
Energy-Aware Primary/Backup Scheduling of Periodic Real-Time Tasks on
Heterogeneous Multicore Systems

Abhishek Roy, Hakan Aydin

Department of Computer Science
George Mason University
Fairfax, Virginia 22030

Email: aroy6, aydin@gmu.edu

Dakai Zhu

Department of Computer Science
University of Texas at San Antonio

San Antonio, TX 78249
Email: dzhu@cs.utsa.edu

Abstract

Energy management and fault tolerance are often conflicting requirements, as the extra resources needed
to tolerate faults significantly increase the energy consumption. Yet, for real-time embedded systems both
objectives are crucial. In this paper, we consider energy-aware and fault-tolerant scheduling of preemptive
fixed-priority periodic real-time tasks on heterogeneous multicore systems. To tolerate both transient and
permanent faults, primary and backup copies of tasks are scheduled on different cores. Our framework
consists of offline and online phases to manage energy and fault-tolerant scheduling of periodic tasks in
tandem. We propose an array of techniques to minimize the energy consumption, including DVFS to scale
the primary tasks, and mechanisms to maximize the opportunities to cancel the back-up tasks in fault-free
execution scenarios. The latter objective is achieved through an explicit task priority assignment phase,
coupled with a dual queue based back-up delaying algorithm. In particular, we propose a scheme called
Reverse Preference-Oriented Priority Assignment (RPPA) which is experimentally shown to be very effective
to reduce the energy consumption. RPPA, when coupled with the dual-queue based delaying mechanism,
outperforms other schemes, and approaches the energy performance of a theoretical lower bound. All the
proposed schemes satisfy the stringent timing and fault tolerance requirements of periodic real-time tasks
while managing the energy consumption dynamically.

Keywords: Heterogeneous multicore systems, fault tolerance, energy management, periodic real-time
scheduling.

1. Introduction

Recently, heterogeneous multi-core systems
which combine cores of different types on the same
chip have received increasing attention. On those
systems, typically different types of cores have the5

same instruction-set-architecture (ISA); hence, the
same binary can run on different cores. Those sys-
tems often include out-of-order cores that offer high
performance (such as ARM Cortex A-15) as well as
in-order cores with modest performance but very10

high energy-efficiency (such as ARM Cortex A-7).

They are particularly attractive in settings that re-
quire dynamic adaption to the workload at hand:
for instance, in energy-constrained settings, the sys-
tem can rely mostly on low-power cores; but it15

can make maximum use of the high-power cores
when superior performance is required. There is
a growing body of research literature that inves-
tigates various aspects of heterogeneous multicore
systems [1, 2, 3, 4, 5].20

For many embedded systems, in particular those
that are deployed in safety-critical applications,

Preprint submitted to Journal of Sustainable Computing June 10, 2020

real-time operation (in terms of meeting the timing
constraints) and fault tolerance (in terms of meeting
the reliability requirements) are important design25

and operation objectives. In particular it is imper-
ative to detect and recover from run-time faults in
a timely manner in those applications. Research
studies indicate that most of those faults are tran-
sient in nature, meaning that they are short-lived30

[6]. Their sources can be traced back to electromag-
netic interference and various cosmic rays. They
cause erroneous computation in some task(s), and
typically repeating the original computation or in-
voking an alternative recovery task gives the correct35

result [6]. Yet, another type of fault is the perma-
nent fault which affects a specific system component
(e.g., an individual core) and results in the unavail-
ability of that component until it is replaced or re-
paired [6, 7]. Any realistic safety-critical system40

must provide mechanisms to tolerate both transient
and permanent faults.

Fault tolerance mechanisms often rely on the re-
dundancy principle. For instance, tolerating perma-
nent faults requires the availability of an additional45

hardware component (e.g., a processing core) that
can provide the functionality of a faulty compo-
nent. Similarly, transient faults of individual tasks
are often tolerated by deploying backup copies for
each. As redundancy imposes additional resource50

requirements, fault tolerance and energy-awareness
are frequently at odds with each other. In fact,
a straightforward deployment of conventional fault
tolerance techniques, such as tri-modular redun-
dancy [7], would consume prohibitive amount of55

energy. As a result, numerous research studies
explored various solutions to achieve fault toler-
ance objectives with minimum energy consumption
[8, 9, 10, 11, 12, 13, 14, 15]. A more detailed dis-
cussion of Related Work can be found in Section 8.60

This research effort investigates energy-efficient
and fault-tolerant implementation of periodic real-
time systems upon heterogeneous dual core sys-
tems. While energy-efficiency and fault tolerance
on heterogeneous cores have been recently inves-65

tigated [16, 17, 18, 19, 20, 21, 22], the focus was
mostly on frame-based systems where all tasks
share a common period and deadline. However, ac-
tual implementation of many real-time systems are
based on general periodic tasks which are invoked70

at different rates [23]; so we believe this study fills
an important gap.

In our framework each periodic real-time task
(called the primary) is assigned to one of the cores:

all the instances of that periodic task (”jobs”) are75

released and executed at periodic intervals on that
core. In addition, for every such primary task, a
backup periodic task is assigned to the alternate
core. Since every real-time job has a backup al-
located to the other core, transient faults in all pri-80

mary jobs can be tolerated. Similarly since there
are two copies of each periodic task assigned to al-
ternate cores, the system can tolerate one perma-
nent fault of any core by switching to the functional
core if necessary.85

To manage the energy consumption, we use two
mechanisms: i.) the primary tasks are executed at
low voltage/frequency levels using Dynamic Volt-
age and Frequency Scaling, and, ii.) the backup
copies are delayed to the extent it is possible to90

enable their cancellation in case the primary com-
pletes without a fault. In addition, we use the
Mixed Primary/Backup Scheduling framework in
which a given core may be assigned both primary
and backup copies of (distinct) tasks [19]. This is in95

contrast to the so-called Standby-Sparing systems
in which one core is exclusively dedicated to the
primaries and the other one (spare) executes only
the backups [11, 12, 24, 25, 26]. While the mixed
primary-backup scheduling framework significantly100

improves the schedulability and energy saving po-
tential, it also presents challenges in terms of task
allocation and scheduling.

A significant challenge in these settings is to find
an efficient way to delay the backup copies: be-105

cause of periodic and preemptive execution settings,
a backup copy can be preempted multiple times
by other jobs; but it should still meet its dead-
line when needed. To tackle this, we leverage two
mechanisms: one is assigning proper priority lev-110

els to periodic primary and backup tasks, and the
other one is the actual delaying of the backups using
the dual-queue mechanism [11, 27]. Specifically, the
backup tasks are promoted and become eligible for
execution after a pre-determined time interval af-115

ter their release. These promotion times are shown
to be safe, in that they are derived using the well-
known critical instant analysis technique for fixed
priority periodic real-time tasks [23]. In particu-
lar, we show that when combined with the dual120

queue based delaying mechanism, assigning tenta-
tively high-priority levels to the backup tasks gives
the maximum delaying and energy saving opportu-
nities. To the best of our knowledge, this research
effort is the first study that explores fault-tolerant125

and energy-aware mixed primary backup scheduling

2

of periodic real-time tasks on heterogeneous dual
core systems.

The rest of the paper is organized as follows. In
Section 2, we present our system model and as-130

sumptions, including the fault model. In Section 3,
we present preliminary discussion about fixed pri-
ority scheduling. Section 4 describes the mixed pri-
mary/backup framework. Section 5 presents our
proposed priority assignment scheme, and Section 6135

presents the runtime algorithms of our framework.
In Section 7, we present our experimental results.
Section 8 has discussion about related works, and
Section 9 concludes our paper.

2. System Model and Assumptions140

2.1. Platform and Application model

We consider a heterogenous dual-core system
with a high-performance (big) core and a low-power
(little) core. Throughout the paper, we denote the
high-performance and low-power cores by HP and145

LP, respectively. The target application consists
of n independent real-time tasks {τ1, ..., τn}. We
assume the general periodic task model in which
each task τi generates a job instance periodically
with the period Pi. Each instance of the periodic150

task τi must complete within the relative deadline
Di, which is equal to its period (implicit deadline).
Each task is assigned a scheduling priority deter-
mined at design time. In this paper, we consider
fixed-priority periodic real-time tasks.155

Each of the two processing cores is equipped
with the Dynamic Voltage and Frequency Scaling
(DVFS) feature that allows changing the frequency
(processing speed) at run-time to manage energy
consumption, A task instance of τi that requires Ci160

number of cycles on a given core may take up to
Wi(f) = Ci/f units of execution time on that core,
if executed at the frequency level f . The worst-case
number of cycles required by the instances of the
task τi is denoted by Ci. Due to the architectural165

differences, a task’s required number of cycles, and
hence execution time, can be different on the HP
and LP cores. Therefore, we use superscripts HP
and LP to denote the variables on the HP or the
LP core (e.g., CLPi , WLP

i , CHPi , WHP
i). The max-170

imum frequency levels supported by the HP and
LP cores are denoted by fHPmax and fLPmax, respec-
tively. We assume fHPmax = 1.0, and normalize all
other frequency values with respect to that value.
We define the nominal utilization of a task τi as175

Ui = WHP
i (fHPmax)/Pi = WHP

i (1.0)/Pi = CHPi /Pi.

2.2. Power Model

The power consumption characteristics of HP
and LP cores differ by design. For any processing
core, the dynamic power consumption of an exe-180

cuting instance of task τi is modeled as Pi(f) =
aif

3 + αi, where ai denotes the switching capaci-
tance, αi denotes the frequency-independent power
consumption, and f is the processing frequency of
the task adjustable through the DVFS feature. Due185

to the asymmetry of the cores, these parameters
are different for each core and again we use super-
scripts HP and LP to denote the core-specific power
parameters (e.g., PHPi , αHPi , aHPi).

Each core executes tasks in the active state, dis-190

sipating power as determined by the characteris-
tics of the current task and processing frequency.
The Dynamic Power Management (DPM) feature
allows a given core to switch to a low-power (idle)
mode when it is not actively executing tasks. The195

low-power (idle) power consumption of the high-
performance and low-power cores are denoted by
PHPidle and PLPidle, respectively. We assume those fig-
ures include the static power consumption of the
corresponding core as well. The energy consump-200

tion during a time interval is given by the aggregate
power consumption during the same interval.

Existing research indicates that scaling down the
frequency below a certain threshold is no longer ef-
fective for saving energy, due to the impact of the205

frequency-independent power component [28]. This
threshold frequency, known as the energy-efficient
frequency (fee) can be derived through analytical
techniques [28], and we never reduce the processing
frequency below fee on a given core.210

2.3. Fault Model

Our framework opts to provide high assurance to
safety-critical real-time tasks in energy-aware man-
ner. Hence, we aim to tolerate transient faults
(that affect individual task instances) as well as per-215

manent faults (that lead to the unavailability of a
whole processing core). Specifically, in our frame-
work, we tolerate the following type of faults:

• A transient fault per each (primary) periodic
task instance, and,220

• A permanent fault of any of the processing
cores.

Each (primary) task τi has an associated backup
task Bi with exact same timing parameters. τi

3

and Bi are allocated to different processing cores.225

Whenever a task instance is released, its backup
copy is also released and is allocated to the alter-
nate core. In order to maintain energy efficiency,
the backup copy instances are delayed as much as
possible while respecting their deadlines. Should a230

permanent fault affect any of the processing cores,
the alternative core can take over and finish the
workload before deadline. When a primary copy

LP:

HP:

Time

τ1

B1

0 5 10 15 20 25 30 35 40 45 50 55 60

τ1 τ1

B1
B1

cancelled cancelled

Figure 1: Primary/Backup Overlap

completes, the acceptance (or, sanity) tests [6] are
performed to check the existence of errors induced235

by transient faults. If a fault is not detected, the
corresponding backup copy (or, its remaining part)
on the other core may be cancelled, as shown in Fig-
ure 1, to save energy. Otherwise, the backup copy
runs to completion. If a permanent fault occurs on240

any of the cores, the other core can still execute one
copy of each task’s instances. However, note that,
when a permanent fault occurs, the system loses the
capability of tolerating any additional (transient or
permanent) faults until the faulty core is repaired245

or replaced.
It should be noted that when a backup copy ex-

ecutes in the fault-free case, it is essentially a re-
dundant execution which increases the energy con-
sumption of the system significantly. Ideally, we250

would like to minimize redundant execution in or-
der to conserve energy. As shown in Figure 1, the
first instance of τ1 and its backup B1 execute in par-
allel, wasting a lot of energy. In the second instance
of τ1, we delayed B1 to some extent and were able255

to cancel some parts of it. In the third instance, B1

was delayed enough so that its execution could be
entirely omitted.

Problem Statement. Given a set of real-time inde-
pendent periodic tasks and a heterogeneous dual-260

core system, minimize the energy consumption by
determining

1. The allocation of tasks to cores such that the
primary and backup copy of each task are as-
signed to different cores, and,265

2. The priority assignment, scheduling, and pro-
cessing frequency assignment decisions for in-
dividual periodic task instances.

In the following sections, we first present prelim-
inary (background) material and then we develop270

multiple components of our proposed framework.

3. Preliminaries

3.1. Work-Conserving Fixed-Priority Periodic
Scheduling

Most of the traditional hard real-time schedul-275

ing theory is based on the work-conserving ap-
proach, in which the processor never idles as long as
there are ready jobs to execute [23]. A well-known
framework is fixed-priority scheduling (FPS)
in which all the jobs generated by a given periodic280

task are assigned the same priority level during ex-
ecution.

The real-time feasibility analysis is concerned
with assessing if all the real-time jobs will meet
their deadlines given the characteristics of the work-285

load at hand [23]. In FPS, it is known that the
worst-case response time of a periodic task occurs
when it is released at the same time as all high-
priority tasks. Specifically, the worst-case response
time Si of a task τi can be computed using the fol-290

lowing iterative formula [29]:

S
(k+1)
i = ci + Στj∈ hp(τi)d(S

(k)
i /Pj)e × cj (1)

Above ci is the worst-case execution time of τi
and hp(τi) denotes the set of tasks which are as-
signed a priority level higher than that of τi. In
this iterative approach, initially S0

i = ci and the295

iterations continue until S
(k+1)
i = S

(k)
i . If at any

point S
(k)
i exceeds the period (relative deadline) Pi,

then the task will not meet its deadline. Otherwise,
the task will meet its deadline and the worst-case
response time Si is found as the last value obtained300

for S
(k)
i .

An important FPS policy is Rate Monotonic
Scheduling (RMS) in which the priorities are in-
versely proportional to the periods. RMS is known
to be optimal among all periodic fixed-priority as-305

signments, in the sense that all task sets that can
meet their deadline with any fixed-priority assign-
ment can also do so using RMS [30]. This optimal-
ity makes RMS the most widely known and adopted
fixed priority assignment policy for periodic real-310

time tasks [30].

4

Table 1: Example Task Set 1

Period Execution Time

τ1 15 3

τ2 20 4

τ3 30 6

Time

τ1 τ2 τ3 τ1 τ2 τ1 τ1τ3 τ2

0 5 10 15 20 25 30 35 40 45 50 55 60

(a) Schedule obtained with RMS priorities

Time

τ1 τ2 τ3 τ1 τ2 τ1 τ1τ3 τ2

0 5 10 15 20 25 30 35 40 45 50 55 60

(b) Non-work-conserving schedule with dual queue based de-
laying (RMS priorities)

Time

τ1 τ2τ3 τ1 τ2 τ1 τ1τ3 τ2

0 5 10 15 20 25 30 35 40 45 50 55 60

(c) Schedule obtained with Preference-Oriented Priority As-
signment (PPA)

Time

τ1 τ2τ3 τ1 τ2 τ1 τ1τ3 τ2τ2

0 5 10 15 20 25 30 35 40 45 50 55 60

(d) Non-work-conserving schedule with dual queue based de-
laying (PPA priorities)

Figure 2: Work-conserving and non-work-conserving fixed-
priority schedules

As an example consider the task set given in Ta-
ble 1 with three periodic tasks, τ1, τ2 and τ3. For
illustration purposes, we assume all tasks execute
at maximum frequency. The corresponding sched-315

ule obtained using RMS is shown in Figure 2a. The
period boundaries are denoted by vertical dashed
lines in the figure. As it can be observed, all peri-
odic task instances meet their deadlines.

3.2. Non-Work-Conserving Fixed-Priority Peri-320

odic Scheduling

There are a number of scenarios where it is de-
sirable to delay periodic tasks as long as they can
still complete before their respective deadlines. For
instance, when the workload includes non-real-time325

aperiodic jobs that arrive at unpredictable times,
a common objective is to execute them as soon as
possible to minimize their response time. In this

case, periodic hard real-time tasks may be delayed
maximally to enable early execution of the aperi-330

odic jobs [23].

In these cases, work-conserving policies such as
conventional RMS are no longer appropriate; in-
stead non-work-conserving approaches are consid-
ered. For example the dual-queue based approach335

[11, 27] works as follows: The system is equipped
with two (dual) queues, named upper queue and
lower queue, respectively. Upon arrival, each peri-
odic real-time job is first put to the lower queue,
and remains there until a certain promotion time340

at which it is moved to the upper queue. Only
jobs in the upper queue are eligible for execution;
and they are dispatched according to the underly-
ing fixed (e.g., RMS) priorities.

The crux of the scheme is to choose the promo-345

tion time safely and maximally, in order to delay
the execution of the periodic jobs as much as pos-
sible. Specifically, the promotion time of a job of τi
after its release time is computed as:

Yi = Pi − Si

where Pi is its period and relative deadline, and Si350

is its worst-case response time computed through
the iterative formula (1) based on the critical in-
stant analysis. It is based on the observation that
the job would still meet its deadline after being
moved to the upper queue Yi time units after its re-355

lease time, even if it is subject to the maximum pos-
sible interference by higher-priority jobs [27]. Note
that all task promotion times (Yi values) may be
computed offline (before execution) for all periodic
tasks.360

Returning to our example task set, we can com-
pute the task promotion times as: Yi = Pi − Si.
The Si values are obtained by applying the for-
mula (1) iteratively, and the promotion times are
found as Y1 = 12, Y2 = 13 and Y3 = 17, for365

τ1, τ2, and τ3. The resulting non-work-conserving
fixed-priority schedule (where tasks are first de-
layed in the lower queue and then eventually dis-
patched from the upper queue with RMS priorities)
is shown in Figure 2b. It should be noted that many370

real-time jobs are significantly delayed, but they
still meet their deadlines. This dual queue based
approach will be instrumental in our mixed pri-
mary/backup energy-aware scheduling approach, as
we elaborate in Section 4.375

5

3.3. Preference-Oriented Priority Assignment
(PPA)

A more recent study considers the execution pref-
erences of real-time tasks explicitly in the schedul-
ing phase [31]. Specifically, periodic real-time tasks380

are classified as ASAP or ALAP, depending on
whether there is a preference to execute them as
soon as possible or as late as possible, respectively,
but still before all the hard deadlines.

In [31], the problem of finding a fixed priority385

assignment to satisfy the periodic real-time tasks’
execution preferences while meeting the deadlines
is considered. The solution is obtained through
the Audsley’s Optimal Priority Assignment Algo-
rithm (AOPA) [32], which runs in time O(n2) for n390

periodic tasks. AOPA, which was originally pro-
posed for tasks with potentially different release
times [33], proceeds by first assigning a task to the
lowest priority level, by making sure that that task
would meet its deadline even in the worst-case acti-395

vation pattern. Then it proceeds in iterative man-
ner for priority levels n − 1, ..., 1. The preference-
oriented priority assignment (PPA) scheme, pro-
posed in [31], proceeds in the same way, but it as-
signs low priority levels to the ALAP tasks and high400

priority levels to the ASAP tasks as much as possi-
ble, while still preserving the timing constraints.

For our example task set, now assume that τ1 and
τ2 are ALAP tasks, while τ3 is an ASAP task. PPA
assigns the lowest priority to τ2, medium priority to405

τ1, and highest priority to τ3. The resulting fixed-
priority schedule where all the deadlines are met is
presented in Figure 2c. It should be noted PPA is,
just like RMS, an optimal fixed-priority assignment;
but it incorporates the task execution preferences410

whenever possible in the priority assignment phase.

While PPA takes into account task’s execu-
tion preferences, it is still by default a work-
conserving approach. It is possible to combine
PPA with the dual queue mechanism to further de-415

lay the ALAP tasks (thereby creating a non-work-
conserving schedule). When applied to the schedule
in Figure 2c, we obtain the solution in Figure 2d,
where the ALAP tasks are delayed until their pro-
motion times. This time promotion times for ALAP420

tasks τ1 and τ2 are computed as Y1 = 6 and Y2 = 7.
It can be observed that using the dual queue mech-
anism helps to increase the delay in the execution
of the ALAP tasks, and all the deadlines are still
met.425

4. Mixed Primary/Backup Scheduling of Pe-
riodic Tasks

Our dual objective in fault tolerance (Sec-
tion 2.3), in terms of tolerating transient faults can
be achieved by scheduling a separate backup copy430

of each periodic task instance. Moreover we re-
quire that the primary and backup copies of a given
task are scheduled on different cores to provision for
the permanent fault of any single core. Note that
by scheduling a separate backup copy which is, if435

needed, executed at the maximum core speed, we
also guarantee to fully mitigate the task-level re-
liability loss (with respect to the transient faults)
induced by the application of DVFS [34].

Unlike the standby-sparing systems [11, 12, 16,440

26] where one core is allocated only the primary
copies of tasks and another one solely to the
backups, in our work we adopt the mixed pri-
mary/backup scheduling approach: a given core
can execute primary and backup copies of various445

tasks for maximum flexibility with respect to en-
ergy awareness and schedulability.

Table 2: Example Task Set 2

Pi WHP
i WLP

i EHP
i ELP

i aLP
i αLP

i

τ1 15 1.8 3.8 1.98 1.50 0.36 0.036
τ2 20 2.0 4.0 2.20 1.14 0.26 0.026
τ3 30 3.5 7.9 3.85 3.30 0.38 0.038

For illustration purposes, we consider a running
example throughout this section. Consider the task
set with parameters given in Table 2. It has 3 tasks450

τ1, τ2 and τ3, with respective backup copies B1, B2

and B3 for fault tolerance, which are to be executed
on the HP and LP cores. We chose fHPmax = 1.0
and fLPmax = 0.8. We also assume PHPidle = 0.05 and
PLPidle = 0.02, and for each task, aHPi = 1.0 and455

αHPi = 0.1. We assume that the primary copy of
τ2 and the backup copies B1 and B3 are allocated
to the HP core, while the primary copies τ1 and τ3,
along with the backup copy B2 are allocated to the
LP core. This makes sure that the two copies of the460

same task are always on different processing cores.

In Figure 3a we present the mixed pri-
mary/backup schedules that we obtain if we use
RMS as the scheduling policy on each core. Ob-
serve that all primary and backup copies meet their465

deadlines, and the fault tolerance objectives are
achieved. However, the total energy consumption
(33.49 mJ) is significantly hampered by the dupli-
cate execution of all backup tasks.

6

LP:

HP:

Time

τ1 τ1 τ1τ3

B3B1 B1 B1

B2

B1 τ2 τ2B3

B2B2 τ3

τ2

τ1

0 5 10 15 20 25 30 35 40 45 50 55 60

(a) Without backup Cancellation

LP:

HP:

Time

τ1 τ1 τ1 τ1τ3 τ3

B3B1 B1 B1

B2 B2

τ2 B1 τ2 τ2B3

B2

0 5 10 15 20 25 30 35 40 45 50 55 60

(b) With backup Cancellation

Figure 3: Mixed Primary/Backup Scheduling with RMS

As mentioned in Section 2.3, in case a fault is not470

detected at the end of execution of the primary, the
remaining part of the corresponding backup copy
can be cancelled. This gives a powerful mechanism
to reduce the energy consumption. If we use this
dynamic backup cancellation mechanism, we obtain475

the schedule in Figure 3b. It can be observed that
some portions of the tasks (primary and backup)
on the LP core are cancelled due to the completion
of the counterpart task, and we obtain a reduced
energy consumption of 29.17 mJ.480

While it is important to guarantee the timely
completion of backup tasks in case faults are de-
tected, since faults are rare events, the average en-
ergy consumption in all execution scenarios will be
dominated by fault-free execution scenarios. Con-485

sequently, in all subsequent examples we show only
fault-free executions and assume that all backups
(primaries) are cancelled when the corresponding
primary (backup) completes successfully on the
other core. For clarity, we do not show the can-490

celled parts of the tasks in the schedules.

While incorporating this fundamental dynamic
backup cancellation mechanism, our framework
consists of multiple solution layers aimed at reduc-
ing the energy consumption dynamically. In par-495

ticular, we use DVFS to lower the execution speed
of the primaries, and use appropriate mechanisms
to delay the execution of the backups to maximize
the opportunities for their cancellation.

Specifically, our solution consists of offline and500

online phases, as shown in Figure 4. In the offline
phase, we use task partitioning, priority assignment,

O
ffl
in
e
P
h
as
e

(Section 4.1)
Task Partitioning

Assignment
(Section 4.2)

Task Priority

Computation for

(Section 4.4)

Promotion Time

to tasks
(Section 4.3)

Frequency assignment

Algorithm

(Section 5)
MPB-PS

Backup Tasks

O
n
li
n
e
P
h
as
e

Figure 4: Mixed Primary/Backup Scheduling Components

frequency assignment and backup promotion time
computation mechanisms. In the online phase, on
each core the tasks (and backups, if needed) are ex-505

ecuted at the pre-determined priority and frequency
levels, and the backups are delayed until their pre-
computed promotion times in order to enable their
cancellations dynamically.

4.1. Task Partitioning510

Our framework generates the task partitioning
(allocation) decisions offline, based on the well-
known list scheduling approach. Specifically we
propose the following List-Scheduling with Pri-
mary/Backup (LSPB) variant. In this algorithm,515

we consider the primary copies of the tasks and
employ list-scheduling algorithm to allocate them.
First, the tasks are ordered according to their de-
creasing nominal utilizations. Then, each primary
task is placed on a processing core on which it is520

feasible and which has the maximum free capacity
after the placement. Feasibility is checked by using
Time Demand Analysis and RMS priority assign-
ment, which is known to be an optimal fixed prior-
ity assignment. Free capacity on a core is defined525

by (1.0 −
∑
τiεΓp

Ci

Pi
/fmax), where Γp is the set of

all primary tasks assigned to that core, augmented
by the task under consideration. fmax and {Ci}
values are defined in the context of the core under
consideration. After all the primary tasks are fea-530

sibly placed on the processing cores, their backup

7

copies are allocated on the respective alternative
core. Finally, feasibility is checked again taking
the backup copies into account. The partitioning
shown in Figures 3a and 3b were in fact obtained535

using the LSPB technique. It can be observed that
it generates a relatively balanced workload distribu-
tion which opens up opportunities to reduce energy
consumption.

4.2. Priority Assignment540

After determining the task partitioning and ob-
taining a task-set for each core, we turn our atten-
tion to the priority assignment to tasks. In fixed-
priority scheduling, the execution order of task in-
stances depends directly on their priorities (Sec-545

tion 3.1). The RMS priority scheme, in which tasks
with smaller periods receive higher priorities, is a
natural option on each core. However, in addi-
tion to RMS, there have been other fixed prior-
ity assignment algorithms proposed in the literature550

including the Preference-Oriented Priority Assign-
ment (PPA) policy (Section 3.3), which considers
execution preferences of different tasks [31]. In our
setting, we can invoke the PPA scheme to assign
priorities after designating the primary tasks and555

backup tasks as “as soon as possible (ASAP)” tasks
and “as late as possible (ALAP)”’ tasks, respec-
tively. We show the execution schedule for PPA in
Figure 5, using our example task set. Although we
assign low priorities to the backup tasks, the sched-560

ule shows that it is not very effective in cancelling
the backup copies– it incurs high energy consump-
tion figure of 29.3 mJ. We can attribute this to the
fact that the presented solution still generates work-
conserving schedules for backup tasks.565

In Section 5, we will introduce another priority
assignment policy, which, when coupled with other
components, gives much more improved energy sav-
ing opportunities.

LP:

HP:

Time

τ1 τ1 τ1 τ1τ3 τ3

B3B1 B1 B1

B2

τ2 B1 τ2 τ2B3

B2

0 5 10 15 20 25 30 35 40 45 50 55 60

Figure 5: Schedule for PPA

4.3. Frequency Assignment570

After an allocation of tasks and their priority as-
signment is obtained on each core, we can use DVFS
to slow down the primary copies and reduce energy
consumption. We apply DVFS to primary copies
only, and the backup copies are executed at the575

maximum speed. Not scaling the backups allows to
delay their execution further, and also, it mitigates
the task-level reliability-loss incurred due to DVFS
[34]. For the primary tasks, we need to determine
the speed (frequency) of the task-execution, such580

that the deadlines of all task instances (primary or
backup) can be met.

We use a modified version of the well-known Sys-
Clock algorithm proposed in [35], which assigns
a common (minimum) execution-speed to all the585

tasks on a given core without violating any dead-
lines. Sys-Clock has very low computational over-
head. In our modified version of Sys-Clock, only
the primary tasks are scaled while the backup tasks
are assigned the maximum speed of their respective590

cores. We modified the original algorithm by con-
sidering that backup tasks are always executed at
maximum frequency levels, and only the primary
tasks are scaled. For our example task set, Fig-
ures 6a and 6b show the execution schedules for595

RMS and PPA priorities, respectively when DVFS
is applied. It shows that with DVFS, RMS con-
sumes 22.86 mJ and PPA consumes 23.1 mJ, which
is about 20% improvement in both cases compared
to the cases without DVFS.600

LP:

HP:

Time

τ1 τ1 τ1τ3

B3B1 B1 B1

B2

B1

τ2
B3

B2B2 τ3

τ2 τ2

τ1

f1 = f3 = 0.56

f2 = 0.29

0 5 10 15 20 25 30 35 40 45 50 55 60

(a) Schedule for RMS with DVFS

LP:

HP:

Time

τ1 τ1 τ1τ3

B1 B1

B2

B1

τ2
B3

B2τ3

0 5 10 15 20 25 30 35 40 45 50 55 60

τ2 τ2

τ1

f1 = f3 = 0.77

f2 = 0.29
B3

(b) Schedule for PPA with DVFS

Figure 6: Schedules with DVFS

8

4.4. Promotion Time Computation for Backup
Tasks

Once the task allocations, priorities, and frequen-
cies are determined, we aim to delay the execution
of the backup instances as much as possible, given605

that no instance should miss its deadline. A de-
layed backup copy has a greater chance of getting
cancelled by its primary copy’s completion, which
helps to reduce their energy consumption in fault-
free cases. In order to delay the backup copies,610

we used the dual queue based non-work-conserving
scheduling algorithm discussed in Section 3.2, by
adapting to heterogeneous processors and mixed
primary/backup execution with DVFS.

In this delaying technique, when a backup task615

instance is released, it is first placed on a lower
queue, and it can only be promoted to an upper
queue at a precomputed promotion time. Promo-
tion times are computed as the same way discussed
in Section 3.2, by first computing the worst-case re-620

sponse time, using the iterative formula (1). Specif-
ically, for a backup task Bi, its worst-case response
time Si can be computed as:

S
(k+1)
i = Wi + Στj∈ hp(Bi)d(S

(k)
i /Pj)e×(Wj(fj))

(2)

In this formula, Wi is the worst-case execution
time of the backup task Bi on its assigned pro-625

cessing core under maximum speed. hp(Bi) is the
set of all higher priority (primary or backup) tasks
on that specific core. For such a high priority pri-
mary task τj , we use its execution time, Wj , after
scaling it with the Sys-Clock speed, fj . If τj is a630

backup task, then we consider its execution time at
the maximum speed of its processing core. Itera-

tive computation continues until S
(k+1)
i = S

(k)
i ,

which gives the worst-case response time Si. After
that, the scheme computes the promotion time Yi635

for each backup task by subtracting its worst case
response time (Si) from its relative deadline (pe-
riod) Pi.

A backup task is dispatched on the processor
only if the promotion time has elapsed and it is640

in the upper queue. Primary task instances, on
the other hand, are always placed in the upper
queue directly, and they are dispatched according
to their assigned fixed priorities. Figure 7a and Fig-
ure 7b show the execution schedules with backup-645

delaying for RMS and PPA priorities respectively,
when applied along with DVFS. It is evident that
many of the backup task executions are cancelled in

these schemes, which provide energy efficient per-
formance (16.36 mJ for RMS, 19.33 mJ for PPA.)650

RMS with backup-delaying is almost 28% better
than RMS without delaying (Figure 5).

LP:

HP:

Time

τ3

τ2

f1 = f3 = 0.56

f2 = 0.29
B3

τ3τ1

τ2 τ2
B3

τ1 τ1 τ1

0 5 10 15 20 25 30 35 40 45 50 55 60

(a) Schedule for RMS with DVFS and Dual-Queue Delaying)

LP:

HP:

Time

τ1 τ1

B1 B1B1

B2τ3

τ2 τ2

τ1

f1 = f3 = 0.77

f2 = 0.29
B3

τ2

τ3τ1 B2

0 5 10 15 20 25 30 35 40 45 50 55 60

(b) Schedule for PPA with DVFS and Dual-Queue Delaying)

Figure 7: Schedules with Backup Delaying

5. Reverse Preference-Oriented Priority As-
signment (RPPA)

We observed that while PPA made an attempt to655

delay the backup copies by assigning lower priori-
ties, in the motivational example, it did not trans-
late directly to energy savings, even with dual queue
based delaying, compared to RMS. In fact, our de-
tailed experimental evaluation (Section 7) will con-660

firm the generality of that observation.
We note that this is primarily due to the fact that

during the computation of promotion times (delays)
for low-priority backup tasks using Equation (2) the
execution times of high-priority tasks act as a neg-665

ative factors: the lower the scheduling priority of
a backup, the higher will be the interference that
need to be taken into account when computing the
promotion times, and the smaller will be the pro-
motion time (delay) we can afford for the backup.670

This suggests an alternative but seemingly
counter-intuitive solution: assign high priorities
to backup tasks before applying the dual
queue based delaying technique, relying on the
fact that this will help to increase their promotion675

times, and the total amount we can delay in them in
the lower queue. Even though they will indeed exe-
cute at high priority eventually, this will only hap-
pen when they are maximally delayed in the lower
queue through the extended promotion times.680

9

The proposed scheme, called the Reverse
Preference-Oriented Priority Assignment (RPPA),
is very similar to PPA, but it assigns higher pref-
erence to backup tasks, and lower preference to the
primary tasks to the extent it is possible. Like be-685

fore, the backup tasks are delayed using the dual
queue based delaying technique.

RPPA priority assignment is also optimal as PPA
and RMS – it never results in a loss in schedulability
as long as there exists a feasible solution. In the ex-690

treme case where a given task set cannot be sched-
uled by assigning low priority to (most of) backup
tasks, it will generate another priority assignment
which may resemble PPA or RMS, even though we
observed that in practice it is able to generate a fea-695

sible priority assignment by assigning backup tasks
high priorities in many cases.

For our example task set, the schedules with PPA
and RPPA are shown in Figure 7b and 8c, respec-
tively (with DVFS and backup-delaying enabled).700

It shows that for PPA, promotion times for B1, B2

and B3 are 0.3, 0 and 10, respectively. This means
B2 gets promoted as soon as they arrive, and it
could not be delayed at all. B1 and B3 are only
marginally delayed. In contrast, for RPPA, promo-705

tion times for B1, B2 and B3 are found as 13.2,
16 and 24.7, respectively. This big improvement in
backup-delaying translates to more backup cancel-
lation which reduces the overall energy consump-
tion. With DVFS and backup-delaying enabled,710

RPPA consumes only 9.42 mJ of energy, which rep-
resents about 42% and 51% improvement compared
to RMS and PPA, respectively.

We also observe that reversing the priorities in
RPPA by itself (without dual-queue based delay-715

ing) does not help in consuming less energy, as it
can be seen in Figure 8a and 8b, which consume
26.52 mJ and 22.23 mJ energy, respectively. How-
ever, when RPPA is combined with the non work-
conserving dual priority algorithm, then its big po-720

tential for energy consumption becomes clear (in
this case, giving more than 55% improvement.)

6. Algorithm MPB-PS

This section describes the algorithm executed
in the online phase of our framework, called the725

Mixed Primary/Backup Periodic Scheduling (MPB-
PS) algorithm. In this algorithm, the runtime
events are processed on the HP and LP core sep-
arately. In the offline phase, the tasks are allo-
cated to the HP and LP cores, priority assignment730

LP:

HP:

Time

τ1 τ1 τ1τ3

B3B1 B1 B1

B2

B1 τ2 τ2B3

B2B2 τ3

0 5 10 15 20 25 30 35 40 45 50 55 60

(a) Schedule for RPPA (Without DVFS or Dual Queue)

LP:

HP:

Time

τ1 τ1τ3

B1 B1

B2

B1 B3

B2τ3

τ2 τ2

τ1

f1 = f3 = 0.56

f2 = 0.29
B1

B2

B3

0 5 10 15 20 25 30 35 40 45 50 55 60

(b) Schedule for RPPA (with DVFS but without Dual-Queue)

LP:

HP:

Time

τ3

τ2

f1 = f3 = 0.56

f2 = 0.29

τ3τ1

τ2 τ2

τ1 τ1 τ1τ3 τ3

0 5 10 15 20 25 30 35 40 45 50 55 60

(c) Schedule for RPPA (with DVFS and Dual Queue

Figure 8: Schedules for RPPA

is made to tasks on each core, and the execution
frequency and promotion times are computed.

At runtime, when a primary task is released, its
backup copy is also released on the alternate core
(with the same deadline). There are four impor-735

tant events that our runtime algorithm needs to
consider: task release, completion, promotion and
cancellation. The details of this algorithm are given
in Algorithm 1.

On each processing core, we have two queues:740

the upper and the lower queue. Tasks are eligible
for execution only if they are in the upper queue.
Backup copies are initially put to the lower queue,
and they get promoted to the upper queue at the
precomputed promotion times. As shown in Al-745

gorithm 1, when a task is released, it is checked
whether it is a primary or backup copy, and then it
is added to the appropriate queue.

A timer for the “promotion event” is set in case
of a backup task. After all events, the highest prior-750

ity task in the upper queue (which may be primary
or backup) on each core is dispatched, possibly pre-
empting any running low-priority task. The algo-
rithm sets the task’s frequency to the precomputed
frequency value if it is a primary task, otherwise755

it is executed at the maximum speed on the corre-

10

sponding core.

When a task completes, the corresponding ac-
tions are shown in Algorithm 1. An acceptance test
is run to check whether there is an error in the task’s760

output. If no error is detected, then its alternate
copy is cancelled (on the alternate core.) If an error
is detected, the algorithm does not take additional
steps: it is expected that the alternate copy on the
other core should produce correct results before the765

deadline. On the event when a backup task is pro-
moted, it is moved to the upper queue.

Algorithm 1 MPB-PS

Event: A task τi (Bi) is released at time t
if released task is primary then

Add τi to the upper queue at the proper pri-
ority level

else
Add Bi to the lower queue
Let Yi be the promotion time computed at
offline phase
Set a timer for promotion event at t+ Yi

end if
Dispatch highest priority tasks in the upper
queues of both cores at pre-computed frequen-
cies

Event: A task τi (Bi) completes
Run acceptance test for detection of transient
fault in task τi (Bi)
if no error is detected then

Generate a “task cancelled” event for the al-
ternate copy Bi(τi) on the alternate core

end if
Dispatch highest priority tasks in the upper
queues of both cores at pre-computed frequen-
cies

Event: Timer signals the promotion time of the
backup task Bi
Move Bi from the lower to the upper queue on
its core at the proper priority level
Dispatch Bi on its core if it has the highest
priority in the upper queue at the maximum
frequency

Event: A task τi (Bi) is cancelled
if task τi (Bi) is currently executing then

Dispatch the highest priority task in the up-
per queue of the core where τi (Bi) is can-
celled

end if

This runtime algorithm ensures that a primary

copy of a task is executed at the scaled speed, while
backup tasks are executed at maximum speed of its770

core. Whenever one of them completes, the other
one gets cancelled to conserve energy. In case of
a permanent fault, the remaining core can execute
one copy of each task without missing any dead-
line. At each invocation, this algorithm runs in775

O(n) time, where n is the number of tasks on each
core.

7. Experimental Evaluation

We evaluated the energy consumption perfor-
mance of the proposed algorithms in a discrete780

event simulator. The tasks are partitioned using
the LSPB scheme (Section 4.1). The priority as-
signment schemes RMS, PPA and RPPA are eval-
uated, along with their variants which enable the
dual queue based backup delaying technique (de-785

noted as RMS*, PPA* and RPPA*, respectively).
For all cases, we used DVFS to scale the frequency
of the primary tasks and the Sys-Clock [35] algo-
rithm was used for both cores.

We also implemented a scheme named Bound,790

where we remove all the backup tasks and allow
the primary copies to scale their speed. This scheme
does not offer any fault tolerance; but it is used as a
theoretical lower bound on the energy consumption
of all six schemes with fault tolerance features and795

backup task overheads.
We simulated dual core systems with fHPmax = 1.0

and fLPmax varied from 0.6 to 1.0. Due to space lim-
itations, we will show the results for fLPmax = 0.8,
and analyze the impact of varying fLPmax in a sepa-800

rate plot.
For each experiment, the simulator generates a

task set containing n tasks, and a given total uti-
lization, U . The utilization is calculated with re-
spect to the LP core (which is more constrained805

in terms of performance) and normalized consider-
ing its maximum speed. Task periods are randomly
chosen from a log uniform distribution ranging from

10 to 100. Hence, U = (
∑ CLP

i

Pi
)/fLPmax. Based on

the target U , we use the RandFixedSum algorithm810

[36] to assign a random utilization (according to
uniform distribution) to each task such that the to-
tal utilization equals U .

It is known that the power parameters and re-
quired number of cycles for different tasks scale815

differently on heterogeneous systems [37]. There-

fore, as in [16, 37], we define tscalei =
CLP

i

CHP
i

, which

11

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

Utilization (%)

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(a) Impact of Utilization (fLP
max = 0.6)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

Utilization (%)

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(b) Impact of Utilization (fLP
max = 0.7)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

Utilization (%)

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(c) Impact of Utilization (fLP
max = 0.8)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

Utilization (%)

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(d) Impact of Utilization (fLP
max = 0.9)

Figure 9: Impact of Utilization

12

models how execution time changes on the LP core
for a given task, τi. Typical values for tscalei are
reported to be in the range [1.4, 2.3] [37]. More-820

over, following [16], we define pscalei to be the ra-
tio of power consumption of τi on the LP core to

that on the HP core. Therefore, pscalei =
PLP

i

PHP
i

,

which is also assumed to be the same as
aLP
i

aHP
i

=

αLP
i

αHP
i

. From experimental measurements, it has825

been found that 1.4 ≤ 1/(tscalei ∗ pscalei) ≤ 2.1
[37]. Next, for each task a tscalei and a pscalei
value are chosen randomly within the ranges sug-
gested in [37]. Specifically, 1.4 ≤ tscalei ≤ 2.3
and 1.4 ≤ 1/(tscalei ∗ pscalei) ≤ 2.1 hold. We830

assume for all tasks, aHPi = 1.0 and αHPi = 0.1.
In addition, PHPidle = 0.05 and PLPidle = 0.02 for
all experiments. We use task sets with n = 10
tasks, fLPmax = 0.8 and fHPmax = 1.0, unless otherwise
stated. Every reported data point is the average of835

1000 runs. We report the average energy consump-
tion in fault-free executions, since faults are very
rare events. The results in each plot are normalized
with respect to the highest energy consumption of
any scheme in that plot.840

Impact of Utilization. Figures 9a, b, c, and
d show the impact of utilization on normalized en-
ergy consumption for increasingly faster LP core
(for fLPmax set to 0.6, 0.7, 0.8 and 0.9, respec-
tively). As expected, the normalized energy con-845

sumption of all schemes increase with the load.
However, some schemes can save more energy than
others. It also shows that, in all the cases the work-
conserving RMS, PPA and RPPA schemes (without
dual-queue based back-up delaying) perform worst850

and they perform very close to each other. This
is because, in these schemes, the backup-delaying
mechanism is not used, and therefore, backup copy
executions overlapping with primaries are very fre-
quent.855

This problem is addressed by enabling the
dual-queue based backup-delaying and non-work-
conserving schedules in RMS*, PPA* and RPPA*
schemes. As shown in Figure 9, PPA* can save
more than 35% energy at average compared to860

the no-backup-delay schemes, throughout the en-
tire range of system utilization values. RMS* per-
forms even better than PPA* and it saves about
13% more energy on low-load and up to 20% for
high-load task sets. Our proposed scheme, RPPA*865

performs the best and it saves 32% more energy
than PPA*, and about 18% more energy than the

RMS* scheme.
The performance level of PPA* warrants some

elaboration. If backup copies are assigned lower870

priorities than primary copies, then due to the
fact that primary copies are being slowed down
through DVFS, we have only little room to delay
the low-priority backups at run-time. This causes
the backups to get activated early in the sched-875

ules, which results in increased energy consump-
tion. On the other hand, the RPPA* scheme as-
signs higher priorities to the backup copies and the
worst-case response time of backup tasks does not
include the DVFS-enabled primary tasks, which al-880

lows the backups to remain in the lower queue for
much longer time. This allows us to significantly
delay, and in many cases, eventually cancel them.
If a backup needs to be activated, it gets a higher
priority on the processor, enabling it to finish still885

before deadline. This effect is reflected in the re-
sults and the RPPA* scheme performs much better
throughout the entire spectrum. It performs very
close to Bound for low utilization and it drifts away
only moderately as the load increases. RMS* yields890

somewhat better results than PPA* (by virtue of
the fact that some back-up tasks accidentally re-
ceive high priority based on their small periods),
however, it is consistently worse than RPPA* in
the entire spectrum. These observations hold true895

for all the utilization and the maximum speed con-
figurations for the LP core.

Impact of tscale. Figure 10a shows the im-
pact of varying tscale for the tasks, while keep-
ing the system utilization at 65%. A lower tscale900

means the increase in task cycle requirements is
modest on the LP core, indicating higher energy
efficiency. The figure shows that the overall en-
ergy consumption of all schemes decrease as tscale
increases. This is because since the utilization is905

fixed, a higher tscale value represents a lower num-
ber of cycles for the HP core, and the overall en-
ergy consumption decreases. The results show that
the no-backup-delaying schemes. RMS, PPA and
RPPA are performing the worst throughout the en-910

tire region. PPA* scheme improves energy con-
sumption by about 35% compared to PPA. RMS*
outperforms PPA* by a moderate amount of 20%.
The best performing scheme is RPPA*, which is
about 15% better than RMS* and it performs very915

close to Bound in the entire tscale region. This is
because the coupling of RPPA priority assignment
and dual-queue based backup-delaying techniques
was able to cancel many of the backup executions

13

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1

 1
.2

 1
.4

 1
.6

 1
.8 2

 2
.2

 2
.4

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

TSCALE

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(a) Impact of tscale (fLP
max = 0.8, Load = 65%)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 0
.4

 0
.4

5

 0
.5

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

PSCALE

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(b) Impact of pscale (fLP
max = 0.8, Load = 65%)

 30

 40

 50

 60

 70

 80

 90

 100

 110

 5

 1
0

 1
5

 2
0

 2
5

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

Number of tasks

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(c) Impact of Number of Tasks (fLP
max = 0.8, Load =

65%)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

%
)

Max. speed of the LP core

RMS
RMS*

PPA
PPA*

RPPA
RPPA*
Bound

(d) Impact of Max. speed of LP core (Load = 65%)

Figure 10: Impact of various system parameters

and reduce the overall energy consumption close to920

Bound (which does not consider the back-ups).

Impact of pscale. The impact of pscale on en-
ergy consumption is demonstrated in Figure 10b.
As pscale grows, the LP core becomes less power ef-
ficient, and the effect is visible in the results. All the925

schemes show increased energy consumption with
growing pscale, however, the RPPA* schemes can

keep it very low. Throughout the entire spectrum
of pscale, RPPA* schemes perform about 35% bet-
ter than PPA* schemes, and about 20% better than930

RMS* schemes. Due to the effective cancellation of
back-ups, RPPA* was able to conserve a lot of en-
ergy and it performs very close to Bound (within
10%.)

Impact of Number of Tasks. Figure 10c935

14

shows the impact of number of tasks. It shows
that RPPA* scheme performs the best throughout
the entire spectrum and stays very close to Bound.
The schemes with no backup-delaying shows very
high energy consumption regardless of the num-940

ber of tasks. The PPA* and RMS* schemes show
higher energy consumption for small number of
tasks, but as the number of tasks grow their energy
consumption decreases. This is because, increas-
ing the number of tasks while keeping the utiliza-945

tion same increases the granularity of the task set
(giving smaller back-up tasks on the average), and
the proposed algorithms are able to cancel back-ups
more effectively. The observation that RPPA* out-
performs PPA* and RMS* is still prevalent in these950

results.
Impact of the maximum speed of the LP

core. Figure 10d shows the impact when we change
the maximum speed of the LP core relative to the
HP core, keeping the system utilization at 65%. As955

the LP core’s maximum speed grows, its capacity
and the system’s actual workload also grows. That
is reflected in the results by showing increased en-
ergy consumption for higher maximum speed of the
LP core. The plot also shows that throughout our960

entire range of experiments, RPPA* schemes per-
form about 15% better than RMS* schemes, and
about 35% better than PPA* schemes. Bound per-
forms very close (within 2%) to RPPA* for lower
values of fLPmax, and it drifts away slowly as both965

cores’ speeds become more similar.

8. Related Work

The research community has been recently ex-
ploring various aspects of heterogeneous multicore
computing. In this section we review some of those970

recent works with particular emphasis on energy
management, real-time operation, and/or fault tol-
erance.

Xu et al. [38] considered a framework which pro-
vides reliability on heterogeneous embedded sys-975

tems and also minimizes energy consumption. They
used a method to transform the application’s relia-
bility goal in to each task’s reliability requirement,
then proposed a method to minimize their energy
consumption. They considered DAG-based embed-980

ded system applications; however, they did not con-
sider any real-time constraints.

Devaraj [1] proposed a solution to the problem of
scheduling real-time tasks on heterogenous systems
which guarantees timeliness and feasibility. They985

used a linear programming algorithm to find feasi-
ble schedules for real-time task sets considering het-
erogeneous execution platforms. Li et al. [39] pro-
posed a framework to execute real time applications
on heterogeneous multicore processors, which min-990

imizes temperature and energy consumption. They
considered a graph based application model and
scheduled the application tasks on to the processing
cores in an energy/thermal-aware manner. Their
results on real-world applications demonstrated the995

effectiveness of their approach, however, they did
not consider task replication or fault-tolerance in
their work.

Many real time systems are deployed in safety-
critical environment which require very high reli-1000

ability, therefore, fault-tolerant real time schedul-
ing has been an active research area, with re-
cent emphasis on heterogeneous systems. Zhou et
al. [40] considered heterogeneous platforms for ap-
plications with deadline constraints and reliability.1005

They developed a “earliest finish-time” based algo-
rithm for heterogeneous MPSoCs, which executes
graph based real-time tasks. Their solution strives
to maximize reliability to transient and permanent
faults, however, they did not take energy consump-1010

tion in to account. Liu et al. [41] proposed an adap-
tive fault-tolerant scheduling mechanism for real
time systems executing on heterogeneous multipro-
cessors. They used task-replication and computed
the number of required replicas which guarantees1015

reliability and deadline. However, their work also
did not address the energy consumption dimension.

A number of recent research studies explored
the joint management of timeliness, energy con-
sumption, and reliability. For instance, Bansal1020

et al. [42] proposed energy aware fixed priority
scheduling for real-time tasks in which they consid-
ered execution-preferences for different tasks (pri-
mary or backup). They improved the energy con-
sumption of the preference-oriented scheduling pro-1025

posed in [31], by applying DVFS and DPM tech-
niques. However, their work was based on a single
processor system, and cannot be easily generalized
to multicore platforms or tolerate permanent faults.
Zhao et al. [8] proposed an energy-efficient standby-1030

sparing technique, which executes a mix of high and
low criticality tasks. They scaled the primary pro-
cessor with DVFS, and also, they extended their al-
gorithm for cluster/island systems, however, their
work did not consider heterogeneous processors.1035

Safari et al. [43] also proposed a low-energy
standby-sparing scheme for mixed criticality sys-

15

tems, in which, they considered graph based real
time applications, and executed it on multicore sys-
tem with fault tolerance. They used convex op-1040

timization to exploit DVFS along with DPM to
save energy under timeliness and reliability con-
straints. That paper considered homogeneous mul-
ticore systems. Kumar et al. [44] addressed hetero-
geneous multicore systems and proposed a frame-1045

work for energy-efficient scheduling of periodic real-
time tasks with fault tolerance. They modeled the
problem as a constraint optimization problem and
also proposed several low-overhead heuristics. How-
ever, their setting does not allow preemption of real-1050

time tasks, which may have a strong and negative
impact on the schedulability of periodic real-time
task sets for which preemptive scheduling is the
norm [23].

Our research group also explored the subtle inter-1055

action of real-time, fault-tolerant, and energy-aware
operation on heterogeneous multicore systems. For
instance, the work in [16] addresses the standby
sparing setting for fault tolerance on heterogeneous
systems for real time tasks. We also studied mixed1060

primary/backup scheduling on heterogeneous cores
for both frame based [19] and DAG-based [21] real
time applications. However, all those studies con-
sidered frame-based applications where tasks share
a common deadline/period. The present work con-1065

siders fixed-priority preemptive periodic real-time
applications, and it has a wider applicability.

9. Conclusions

In this paper, we investigated energy-aware
scheduling of preemptive fixed-priority tasks upon1070

heterogeneous cores. The fault tolerance require-
ments dictate scheduling a separate backup copy
of each primary real-time job on a separate core.
In addition to scaling the primary jobs through
DVFS to save energy, we developed a comprehen-1075

sive framework to maximize the cancellation oppor-
tunities for back-ups through the use of priority as-
signment and dual queue based task delaying. We
evaluated the performance of the proposed schemes
under different workload conditions. Our proposed1080

Reverse Preference-Oriented Priority Assignment
(RPPA) scheme is shown to yield very high en-
ergy savings, by virtue of exploiting the dual-queue
based delaying mechanism maximally.

References1085

[1] R. Devaraj, A solution to drawbacks in capturing ex-
ecution requirements on heterogeneous platforms, The
Journal of Supercomputing (2020) 1–16.

[2] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova,
N. Perez, Z. F. Huang, S. Blagodurov, V. Kumar, Hass:1090

a scheduler for heterogeneous multicore systems, ACM
SIGOPS Operating Systems Review 43 (2) (2009) 66–
75.

[3] S. I. Kim, J.-K. Kim, A method to construct task
scheduling algorithms for heterogeneous multi-core sys-1095

tems, IEEE Access 7 (2019) 142640–142651.
[4] V. Petrucci, O. Loques, D. Mossé, R. Melhem, N. A.

Gazala, S. Gobriel, Energy-efficient thread assign-
ment optimization for heterogeneous multicore systems,
ACM Transactions on Embedded Computing Systems1100

(TECS) 14 (1) (2015) 1–26.
[5] A. Gamatié, G. Devic, G. Sassatelli, S. Bernabovi,

P. Naudin, M. Chapman, Towards energy-efficient het-
erogeneous multicore architectures for edge computing,
IEEE Access 7 (2019) 49474–49491.1105

[6] I. Koren, C. M. Krishna, Fault-tolerant systems, Mor-
gan Kaufmann, 2010.

[7] D. K. Pradhan, Fault-tolerant computer system design,
Prentice-Hall, Inc., 1996.

[8] M. Zhao, D. Liu, X. Jiang, W. Liu, G. Xue, C. Xie,1110

Y. Yang, Z. Guo, CASS: Criticality-aware standby-
sparing for real-time systems, Journal of Systems Ar-
chitecture 100 (2019) Article No. 101661.

[9] M. A. Haque, H. Aydin, D. Zhu, On reliability manage-
ment of energy-aware real-time systems through task1115

replication, IEEE Transactions on Parallel and Dis-
tributed Systems 28 (3) (2016) 813–825.

[10] S. Safari, M. Ansari, G. Ershadi, S. Hessabi, On
the scheduling of energy-aware fault-tolerant mixed-
criticality multicore systems with service guarantee1120

exploration, IEEE Transactions on Parallel and Dis-
tributed Systems 30 (10) (2019) 2338–2354.

[11] M. A. Haque, H. Aydin, D. Zhu, Energy-aware standby-
sparing for fixed-priority real-time task sets, Journal of
Sustainable Computing 6 (2015) 81–93.1125

[12] A. Ejlali, B. M. Al-Hashimi, P. Eles, Low-energy
standby-sparing for hard real-time systems, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems 31 (3) (2012) 329–342.

[13] Y. Guo, D. Zhu, H. Aydin, Generalized standby-sparing1130

techniques for energy-efficient fault tolerance in multi-
processor real-time systems, in: 2013 IEEE 19th In-
ternational Conference on Embedded and Real-Time
Computing Systems and Applications, IEEE, 2013, pp.
62–71.1135

[14] K. Arora, S. Bansal, R. K. Bansal, Energy aware fault
tolerant fixed priority task scheduling in multiprocessor
system, in: 2018 8th International Conference on Cloud
Computing, Data Science & Engineering (Confluence),
IEEE, 2018, pp. 658–663.1140

[15] A. Bhuiyan, Z. Guo, A. Saifullah, N. Guan, H. Xiong,
Energy-efficient real-time scheduling of DAG tasks,
ACM Transactions on Embedded Computing Systems
(TECS) 17 (5) (2018) 1–25.

[16] A. Roy, H. Aydin, D. Zhu, Energy-aware standby-1145

sparing on heterogeneous multicore systems, in: 2017
54th ACM/EDAC/IEEE Design Automation Confer-
ence (DAC), IEEE, 2017, pp. 1–6.

16

[17] P. P. Nair, R. Devaraj, A. Sarkar, Fest: Fault-
tolerant energy-aware scheduling on two-core heteroge-1150

neous platform, in: 2018 8th International Symposium
on Embedded Computing and System Design (ISED),
IEEE, 2018, pp. 63–68.

[18] M. Ansari, M. Pasandideh, J. Saber-Latibari, A. Ejlali,
Meeting thermal safe power in fault-tolerant hetero-1155

geneous embedded systems, IEEE Embedded Systems
Letters (2019) 29–32.

[19] A. Roy, H. Aydin, D. Zhu, Energy-efficient pri-
mary/backup scheduling techniques for heterogeneous
multicore systems, in: 2017 Eighth International Green1160

and Sustainable Computing Conference (IGSC), IEEE,
2017, pp. 1–8.

[20] S. Moulik, R. Chaudhary, Z. Das, Hears: A heteroge-
neous energy-aware real-time scheduler, Microproces-
sors and Microsystems 72 (2020) Article No. 102939.1165

[21] A. Roy, H. Aydin, D. Zhu, Energy-efficient fault toler-
ance for real-time tasks with precedence constraints on
heterogeneous multicore systems, in: 2019 Tenth Inter-
national Green and Sustainable Computing Conference
(IGSC), IEEE, 2019, pp. 1–8.1170

[22] M. Ansari, J. Saberlatibari, S. M. Pasandideh, A. Ejlali,
Simultaneous management of peak-power and relia-
bility in heterogeneous multicore embedded systems,
IEEE Transactions on Parallel and Distributed Systems
(2019) 623–633.1175

[23] J. W. S. Liu, Real-Time Systems, Pearson Education,
2000.

[24] M. A. Haque, H. Aydin, D. Zhu, Energy-aware standby-
sparing technique for periodic real-time applications, in:
2011 IEEE 29th International Conference on Computer1180

Design (ICCD), IEEE, 2011, pp. 190–197.
[25] A. Ejlali, B. M. Al-Hashimi, P. Eles, A standby-

sparing technique with low energy-overhead for fault-
tolerant hard real-time systems, in: Proceedings of
the 7th IEEE/ACM international conference on Hard-1185

ware/software codesign and system synthesis, 2009, pp.
193–202.

[26] M. K. Tavana, M. Salehi, A. Ejlali, Feedback-based en-
ergy management in a standby-sparing scheme for hard
real-time systems, in: 2011 IEEE 32nd Real-Time Sys-1190

tems Symposium, IEEE, 2011, pp. 349–356.
[27] R. Davis, A. Wellings, Dual priority scheduling, in: Pro-

ceedings 16th IEEE Real-Time Systems Symposium,
IEEE, 1995, pp. 100–109.

[28] D. Zhu, R. Melhem, D. Mossé, The effects of en-1195

ergy management on reliability in real-time embedded
systems, in: IEEE/ACM International Conference on
Computer Aided Design, 2004. ICCAD-2004., IEEE,
2004, pp. 35–40.

[29] M. Joseph, P. Pandya, Finding response times in a real-1200

time system, The Computer Journal 29 (5) (1986) 390–
395.

[30] C. L. Liu, J. W. Layland, Scheduling algorithms for
multiprogramming in a hard-real-time environment,
Journal of the ACM (JACM) 20 (1) (1973) 46–61.1205

[31] R. Begam, Q. Xia, D. Zhu, H. Aydin, Preference-
oriented fixed-priority scheduling for periodic real-time
tasks, Journal of Systems Architecture 69 (2016) 1–14.

[32] N. C. Audsley, On priority assignment in fixed prior-
ity scheduling, Information Processing Letters 79 (1)1210

(2001) 39–44.
[33] N. C. Audsley, Optimal priority assignment and feasi-

bility of static priority tasks with arbitrary start times,

Citeseer, 1991.
[34] D. Zhu, H. Aydin, Reliability-aware energy manage-1215

ment for periodic real-time tasks, IEEE Transactions
on Computers 58 (10) (2009) 1382–1397.

[35] S. Saewong, R. Rajkumar, Practical voltage-scaling for
fixed-priority rt-systems, in: The 9th IEEE Real-Time
and Embedded Technology and Applications Sympo-1220

sium, 2003. Proceedings., IEEE, 2003, pp. 106–114.
[36] P. Emberson, R. Stafford, R. I. Davis, Techniques for

the synthesis of multiprocessor tasksets, in: Proc. of
the Int. WS on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), 2010.1225

[37] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani,
T. Mitra, S. Vishin, Power-performance modeling on
asymmetric multi-cores, in: 2013 International Confer-
ence on Compilers, Architecture and Synthesis for Em-
bedded Systems (CASES), IEEE, 2013, pp. 1–10.1230

[38] H. Xu, R. Li, C. Pan, K. Li, Minimizing energy con-
sumption with reliability goal on heterogeneous embed-
ded systems, Journal of Parallel and Distributed Com-
puting 127 (2019) 44–57.

[39] T. Li, T. Zhang, G. Yu, J. Song, J. Fan, Minimiz-1235

ing temperature and energy of real-time applications
with precedence constraints on heterogeneous mpsoc
systems, Journal of Systems Architecture 98 (2019) 79–
91.

[40] J. Zhou, M. Zhang, J. Sun, T. Wang, X. Zhou, S. Hu,1240

Drheft: Deadline-constrained reliability-aware heft al-
gorithm for real-time heterogeneous mpsoc systems,
IEEE Transactions on Reliability (2020) 1–12.

[41] Y. Liu, J. Liu, Z. Zhu, C. Deng, Z. Ren, X. Xu, Adap-
tive fault-tolerant scheduling in heterogeneous real-time1245

systems, in: 2019 14th IEEE Conference on Industrial
Electronics and Applications (ICIEA), IEEE, 2019, pp.
982–987.

[42] S. Bansal, R. K. Bansal, K. Arora, Energy-cognizant
scheduling for preference-oriented fixed-priority real-1250

time tasks, Journal of Systems Architecture 108 (2020)
Article No. 101743.

[43] S. Safari, S. Hessabi, G. Ershadi, LESS-MICS: A low en-
ergy standby-sparing scheme for mixed-criticality sys-
tems, IEEE Transactions on Computer-Aided Design of1255

Integrated Circuits and Systems (2020) 1–10.
[44] N. Kumar, J. Mayank, A. Mondal, Reliability aware

energy optimized scheduling of non-preemptive peri-
odic real-time tasks on heterogeneous multiprocessor
system, IEEE Transactions on Parallel and Distributed1260

Systems (2019) 871–885.

17

	Introduction
	System Model and Assumptions
	Platform and Application model
	Power Model
	Fault Model

	Preliminaries
	Work-Conserving Fixed-Priority Periodic Scheduling
	Non-Work-Conserving Fixed-Priority Periodic Scheduling
	Preference-Oriented Priority Assignment (PPA)

	Mixed Primary/Backup Scheduling of Periodic Tasks
	Task Partitioning
	Priority Assignment
	Frequency Assignment
	Promotion Time Computation for Backup Tasks

	Reverse Preference-Oriented Priority Assignment (RPPA)
	Algorithm MPB-PS
	Experimental Evaluation
	Related Work
	Conclusions

