at that address will execute, till the next ret instruction.
Upon execution of the ret instruction, control is transferred
to the next gadget. This process repeats, jumping from one
gadget to the next, till the gadget chain terminates.

It has been shown that ROP can perform Turing-Complete
computations if the attacker can find sufficient gadgets to
perform memory, arithmetic, logical operations and system
calls [23]. Also, it is worth mentioning that ret-based ROP
is not the only way to launch or chain attacks. We dis-
cuss in Section 7 how other variants of ROP are detected by
EigenROP.

2.2 Microarchitecture-independent Character-
istics

It has been shown that microarchitecture-independent char-
acteristics have higher discrimination power between differ-
ent inherent program behaviors, compared to architectural
and microarchitectural characteristics [10]. Microarchitec-
ture-independent characteristics are program characteristics
that are unique to a given instruction set architecture (ISA)
and a given compiler but are independent of a given microar-
chitecture. In other words, the characteristics are invariant
of the underlying hardware cache size, pipeline size, branch
predictors size and algorithm, number of cores and their
configurations, and so on. In the context of ROP detec-
tion, several microarchitecture-independent characteristics
can prove useful in discriminating between benign execu-
tion behavior and gadget execution, such as memory local-
ity and reuse distance, and register traffic (see Section 4 for
details). Note that while characteristics dependent on the
ISA, i.e., architectural characteristics, can be regarded as a
subset of microarchitecture-independent characteristics, we
keep them distinct in this work as is the trend in prior pro-
gram characterization work [10, 14, 22].

The main downside of solutions using microarchitecture-
independent characteristics is that there is currently no ker-
nel or hardware support to collect the characteristics. There-
fore, our prototype implementation requires runtime instru-
mentation to measure the characteristics. However, the over-
head decays over time as more efficient algorithms and tools
are developed, as as hardware and kernel support becomes
available [3].

In the following section, we outline the big picture of how
EigenROP works.

3. OVERVIEW OF EigenROP
The key idea of EigenROP is to identify anomalies in pro-

gram characteristics, due to the execution of ROP gadgets.
In this context, it is difficult to precisely define what anoma-
lies are since that depends on the characteristics of both the
monitored program and the ROP. However, it is reasonable
to assume that some unexpected change occurs in the re-
lationships among the different program characteristics due
to the execution of the ROP. By extracting and learning
arbitrary relationships among the program characteristics,
EigenROP detects ROP by looking for unexpected changes
in the learned relationships.

Given our definition of anomaly, strong relationships among
the measured program characteristics should appear as prin-
cipal directions in some high-dimensional space. Such direc-
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Figure 1: Workflow of EigenROP. It periodically interrupts the monitored process, measures the characteris-
tics, embeds them into a high-dimensional space, extracts the principal directions in that space, and estimates
a representative direction and density around the direction. In the detection phase, the principal directions
of incoming measurements are test for significant deviation from the learned direction and density.

tions can be extracted using Kernel Principal Component
Analysis (KPCA). More specifically, the principal compo-
nent vectors of the measurements mapped into the high-
dimensional space can be interpreted as the relationships
among the program characteristics.

The general workflow of EigenROP is illustrated in Fig-
ure 1. First, the target program is loaded and executed.
During execution, EigenROP takes a snapshot of the dif-
ferent program characteristics, every N instructions retired.
Each snapshot is a d−dimensional vector of characteristics.
The snapshots are pushed to a buffer that EigenROP iter-
ates over using a sliding window.

In the learning phase, the target program is executed over
benign inputs. For each window of measured characteristics,
EigenROP maps the measurements into a high-dimensional
space and extracts the principal components of the mea-
surements in that space. EigenROP then estimates a rep-
resentative direction from all the principal components, and
estimates the density of the distances of all principal compo-
nents around the representative direction. Recall, the idea
here is that any strong relationships among the measured
characteristics will appear as principal components in the
high-dimensional space. In the detection phase, EigenROP
computes the distances of the principal components of in-
coming measurements, in the high-dimensional space, to
the representative direction. If the distance exceeds some
threshold, then an alarm is raised.

In the following, we define the characteristics used by
EigenROP and explain in detail how learning and detection
work.

4. WHICH CHARACTERISTICS TO MEA-
SURE?

To choose the most relevant characteristics for ROP de-
tection, we conducted several experiments to collect clean
and infected measurements from a variety of programs and
exploits (see Section 6.2). We considered most of the charac-
teristics used in previous program characterization work [10,
14, 22]. Then, we used the Fisher Score to quantify the dis-
criminative power of each characteristic. The following is
a brief description of the shortlisted categories of charac-
teristics we measured. The letters between brackets denote
the type of the characteristics: Architectural [A], Microar-
chitecture-Independent [I], and Microarchitectural [M]. We

emphasize that all the characteristics used in this work are
computed in software.

• Branch predictability [M]. Since ROP attacks dis-
turb the normal control flow of execution, they may
increase the number of mispredicted branches by the
processor branch predictor.

• Instruction mix [A]. This is a traditional architec-
tural characteristic that measures the frequency of dif-
ferent classes of instructions (branch, call, stack, load
and store, arithmetic, among others). Since ROP at-
tacks depend on chaining blocks of instructions that
load data from the hijacked program stack to regis-
ters, and for returning to the stack, they may exhibit
different usage of ret and call instructions as well as
stack pop and push instructions.

• Memory locality [I]. Given a set of instructions,
memory locality is the difference in the data addresses
between subsequent memory accesses. Here, it is typ-
ical that a distinction is made between memory reads
(loads) and writes (stores). Since ROP attacks depend
on chaining gadgets from arbitrary memory locations,
the attacks may exhibit low memory locality when
compared to clean execution. The memory distance
between subsequent reads and writes may indicate the
execution of a ROP attack.

• Register traffic [I]. Two useful register traffic char-
acteristics can be measured: 1) the average number of
register input operands to an instruction; and 2) the
register reuse distance, i.e., the number of instructions
between writing a register and reading it. ROP attacks
load data from the hijacked stack to registers typi-
cally using pop instructions that take a single operand.
Therefore, the number of instruction operands could
be an indicator of the presence of a gadget chain. Ad-
ditionally, the usage degree of the registers themselves
could be different from that of clean execution.

• Memory reuse [I]. This metric measures the number
of unique cache blocks referenced between subsequent
memory reads. For each memory read, the correspond-
ing cache block is retrieved (assuming LRU cache). For
each cache block, the number of unique cache blocks
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Table 1: Top 15 characteristics sorted by discrimi-
nation power (highest to lowest). Chosen character-
istics are marked with ?. All counts are for instruc-
tions (insns) retired.

Rank Type Name Description

? 1 A INST RET # leave and ret insns.
? 2 A INST CALL # near call insns.
? 3 I MEM REUSE Memory reuse distance.
? 4 A INST STACK # pop and push insns.
? 5 I MEM RDIST Memory read distance.
6 A INST LOAD # memory read insns.

? 7 I REG OPS Avg. # register operands.
? 8 M MISP CBR Mispredicted branches.
9 A INST ARITH # arithmetic insns.

? 10 M MISP RET Mispredicted ret insns.
11 A INST STORE # memory write insns.

? 12 I MEM WDIST Memory write distance.
? 13 A INST NOP # nop insns.
14 I REG REUSE Register reuse distance.
15 I ILP Instruction level parallelism.

accessed since the last time it was referenced is deter-
mined. Since ROP attacks operate by using the stack
for chaining the gadgets, and the gadgets are typi-
cally spread out across the memory of the program,
they shall exhibit abnormal reuse of the same memory
blocks when compared to clean execution.

Table 1 shows the top 15 characteristics, ranked by their
Fisher scores. For each characteristic i, its Fisher Score is
computed by:

scorei =
m(+)

(
x̄
(+)
i − x̄i

)2
+m(−)

(
x̄
(−)
i − x̄i

)2
m(+)s

2(+)
i +m(+)s

2(−)
i

, (1)

where (+) and (−) are the infected and clean classes of

measurements, respectively; x̄
(y)
i and s

2(y)
i are the mean and

variance of characteristic i in class y ∈ {+,−}, and x̄i is the
overall mean of feature i over both the infected and clean
measurements. The Fisher Score is a widely established fea-
ture filtering method that assigns higher scores to features
that result in greater separation between the means of clean
and infected samples. Note that we used infected and clean
measurements here to quantify the discriminative power of
the selected characteristics. The infected measurements are
not used during the learning phase of EigenROP.

Since the Fisher Score ignores mutual information, some
of the scored characteristics might be redundant. Therefore,
we picked 10 features out of the top 15 as follows. First, we
excluded Instruction Level Parallelism (a measure of how
many instructions of a program can be executed in parallel)
since it added significant performance overhead and is highly
dependent on the type of application. For example, cryptog-
raphy applications may exhibit low instruction level paral-
lelism, while a scientific computation program may exhibit
high parallelism. Similarly, we excluded INST LOAD and
INST ARITH. Via experimentation, we found that REG -
REUSE does not increase the accuracy of the model, so we
excluded it as well.

5. LEARNING AND DETECTION
Given a sequence T of d-dimensional measurements, we

divide T into n subsequences using a sliding window of width

m. Let us denote the resulting subsequences by:

S(j) =


x
T (j)
1

x
T (j)
2

...

x
T (j)
m

 , (2)

for j = 1 . . . n. Note that each x
(j)
i is a vector of d mea-

sured characteristics.
Next, each S(j) is embedded (implicitly mapped) into a

higher dimension space H with Φ : Rd → H, and the prin-
cipal component vectors of S(j) in H are extracted. This
is done using Kernel PCA [17], which solves the following
eigenvalue problem:

λ
(j)
i v

(j)
i = Kv

(j)
i , (3)

where λ
(j)
i are the eigenvalues of K, v

(j)
i are the normal-

ized eigenvectors of K, and K is the m ×m kernel matrix[
k
(
x
(j)
i ,x

(j)
l

)]
for i = 1 . . .m; l = 1 . . .m. Here, k is the

kernel function, which we set to the Radial Basis Function
(RBF) given by:

k(x1,x2) = Φ(x1)Φ(x2)T (4)

= exp
(
−γ ‖x1 − x2‖2

)
, (5)

where γ = 1
d
. We assume K is centered, i.e., K = K −

1mK −K1m + 1mK1m, where 1m is an m×m matrix for
which each element takes the value 1

m
.

Using the eigenvalues and eigenvectors in H, the resul-
tant direction v(j) of the data S(j), embedded in H, is then
computed by:

v(j) = c

m∑
i=1

λ
(j)
i v

(j)
i , (6)

where c is a normalizing factor such that v(j)Tv(j) = 1.
This direction can be perceived as a representative direction
of all the principal axes of S(j) in the kernel space H.

We then compute the mean direction µµµ of T by:

µµµ =

∑n
j=1 v(j)∥∥∥∑n
j=1 v(j)

∥∥∥ . (7)

The direction µµµ is the representative direction for the en-
tire trace of characteristics, where the extracted directions
v(j) distribute around µµµ. To handle multiple runs {T (i)}ki=1,

where each T (i) corresponds to a different run of the moni-
tored program, we compute the family of sets of directions

V = {{v(j)}n
(i)

j=1}ki=1, then compute µµµ over V.
Hence, the following similarity vector Z is constructed:

Z =


v(1)Tµµµ

v(2)Tµµµ
...

v(n)Tµµµ

 , (8)

where each row corresponds to the angular distance be-
tween each direction v(j) and µµµ.

Next, a kernel density is estimated over Z using the stan-
dard normal kernel density estimator, given by:

fh(z) =
1

nh

n∑
i=1

N
(z − zi

h

)
, (9)
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where h is the smoothing parameter (the bandwidth),
zi ∈ Z, and N is the standard normal function. In our
implementation, we chose the value of h using grid search.

The resulting density is expected to be close to exponen-
tial since the directions extracted from clean measurements
are expected to be concentrated (tightly distributed around
µµµ), resulting in a skewed density with a peak around high
similarity values. Therefore, we reduce the effect of skewness
of fh by applying the following logarithmic transform:

f̂h(z) = fh(z) log (fh(z)) , (10)

where the area under the curve of f̂h(z) gives the entropy

η of f̂h. This transforms the bulk of the density towards the
peak, resulting in a shorter (easier to threshold) tail.

This concludes the learning phase. The following subsec-
tion explains the anomaly metric and the detection phase of
EigenROP.

5.1 Anomaly Metric
Given an incoming subsequence of measurements S′

(j)
, an

anomaly is detected if the direction of S′
(j)

, in the H space,
is significantly different from the learned directions around
µµµ. The decision r is computed by:

v′
(j)

from Eq. (6) (11)

z′
(j)

= v′
(j)T

µµµ (12)

ζ =

∫ z′(j)

−1

f̂h(z) dz (13)

r = sgn(ζ − θη) , (14)

where θ ∈ (0, 1) is the detection threshold, which sets
the fraction of the entropy that the model leaves out for
detecting attacks. This concludes the detection phase.

5.2 Detection Time and Space Complexity
Computing the anomaly metric requires performing the

KPCA computation (Eq. (3)) in O(m3) [17]. Computing
the resultant vector (Eq. (6)) takes Θ(m2). The distance in
Eq. (12) is computed in Θ(m). Thus, it takes a total time of
O(m3) to compute the anomaly metric. Our model requires

space m · d for the incoming measurements window S(j), m
for the representative direction µµµ, and c for the transformed
density (Eq. (10)), where c is the number of points of the
density. Thus, it takes a total space of Θ(md+c). Note that
all terms in our prototype implementation of EigenROP are
bounded: d = 10, m ≤ 10 and c ≤ 1000.

6. EVALUATION
We implemented EigenROP on top of MICA [11], a Pin-

tool for collecting program characteristics. Pin [13] is a
generic dynamic instrumentation framework with a rich API
that Pintools use to specify own instrumentation code. Pin-
tools are written in C/C++. We chose Pin since it achieves
the best performance among various dynamic instrumenta-
tion platforms [13]. The EigenROP module is implemented
in ∼700 lines of Python, with the aid of the SciKit-Learn [2]
machine learning toolkit.

We evaluate the security effectiveness, the added value
of using microarchitecture-independent characteristics, and
the tradeoff between runtime overhead and the detection ac-
curacy of EigenROP. For security evaluation, we conducted

several experiments using in-the-wild ROP attacks and at-
tacks generated by the ROPC [1] compiler. For performance
evaluation, we used the UnixBench systems benchmark. We
ran our experiments on an Intel Core i7-4870HQ 2.5 GHZ
machine with 4 GB of RAM, running 32-bit Linux Ubuntu
12.04, Intel Pin version 2.14, MICA version 0.40 and GCC
version 4.6.3.

Table 2: Data set used in our experiments.

Program Avg. Payload Length # of Samples

cmp 800 80
cpio 650 210
diff 910 140
file 700 315
grep 631 150
hteditor 60 100
openssl 1021 195
php 400 265
sed 570 350
sort 712 110
stat 673 110
wget 813 90

Total Samples: 2115

6.1 Dataset and Evaluation Procedure
We used two publicly available ROP exploits: OSVDB-

ID:87289 and OSVDB-ID:72644, for the Linux Hex Editor
(hteditor) version 2.0.20 and PHP version 5.3.6, respec-
tively. We also used a number of exploits generated by the
ROP gadgets finder and compiler ROPC [1], for common
Linux programs (4 different exploits per program). Table 2
shows the programs used in our evaluation, the average pay-
load length (the number of instructions) of each exploit, and
the number of samples per program.

We collected clean samples for each target program by
running the functionality tests that shipped with the pro-
gram. In the case of hteditor, as it did not ship with func-
tionality tests, we ran it on 100 random PDF files down-
loaded from the web. We collected infected samples fol-
lowing a similar approach to [6]: assume that the attacker
had successfully compromised the target process, and inject
code into the target process to load a given exploit payload
into memory and execute it. The payload (gadgets) is exe-
cuted by directly jumping to the beginning of the payload
at random points during the execution of the process. Each
payload execution was considered an infected (attack) sam-
ple.

For each program, we used 5-fold cross-validation: 4 clean
folds for training, and 1 clean fold for testing along with in-
fected samples. We used the same number of clean and in-
fected samples in the testing fold. The mean of the resulting
five TPRs and FPRs is then used in computing the Receiver
Operating Characteristics (ROC) and its Area Under Curve
(AUC). The higher the AUC, the higher the detection accu-
racy. The AUC reaches its best value at 1 and its worst at 0.
We stress that labeled measurements were collected strictly
for testing; EigenROP uses only the clean measurements for
training.

6.2 Detection Accuracy
EigenROP successfully detected the hteditor ROP ex-

ploit with sampling intervals up to 16k instructions retired
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and detected the PHP ROP with sampling intervals up to
32k. In both cases, EigenROP resulted in zero false posi-
tives. We emphasize that the focus here is on the detection
of the ROP stage of the exploits, i.e., the execution of a
gadget chain, rather than the execution of a shell code or
a different process (both were shown to be easily detectable
(e.g., [14]). Despite the very small ROP length (only ∼60
instructions in the case of hteditor) when compared to the
sampling window size, EigenROP still detected the devia-
tion in the programs characteristics.

Figure 2 shows the overall ROC of all experiments, for a
sampling interval of 16k instructions. EigenROP achieved
an overall accuracy (AUC) of 81%. The best point of per-
formance had 80% TPR and 0.8% FPR. This is signifi-
cantly higher than the state-of-the-art microarchitectural
defenses [22, 14], where the detection accuracy (AUC) ranged
from ranged from 49% to 68%.

The breakdown of the detection accuracy for different
sampling intervals is shown in Figure 3. As expected, the
accuracy drops for very large sampling intervals, given the
small number of instructions of the attacks. Out of all the
programs, wget had the worst detection accuracy due to ex-
cessive use of signals, which exhibits poor locality and reuse
(see Section 7 for discussion). The density estimate of wget
was very heavy-tailed, which resulted in low discrimination
between clean runs and attacks. On the other hand, openssl
had the highest detection accuracy, as its characteristics had
higher concentration around the mean direction. The bulk
of the distribution of the AUC curves neared the best accu-
racy curve (the AUC was skewed towards the worst accuracy
curve), indicating that the behavior of wget was possibly an
outlier.

Figure 4 shows the difference in accuracy with and with-
out the microarchitecture-independent characteristics. By
including microarchitecture-independent characteristics, an
increase of 9% to 15% in accuracy was achieved. This in-
dicates that microarchitecture-independent characteristics
contribute significantly to the detection performance of Eigen-
ROP.

��

����

����

����

����

��

�� ���� ���� ���� ���� ��

�
��
��
�
��
��
��
��
�
��
�

�������������������

����
�����
����

�����
�����

Figure 2: Overall ROC of EigenROP with 16k sam-
pling interval. The AUC is 0.81.

6.3 Overhead-Accuracy Tradeoff
We quantified the overhead of EigenROP for different

sampling intervals by measuring the overall percentage slow-
down in execution of UnixBench. Figure 5 shows the over-
head and accuracy tradeoff. The overhead incurred by Eigen-
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Figure 3: AUC for different sampling intervals. The
higher the curve, the higher the accuracy.
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Figure 4: AUC for different sampling intervals,
with and without the microarchitecture-indepen-
dent characteristics.

ROP exponentially decreases as the sampling interval in-
creases. We also observe that the reduction in overhead
outpaces the decay in accuracy. The overhead incurred by
MICA is approximately constant as MICA analyzes the indi-
vidual instructions of target programs, and the total number
of instructions of each execution is invariant of the sampling
interval. Overall, the incurred runtime overhead is compa-
rable to similar dynamic instrumentation and HPC-based
defenses [7, 22]. Note that we did not perform any opti-
mization attempts to reduce the overhead of EigenROP or
MICA. Our work is orthogonal to how the program charac-
teristics are collected. While we used MICA and Pin in our
prototype implementation of EigenROP, they may not be
the best tools for full build-out and full production. Finally,
we emphasize that the memory and space overhead incurred
by EigenROP are bounded and negligible (see Section 5.2).

7. DISCUSSION

7.1 False Positives and Negatives
The detection approach of EigenROP (and relevant HPC-

based solutions [14, 8, 22]) is based on the hypothesis that
programs exhibit characteristics that are relatively concen-
trated around some statistic – in our case, the mean direc-
tion. However, if a program exhibits behavior that has a
large spread, it becomes harder to separate anomalies from
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Figure 5: Overhead-accuracy tradeoff. The runtime
overhead of MICA is measured relative to the over-
head of Pin.

benign executions, resulting in a higher false positive rate
(or a lower true positive rate).

From our experience with EigenROP, we observed that
programs that use far jumps (e.g., setjmp/longjmp, sig-

nal) or extensively multiplex between data sources (e.g.,
using select for socket multiplexing) are more likely to suf-
fer from false positives. The reason is that such program-
ming constructs access far code and data, which inherently
exhibits poor branch predictability, memory locality, and
reuse. A possible workaround is to identify the entry and
exit points of such code sites and build a separate model for
the characteristics exhibited by those code sites. ROP chains
missed by EigenROP were very short chains (<40 instruc-
tions) with small gadgets (2-4 instructions per gadget). This
is mainly due to the relatively large sampling interval com-
pared to the chain size. To handle such very short chains,
EigenROP can be complemented by low-overhead solutions
that target short gadgets and chains (e.g., kBouncer [15] and
ROPecker [6]).

7.2 ROP Variants
In our evaluation of EigenROP, we used conventional ROP

payloads that use return instructions to chain the gadgets.
However, several variants of ROP were discovered by re-
searchers. For example, in [4], Jump-Oriented Programming
(JOP) was introduced where indirect jumps are employed
to chain the gadgets rather than using return instructions.
In [18], COOP was introduced where a loop in the program
code that invokes attacker-controlled virtual function calls
in C++ binaries is used to dispatch and chain the gadgets.

In EigenROP, we picked the characteristics that cover the
behavior of all ROP variants (branches, calls and returns,
memory locality and reuse, stack usage, and nop sleds) re-
gardless of how the gadgets are chained. Also, it is easy
and straightforward to include other relevant characteristics
if need be, such as the number of indirect jump instructions
retired. Overall, EigenROP has the advantage that the de-
tection is robust against attack variations, since it captures
the execution behavior of benign runs, and does not put
strong assumptions on how the gadgets are chained at the
ISA level.

7.3 Evasion and Mimicry Attacks
Three recent attack gadgets were presented [5] that bypass

ROP defenses through evasion and mimicry: call-preceded
gadgets, evasion gadgets, and history-flushing gadgets.

Call-preceded gadgets are violate a common key assump-
tion made by defenses that depend on branch tracing [15, 6,
7, 12]: a sequence ending in ret must be legitimate if it was
preceded by any call. Since EigenROP does not depend on
branch tracing, it is not vulnerable to attacks based on call-
preceded gadgets. Moreover, the return address will be mis-
predicted, regardless of the gadget type, unless the call-ret
are strictly paired. Since EigenROP takes the misprediction
rate of returns into account (see Section 4), call-preceded
gadgets will result in abnormal mispredictions, potentially
increasing the detection accuracy.

Evasion gadgets use long gadgets to evade ROP detectors
that look for short gadgets within an executing gadget chain
(e.g., [15, 6]). Such solutions put constraints on the chain
length, with the main presumption being that short gad-
gets are likely part of an executing ROP. Evasion gadgets
violate that assumption by using long enough gadgets to vi-
olate such constraints. Since EigenROP does not depend on
the gadget chain length, rather on the execution character-
istics of the gadgets, it is not vulnerable to attacks based on
evasion gadgets.

History-flushing gadgets target defenses that only keep a
limited history about execution (typically dependent on the
available hardware buffer size where the history is recorded).
History is flushed by utilizing innocuous gadgets to fill up the
history. For example, kBouncer [15] uses the Last Branch
Record (LBR), a hardware feature that records only the
most recent 16 taken branches by the processor. Therefore,
it can be evaded by a ROP chain that executes any 16 valid
indirect jumps to fill the LBR with legitimate branches [5].

In our context, flushing the history means manipulating
all affected characteristics by the ROP, such that they ap-
pear normal. The attacker would need to chain gadgets
that exhibit similar characteristics to benign code, in addi-
tion to achieving the attack goal. While this is theoretically
possible, we argue that it is hard to realize such attacks in
practice. First, chaining more gadgets would require larger
attacker-controlled memory space. Second, if the attacker
includes benign code in the ROP to mimic normal behavior,
the benign code would be required to either have no effect
on the actual ROP execution or be undone by chaining, even
more, gadgets. Third, and As noted in [5, 16], history flush-
ing comes at the expense of significant slowdown (reported
20-times slowdown) in the execution of the ROP payload.
Randomization-based defenses against evasion and mimicry
(e.g., [24, 20]) can also be employed to further increase the
attack cost.

8. RELATED WORK
Due to space constraints we briefly discuss only related

anomaly-based solutions.
One of the first works on using hardware architectural

characteristics of programs was the work of Malone et al. [14].
They showed that hardware performance counters (HPC)
could be utilized to detect unauthorized software changes.
The authors recorded HPC measurements of the original
programs and used linear regression to detect if the pro-
gram was modified at runtime. Demme et al. [8] ported
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the idea to Android, and proposed hardware modifications
to detect malware using HPC measurements from good and
malicious samples. Stewin et al. [21] proposed detecting
DMA attacks by monitoring the number of transactions on
the memory bus. In [22], Tang et al. combined microarchi-
tectural characteristics with architectural characteristics to
detect drive-by attacks. They assumed that attacks consist
of three stages: ROP stage disables DEP, stage 1 downloads
a malicious program, and stage 2 executes the malicious pro-
gram. By training a one-class Support Vector Machine (oc-
SVM) over the architectural and microarchitectural charac-
teristics of benign samples, they showed that stage 1 of the
attacks could be detected with high accuracy, while their
model performed poorly on stage 2 of the attacks. This is
because the oc-SVM is very sensitive to tuning parameters,
and the chosen features did not have sufficient discrimina-
tion power to detect the execution of ROP chains. This is
different from EigenROP since we solely focus on stage 2 of
the attack.

9. CONCLUSION
We presented EigenROP, a novel anomaly-based ROP de-

tector that utilizes program characteristics and directional
statistics. To the best of our knowledge, we are the first to
study the effectiveness of using microarchitecture-indepen-
dent program characteristics versus typical architectural and
microarchitectural characteristics, in the detection of ROP.
We demonstrated the ability of EigenROP to detect both in-
the-wild and pure ROP exploits, and discussed limitations
and potential improvements. EigenROP is unsupervised,
fully transparent, and does not require any side information
about the protected programs.

While our work demonstrates that ROP payloads can
be detected using simple program characteristics, there are
still needed improvements concerning detection accuracy of
very short chains and overhead reduction. Future hardware
support can help on both fronts by enabling low-cost fine-
grained monitoring. Despite that, EigenROP raises the bar
for ROP attacks, and can easily run in-tandem with com-
plementary ROP defenses.
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