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Abstract
The previous work on connection driven topology control has shown that it has significant potential to reduce energy

consumption of Wireless Sensor Networks (WSNs). Dynamic Modulation Scaling (DMS) which is a technique that

manages transmission power levels in order to change the number of bits encoded per symbol has a direct impact on

connection driven topology control. In this paper we investigate the transmission scheduling of multi-hop real-time WSNs

equipped with DMS enabled radio chips while taking the effect of DMS on topology control into account. To our best

knowledge, this is the first paper that addresses this issue. The current work on DMS enabled WSN tend to rely on

theoretical DMS models to predict network performance metrics. However, there is little, if any, work that is based upon

empirically verified network performance outcomes using DMS especially on its effect on connection driven topology

control. This paper fills this gap by using GNU Radio and Software Defined Radio hardware to show how to emulate DMS

in low power wireless systems and measure the impact of varying Signal-to-Noise levels, distance and elevation on

throughput and delivery rates for different DMS control strategies. Next, we present the Mixed Integer Nonlinear Opti-

mization Problem of minimizing energy consumption of DMS enabled connection driven topology control on real-time

WSNs. Lastly, we present two polynomial time heuristics and compare their performance against the optimal solution.

1 Introduction

Wireless Sensor Networks’ (WSN) usage in industrial

applications such as industrial control networks (ICN),

critical infrastructure monitoring has been rising in recent

years. This is a paradigm shift since these systems tradi-

tionally have been installed with wired channels between

communicating devices. Wireless system cuts costs due to

the elimination of expensive cables and related mainte-

nance fees [18]. Protocols such as IEEE 802.15.4, WIA-

PA, WirelessHART, and ISA100.11a are currently com-

monly deployed wireless ICN protocols in fields such as

manufacturing, electrical generation, and chemical refining

[15].

DMS, also known as Adaptive Modulation, is a tech-

nique which manipulates the constellation size of a mod-

ulation schema in order to change the transmission time

and energy consumption. Higher (lower) number of bits

transmitted per symbol reduces (increases) the transmission

time. However, encoding more bits per symbol with con-

stant bit error rate requires an increase in the transmission

output power. DMS is commonly used in many telecom-

munications systems and offers great potential in low-

power communication in terms of reducing energy con-

sumption and/or increasing reliability especially for

applications requiring high data rates over long ranges [34].

For instance, IEEE 802.15.4k, also known as LECIM [35],

aims to establish connection up to 20 km. The choice of

modulation for LECIM is the Gaussian Frequency Shift

Keying (GFSK). The authors of [34] emphasize the need

for carefully selecting the modulation technique; an

example is deciding between GFSK, binary phase shift

keying (BPSK) and offset quadrature phase shift keying

(O-QPSK). DMS is also a core component of IEEE

802.11ah which supports BPSK, QPSK, 64QAM

(Quadrature Amplitude Modulation), and 256QAM [6]. It

must be noted that higher modulation sizes used in high
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data rate applications bring higher Signal-to-Noise Ratio

(SNR) requirements.

DMS has also been studied in wireless ICN domain.

Wireless ICN protocols are typically organized as cluster,

star topology, or multi-hop topologies. To ensure real-time

and predictable performance, variations of time division

multiple access (TDMA) based scheduling and link access

mechanisms are widely adopted [9]. In these deployments,

a coordinator is in charge of distributing the time-slots

where only the owner(s) of that time-slot is(are) allowed to

talk. TDMA also provides additional energy savings since

the nodes can sleep except when they are scheduled to

transmit or receive [30].

A detailed description of existing work on DMS is

presented in Sect. 2. In particular, DMS has been the

subject of several research articles in the Wireless Sensor

Network (WSN) domain [4, 10, 13, 16, 17, 36, 37].

However, due to the lack of commercially available hard-

ware, these evaluations were typically conducted via sim-

ulation and/or using the pre-supposed close-form energy

scaling formulas. This paper has two main goals; (1) This

paper aims to fill the gap in the empirical analysis of DMS

when applied in the WSN domain and (2) Provide optimal

interference-aware time-slot allocation formulation for

DMS-enabled, time-critical, multi-hop WSNs. We are

particularly interested in investigating the following ques-

tions: Given a set of environmental conditions, modulation

techniques and power levels, how do the packet delivery

rates change with DMS and how does it affect parent node

selection process for time critical multi-hop WSNs?

To answer the first question, we have used Ettus B210

Software Defined Radios [31] (SDRs) and configured them

according to IEEE 802.15.4 [21] base band, symbol rate,

data rate and samples per symbol settings. Using this

configuration we make the following contributions. First,

we show how to emulate DMS in low-power networks

using existing GNURadio blocks and SDR hardware. We

also provide a detailed look into the signal recovery pro-

cess which maybe used for future researchers to expand our

layout. The next three contributions are meant to model the

various types of environmental transmission conditions to

which wireless systems may be subject. We vary the Sig-

nal-to-Noise-Ratios (SNRs) of {2, 4, 8, 16} PSK and DPSK

modulations’ of the channel to observe how packet deliv-

ery rates (PDRs) change. This approach gives a detailed

insight on how the output power can be managed to

achieve the desired PDR. These tests required a controlled

noise environment with a noise generator, and therefore

was conducted using Faraday Cages. We compare our

findings with what existing general scaling function and

conclude that the necessary energy increase is greater than

what the models suggest when we increase the modulation

levels. Furthermore, we repeat the same experiments with

Differential-PSK and report a very significant increase in

performance. We then conduct a set of distance tests for {2,

4, 8} DPSK and measured PDRs for distances up to 100 m.

Distance tests are of utmost importance for multi-hop

networks and provide great insight into how it can be used

to set up more energy and/or latency efficient topology

control. Finally, we test the impact of elevation difference

between transmitter and receiver which is a common sce-

nario for applications such as residential sensor monitoring,

where some nodes are placed on objects such as lampposts.

To answer the second question, we first present the

Mixed Integer Nonlinear Programming problem formula-

tion of the problem (and later in Sect. 7 explain how to

convert it to linear programming problem); given a set of

connections between nodes per modulation level, choose a

modulation level and a parent for each node to talk to

while minimizing the total network energy consumption

given a maximum delay bound of when the base station has

to collect all the information from the network. This

problem description assumes the links between the nodes

per modulation level are known, in other words, it assumes

given a node, let’s say nodea, the set of nodes that nodea
can talk to using modulation levels 1, or 2, or 3,… is

known. These set of nodes per modulation level are not

necessarily identical. Generally speaking, mixed integer

programming problems are known to be intractable.

Interference aware multi-hop scheduling has been studied

in literature and proven that a throughput optimal TDMA

schedule is an NP-complete problem even for linear

topologies [1] and [14] proves that interference and energy

aware speed assignment problem is NP-hard. This led us to

provide two polynomial time heuristics and compare them

against the optimal solution using the simulation we built

by incorporating the data we obtained from our real world

tests.

In summary this paper has the following contributions;

(1) we describe a new perspective on how DMS can be

applied to WSNs. The papers in literature typically assume

discrete and single power levels for each modulation level.

While this is valid, it is very limited and not necessarily the

only valid model. It is possible to adjust power output

levels independently from the modulation levels that is

used. To our best knowledge, this is the first paper to use

this extended model in DMS enabled WSN domain. (2) We

run extensive SDR based DMS tests on various conditions

and obtain the necessary data to form the basis of our new

extended model. (3) We show the optimal MINLP for-

mulation of DMS enabled parent node selection problem

for time critical WSNs (later show how to convert it into a

MILP formulation) and (4) we propose two polynomial

time heuristics and compare them against the optimal

solution.
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2 Related work

The pioneering work presented in [32] led many

researchers to consider DMS as an important leverage tool

for low-power wireless communication. The authors pre-

sented the underlying principals of DMS and demonstrated

how it can be used as an energy management technique.

Some of these techniques are presented in Sect. 3. In the

same paper, the authors also propose packet scheduling

algorithms for real-time and non-real-time communication

using DMS.

The work in [10] proposes modulation optimization

algorithms for MQAM and MFSK schemas. The authors

first break down the overall energy consumption of DMS

into each hardware component’s energy consumption and

then analyze energy consumption per bit for different

modulation levels. This paper was also one of the first to

point out that the effectiveness of DMS depends on

transmission distances. It has been shown that for suffi-

ciently large distances, the lowest modulation level is the

most energy efficient. However, for shorter distances this

may not be the case, considering the increased weight of

electronic circuitry consumption compared to that of the

wireless radio.

DMS has also been studied in Wireless Sensor Network

(WSN) domain, and this is the main focus of our paper.

The authors of [36] studied integration of DMS into real-

time data gathering for tree-topology based WSNs. They

proposed an offline optimization algorithm as well as a

distributed online algorithm for efficient modulation level

assignments and their simulation results have shown up to

90% energy savings. However, the proposed solutions were

not applicable to TDMA-based protocols and assumed very

minimal collision detection delay with light-weight traffic

scenarios.

The work in [37] also incorporated DMS into tree-

topology based WSNs. The novelty of the paper came from

combining energy harvesting with optimal modulation

level selection. The authors proposed a centralized optimal

as well as a distributed near-optimal solution.

The authors of [13] proposed a slack generation and

reclamation mechanism for real-time WSNs. They gener-

ated slack by analyzing data redundancies and by elimi-

nating redundant data transmissions which in return created

slack time. They then used this slack time to lower mod-

ulation levels to reduce energy consumption while meeting

deadlines. The same research group later formulated joint

scheduling of computation and communication tasks with

DVS and DMS respectively as Mixed Integer Linear Pro-

gramming Problem in [14]. They also proposed a polyno-

mial-time heuristic and compared it against the optimal

solution.

In [4], the authors applied DMS into cluster based

WSNs with probabilistic workloads. For this scenarios,

they formulated an optimal modulation level assignment to

minimize overall energy consumption while meeting the

deadlines. The same group later formulated optimal mod-

ulation level assignment for cluster based topologies while

taking energy harvesting information into account. They

have also proposed several polynomial-time algorithms

and compared against the optimal solution.

The work presented in [16, 17] also studied optimal

modulation level assignment for cluster based WSNs with

probabilistic workload information. The authors proposed

an efficient low-power-listening mechanism to dynamically

reallocate available slack times which the nodes can use to

lower their modulation levels.

The above papers, while important, exhibit a number

limitations. Most crucially, they all assume a discrete

output power level for a given modulation level. Although

a higher power level is necessary to increase the modula-

tion levels, the distance and current noise in the channel

will also affect the exact output level which needs to be

used for each pair of transceivers. Next, the modulation

schema that have been used in the performance evaluations

is primarily and mainly Quadrature Amplitude Modulation

(QAM). However, only 16QAM was recently added to

IEEE 802.15.4-2015 standard [22]. It is possible that the

selection of QAM in the vast majority of the DMS papers

followed from the use of theoretical energy scaling equa-

tions in QAM in pioneering research articles [10, 32]

papers, coupled with the absence of DMS capability in off-

the-shelf commercially available low-power radios. In

Sect. 5, we show our real world test results and how they

differ from what the generalized mathematical formulas

suggest.

IEEE 802.15.4 standard specifies many modulations for

its physical layer, including DSSS-OQPSK, MSK, FSK,

ASK, GFSK, SUN-OFDM, and MPSK [22]. More recently,

at the sub-GHZ level there are a number of commercially

available radios starting to be offered with support to dif-

ferent modulation methods. These include GFSK, FSK,

OOK, and MSK modulations [25].

Other work has been performed using SDR to analyze

the impact of DMS. This includes using SDRs in Inter-

Vehicle Communication domain [6]. This work has ana-

lyzed BPSK, QPSK, 16QAM, and 64QAM in 802.11p

stack. The authors reported the signal-to-noise ratios and

corresponding packet-delivery-ratios for each modulation

schema used. These tests were set up according to IEEE

802.11p standard where the underlying modulation is

OFDM and the aforementioned modulation schemas are

used as modulation mapping.
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3 A DMS primer

In this section we explain the fundamental underlying

principals of DMS. In essence, DMS exploits the tradeoff

between transmission time and energy consumption by

controlling the number of bits encoded per symbol.

Increasing (decreasing) the number of bits encoded per

symbol decreases (increases) the transmission time but

requires higher (lower) transmission energy consumption.

The energy consumption part is divided into two parts;

energy consumption from transmission denoted as ps, and

electronic circuitry consumption denoted as pe. These are

related by Eq. (1) [32]:

ps ¼ Cs � /ðbÞ � Rs

pe ¼ Ce � Rs

ð1Þ

Above, Rs is the number of symbols transmitted per sec-

ond, b is the modulation size, Ce and Cs are constants that

depend on the hardware, as well as the current environ-

mental conditions such as atmospheric conditions, trans-

mitter–receiver distance and temperature. /ðbÞ is the

scaling function given in Table 1, as suggested in [32]. As

can be seen, the specific increase in the energy consump-

tion depends on the modulation technique in use.

Transmission time is independent of the modulation

technique; it only depends on the symbol rate and modu-

lation size. The time to transmit a single bit is formulated

as tbit ¼ 1
b:Rs

where Rs is constant and equals to 62,500

symbols/s for 802.15.4 [22]. Hence, we can find that the

energy consumption to send a single packet can be

expressed as in Eq. (2), where Lpacket is the length of a

packet in bits.

epacket ¼ Lpacket � ðps þ peÞ � tbit

¼ Lpacket � ðCs � /ðbÞ þ CeÞ
b

ð2Þ

4 System model

In a typical system for environmental data monitoring,

there are 3 types of nodes; sensing-nodes, sense-and-relay-

nodes and a base-station. Sensing nodes are located on the

edge of the network whose only duty is to sense and report.

Sense-and-relay-nodes, on the other hand, not only sense

the environment but also receive packets from sensing-

nodes and forward it to other sense-and-relay-nodes or to

the base-station. Here sensing duty of sense-and-relay

nodes is optional. We also assume each node generates a

constant amount of data after each sensing operation. The

base-station is a node which is the final destination for all

the information collected from the network. Sensing and

sense-and-relay-nodes are assumed to be battery powered

whereas base-station has unlimited power supply. Most

importantly, we assume each node is equipped with a radio

that supports DMS.

Our system model also assumes the application using

this network is time-critical. More specifically, there is an

upper bound on the delay. All the sensed data from the

nodes needs to arrive to base-station within a specific delay

bound depicted as D in Fig. 1. This effectively implies that

each sensing-node’s packet generation rate, k, is 1 /

D. Also, the nodes are time-synchronized. This is a com-

mon requirement for ICN systems such as WirelessHART.

More importantly, optimization formulation presented in

Sect. 6 assumes we have a network such that the infor-

mation of a set of parent nodes to forward the packets given

a node and a modulation level (potentially different for

each {2, 4, 8} PSK modulations) is known. Also, we

assume the interference range given a modulation level

(once again different for each {2, 4, 8} PSK modulations)

and the set of nodes within that interference range is

known. ICNs typically have a centralized network manager

with full topological knowledge. WirelessHART for

example requires a centralized network manager who has

the global information about each link quality and network

topology. Each node submits health reports every 15 min.

These health reports contain neighbor table with observed

RSSI values as well as traffic rates, priorities and deadlines

[26]. It is network manager’s duty to compose a routing

graph (offline) according to these collected reports. In case

of a change in topology or significant changes in network

link qualities, network manager is expected to recompute

this routing graph.

Figure 2 shows an example network setup. Here {n1,n5}

are sensing-nodes. {n2, n3, n4, n6, n7} are sense-and-relay-

nodes, n8 is the base-station. The arrows show the direc-

tional links with a given modulation level. Please note that

these interference ranges are drawn as unit-disk models for

Table 1 Scaling functions

Modulation scheme 2b-QAM 2b-PSK 2b-PAM

/ðbÞ 2b � 1 ðsin P
2b
Þ�2 22b�1

3

Fig. 1 Delay bound
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ease of demonstration but this may not be the case for real-

world deployments. According to this setup, n1 can talk to

n3 using modulation levels 1 and 2. The Figure also shows

the communication range of n1 for each modulation level.

For 8PSK n1 has the interference range set of {n2}, for

4PSK {n2, n3}, for 2PSK {n2, n3, n4}.

Note that it is possible to apply the same system model

to multi-cluster networks such that each sensing-node and

sense-and-relay nodes can be replaced with a cluster where

a cluster head can report the aggregated sensing informa-

tion from its own cluster and forward it to other cluster

heads.

5 Software defined radio tests

The system model we have adapted (see Sect. 4) assumes

the performance of different modulation levels in terms of

the distance they can reach while preserving a healthy

communication is known. However, due to the lack of

commercially available hardware such information is not

available. The mathematical model which is generally

adapted by DMS enabled WSN researches (see Sect. 3) is

not sufficient for us to move forward with the solution for

the problem we are addressing in this paper. Therefore, we

have conducted various experiments and obtained empiri-

cal analysis of the relationship between energy, distance,

elevation difference, and packet delivery rate for DMS. We

present our results in this Section. We kept the scope of our

empirical analysis of DMS larger than what is needed for

this paper to make sure the results presented here can be

widely adapted for future researches in this domain.

We base our Software Defined Radio (SDR) experi-

ments on the Ettus USRP B210 radio [31]. SDRs differ

from traditional radios by implementing various compo-

nents such as amplifiers, modulators/demodulator, filters on

a software layer rather than hardware. This enables higher

configurability and flexibility for experiments in the DMS

realm.

The software we used is built using the GNURadio, an

open source platform that comes with a number of reusable

blocks. Figure 3 shows our transmitter and receiver

implementation. PSK modulation and demodulation blocks

are native GNURadio blocks. Our data source is a text file

consisting of randomly generated ASCII characters. The

subsequent blocks shown in Fig. 3 are needed to packetize

the data from the source file. We have chosen 128 bytes as

the packet payload length in order to comply with the IEEE

802.15.4 standard. Packetizing and tagging the input flow

allow the receiver to distinguish between data from noise

and other communications. We have also appended a 32-bit

CRC to make sure we consider only successfully received

packets after the demodulation phase.

In general, in order to successfully demodulate a signal

with PSK, there has to be a signal recovery process pre-

ceding demodulation as demonstrated in Fig. 4. The PSK

demodulation block already has signal recovery embedded

in it with adjustable parameters. However, it only outputs

the demodulated data, not the recovered signal. For the

demonstration purposes, we have created a signal recovery

process as described in [3].

Figure 5 shows the implementation of a signal recovery

process with the existing GNURadio blocks and only one

of the many possible techniques. Figures 6 and 7 show the

constellation display of QPSK-encoded signal before and

after the recovery process. Here Polyphase Clock Sync is

used for timing recovery, inter-symbol-interference, and

downsampling of sampling rate from 4 to 1 sample/s. The

next CMA Equalizer block is used to react to multipath

fading and as the final step the Costas Loop block is used to

correct phase and frequency offset. Even though this signal

recovery process could successfully lock the constellation

points, it may have locked them with a 0, 90, 180 or 270

degrees difference, a problem going forward with demod-

ulation. There are two ways to fix this. The first is to have a

predetermined access code and try each of the possible

phase difference to see which one decodes successfully.

The second is to use Differential PSK (DPSK) instead.

DPSK only transmits the phase shift difference as reference

to the previously submitted signal. Hence, no matter what

the phase difference between recovered and transmitted

signal is, the relative phase difference between consecutive

phase shifts still holds.

Before we present the results, we would like to elaborate

more on our experience with the aforementioned PSK

demodulation block’s performance, as potential hints for

future testbed implementations. First, in order to have

Fig. 2 An example network
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successful communication, we always had to start the

sender first and then the receiver; doing the the other way

around with significant delays prevented the receiver from

recovering the signal. We have also observed that it is not

always advisable to set the transmitter and receiver channel

gain values equally. In some cases, especially for higher

modulation levels, we have observed a lower receiver gain

compared to the transmitter gain yielded higher perfor-

mance especially for noisy enviroments. Last but not least,

it is very helpful to set the PSK Demod block parameters as

real-time configurable variables which can be tested on the

fly and adjusted accordingly to each modulation level and

environment conditions.

For our testing, we have configured our Ettus B210

Radios to use 915 MHz center frequency and 62,500

symbols/s symbol rate. We have also used 4 samples/s

which gave a total of 250 kb/s data rate (for BPSK and

QPSK 2 samples/s also worked well). The 915 MHz ISM

band was chosen due to its higher output power levels

Fig. 3 Implementation of transmitter and receiver in GNURADIO

Fig. 4 Steps of signal decoding

Fig. 5 An example PSK signal recovery process

Fig. 6 Received signal

Fig. 7 Recovered signal
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compared to 2.4 GHz center frequency with the same

output amplifier gain.

Our primary objective was to obtain empirical mea-

surement of energy consumption for different modulation

levels. To achieve this, we have measured the necessary

transmission power output with different noise levels to

establish reliable communication. In order to have a noise-

controlled environment and eliminate the effect of moving

objects, we used Faraday Cages shown in Figs. 8 and 9.

We have used a total of three Ettus B210 SDRs, one

sender, one receiver, one noise generator. We have placed

the sender and noise generator at equal distances from the

receiver to make sure signal and noise powers are equally

affected by the distance (Fig. 8).

5.1 Experimental results

In this section we explain the experiment setup and present

the results. Using these results, we also provide some

suggestions for future work in reliability and power

management.

5.1.1 Signal-to-noise-ratio testing

Most of the previous work involving DMS with low-power

wireless communication tends to assume constant energy

output levels per each modulation level and does not take

into account the fact that output energy consumption can be

controlled independent of the modulation level adjust-

ments, in particular by varying the output amplifier gain.

To better understand this issue we have measured signal-

to-noise-ratios (SNRs) of MPSK modulation and the cor-

responding packet-delivery-rate (PDR), for a given modu-

lation level but by varying the amplifier gain. Here higher

SNR values correspond to higher transmission power

consumption. Our primary goal in this set of experiments is

to analyze the energy increase required to have a reliable

communication with different modulation levels and vari-

ous output power levels using the MPSK modulation.

Each test involved sending 300 KB of payload. In order

to make sure the results were minimally affected by our

design, we created a control case by averaging how much

data we can decode without any noise using the second

modulation level. Hence, we have compared the amount of

the data received to this control case value to compute the

reported PDR values. The control case was never able to

receive all of the 300 KB of data. The highest we could

decode was 99.9%. This is because the signal recovery

process takes a while and loses some of the initial data.

This can be fixed by sending a data link layer preamble

before the data packets or creating a more robust and

optimized demodulation process. We believe the latter will

be the case when DMS-compliant low-power radios are

commercially available. Each PDR point is averaged over

100 experiments. Lastly, we have adjusted AWGN noise

level to at 10% of the maximum analog gain of Ettus B210

radios (max gain is 89.8 dB) and adjusted transmission

gains accordingly to create the desired SNR ratio in deci-

bels. The formula used to compute SNR in dB is

10 log10ðPsignal=PnoiseÞ. For the Psignal=Pnoise ratios greater

than 10 times, we have reduced the noise level. The

receiver gain values varied across the different settings.

Hence, the reported increases in transmission power are

only for the transmitter but a close approximation for the

receiver.

Figure 10 shows the results obtained for {2, 4, 8, 16}

PSK. In addition, we have also plotted the ideally scaled

values calculated for {4, 8, 16} PSK using the scaling

function reported in Table 1 by using empirical 2PSK

measurements as the base case. We can see a marked

difference between the ideally scaled values and empirical

measurements. In order to have at least an average PDR of

99% 2PSK required an SNR of 4. For 4PSK, this value

increased by a factor of 6 (to 12). However, the scaling

Fig. 8 Inside look

Fig. 9 Outside look
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function suggests only an increase of 4 times. 8PSK

required an SNR of 16, an increase of 2.5 times over 8PSK,

which is much lower than what the scaling function sug-

gests. Unfortunately for 16PSK case, the best we could

received was an average of 33% PDR (we were unable to

pass 35% even in the absence of noise). This may be due to

not having enough output power level and as well as low

performance of signal recovery process of built in PSK

demodulation for higher constellation sizes also the noise

generated by the transmitting SDR and the internal noise of

the receiving SDR’s hardware. However, if we compare

this 33% PDR value to 8PSK, a 2.5 times increase is

observed, once again a value lower than what the scaling

function suggests.

Next, we repeated the same experiments with Differ-

ential PSK (DPSK) modulation. This time no ideal scaling

is plotted due to unknown scaling function of DSPK to us.

It has been shown that in communications over fading

channels DPSK is preferable over PSK. DPSK uses the

previously transmitted symbol interval’s phase as a refer-

ence to decode the current symbol interval. In channels

with slow condition variations compared to the symboling

rate, DPSK gives good performance [12, 19].

Figure 11 validates the better performance of DPSK

over PSK. The results of 2DPSK and 2PSK were very close

and both required an SNR value of 4 to have at least a 99%

delivery rate. The major difference is observed for {4, 8,

16} DSPK. 4DPSK achieved 99% PDR for SNR = 5 and

required roughly 1.25 times more output gain compared to

2DPSK. This value was 6 for 4PSK. 8DPSK achieved the

same PDR for of 12 which is 5 times the output gain

compared to 4DPSK. However, it only required 6 times the

output gain of 2DPSK. Lastly, 16DPSK also required 5

times more output gain compared to 8DPSK. {4, 8, 16}

DSPK all performed better than the ideally scaled PSK

results as expected; 31%, 39%, 50% of the ideally scaled

results, respectively.

A final conclusion can be drawn from both Figs. 10 and

11; we can see that the scaling ratios between consecutive

modulation levels vary and are not a constant value.

Translation from the results reported in Figs. 10 and 11

to the exact energy consumption of an 802.15.4 compliant

radio will depend on the hardware design (the constants

mentioned in Sect. 3), efficiency of the demodulation

technique, as well as the channel access algorithm. As with

many wireless standards, the 802.15.4 data link layer has

two operating modes: The beacon mode and non-beacon

mode. Beacon mode consists of two phases; contention

allowance period (CAP) and contention free period (CFP).

During CAP the nodes use slotted-CSMA to get an access

to channel and in CFP the nodes have guaranteed time slots

where the nodes take turn for channel access in time

division multiple access fashion. Non-beacon mode is a

simple CSMA access mechanism. For both cases the nodes

assess the current noise level in the channel before trans-

mitting. Since our reported results are based on SNR val-

ues, lower noise levels will require lower output power.

However, the increase in power consumption between

different modulation levels will remain valid for a given

noise level.

It is now time to give a real-world use case where

reported SNR based energy consumption is quite useful.

Protocols for Wireless Industrial Control Networks (ICNs)

such as WirelessHART or ISA 100.11a require real-time

packet delivery with application specific packet delivery

rate requirements. Wireless ICN protocols typically uses

time-division-multiple-access based channel access mech-

anism with primary and backup time slots for reliability

[28, 33]. In an application where a 98% PDR is the goal,

SNR-based output power control provides a very fine tuned

energy control mechanism. In this scenario rather than

aiming for 98% or above delivery rate with a single

transmission, aiming for a lower PDR rate and retrans-

mitting in case of a packet loss may give a lower expected

energy consumption. For example, if we are aiming for at

least a 98% PDR using 16DPSK, we can either use an SNR

value of 18 and transmit only once or use 15 (88% PDR)

with a retransmission if fails. In the latter, we will have to

Fig. 10 SNR–PDR comparison of empirical measurements and

ideally scaled calculations for MPSK

Fig. 11 SNR–PDR comparison of empirical measurements for

MDPSK
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retransmit with a probability of 12% which will give a total

of 98.56% PDR. Using an SNR of 18 with a single trans-

mission will consume 1.78 times more energy as oppose to

the expected energy consumption of using 15 with

retransmission. Integrating DMS into this scenario gives

the application the ability to not only fine tune its output

power level but also take advantage of available trans-

mission delay. An application can use a lower modulation

level as long as the time slot length is large enough. Let us

assume the primary time slot requires modulation level 16

whereas the backup slot can compensate for 8 (twice as

long). Once again aiming for 88% PDR in both time slots

for an expected PDR of 98% will consume 52% of a single

transmission energy consumption.

We also suggest a slightly different perspective to the

application of DMS in the low-power wireless domain. The

primary focus of DMS-enabled low-power protocols has

been energy management, and DMS is utilized as a

tradeoff between time and energy while keeping PDR

constant. In other words the goal is to manage output power

while achieving the same PDR. However, it is also possible

to view DMS as a reliability mechanism that provides a

tradeoff between time and reliability. In other words, DMS

can be used to keep the output power constant while

reducing the modulation level in order to achieve the same

or higher PDR. For example, let us assume we have a

sensor mote which is currently using 8DPSK and achieving

97% PDR with a SNR value of 11. Now assume that there

is a sudden change in channel condition which reduced our

SNR value to 7. Instead of increasing the output power to

restore SNR value back to 11, the mote can decrease its

modulation level to 4 and still achieve 97% and above PDR

while using the same output power level as long as the

latency requirements are not violated. Even in non-

changing channel conditions where SNR ratio is fairly

constant, if the current quality-of-service requirements of

the application-layer protocol changes and requires a

higher PDR, it is still achievable with the same transmis-

sion power by decreasing the modulation level rather than

increasing output gain. We believe this type of DMS

application is just as important and a viable direction for

the future research of DMS in low-power wireless

networks.

5.1.2 Distance testing

In the next set of experiments, we tested the PDR of

M-DPSK in terms of distance. Distance testing is important

due to its impact on topology control. In wireless domains,

topology control is mainly used to find an optimal subset of

the nodes in the network to ensure connectivity. Notice that

connectivity may have slightly different meaning in the

low-power domain, so here we are referring to the ability

that each sensing node can successfully communicate with

the coordinator with or without using relay nodes. One

important advantage of this approach is that nodes can

better manage their sleep schedules [2]. DMS gives the

ability to control the transmission distance without

increasing the output power consumption but with a pen-

alty of increased transmission delay.

Figure 12 shows the picture of the test area. We chose

this location because it was very isolated and we measured

very weak WiFi activity. Also, it allowed us to test up to

100 m. The location of the receiver was chosen in such a

way that the multi-path fading was minimal and it was

located in the exact same spot for each test. The location of

the sender was adjusted accordingly for each desired dis-

tance on a straight line. The readers should be aware that

the results can change significantly for different environ-

ments especially indoor or urban areas.

Our first experiment was conducted in the 2.484-GHz

center frequency with the same parameters used for the

SNR tests. Low-power radios such as CC2420 has 0 dBm

maximum transmission power. Hence, our goal was to set

our SDRs to use 0 dBm output power as well. However,

SDR only allows us to configure its output amplifier gain

(in dB) which produces different absolute transmission

power levels depending on the center frequency being

used. In order to get very accurate mapping of output

amplifier gain to the absolute transmission output power,

spectrum analyzer and highly sensitive power monitors are

needed. We identified a forum post on the official National

Instruments website by a SDR Product manager of the

company, which provided their internal test results of

mapping amplifier gain to specific output power for dif-

ferent center frequencies using the Ettus B200 series SDRs

[20]. According to their internal test results an amplifier

gain between 61 and 75 dB corresponds to 0 dBm output

Fig. 12 The test area that was used for distance measurements.

Sender and receiver are 100 m apart
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power. In order to pinpoint a specific gain value within this

range, we have measured RSSI values with Zolertia Z1

motes set as sender and receiver equipped with CC2420

radios—manufactured by Texas Instruments [24]—trans-

mitting at 0 dBm. Next, we have repeated the same test

with the same Z1 receiver instead of Ettus B210 trans-

mitter. An output gain of 70 dB gave the closest RSSI

values to match 0 dBm absolute transmission output

power.

Figure 13 shows the results we obtained for {2, 4, 8}

DPSK. We were unable to decode any signal using

16DSPK with 70 dB output amplifier gain. The error bars

seen on the graph are 95% confidence levels. From these

tests, we can conclude that increasing modulation levels

decreases PDR at a specific distance (Figs. 14, 15).

We then repeated the same test with the 915-MHz center

frequency. National Instruments internal tests indicate

70 dB amplifier gain corresponds to a little less than

10 dBm output power. Similarly, Texas Instruments sub-1-

Gig low power radios have around 10 dBm maximum

output power as oppose to 0 dBm of CC2420 2.4 GHz

radio. As expected PDR has increased for each modulation

level for each distance value significantly. So much that

both 2 and 4 DPSK has maintained above 90% delivery

rate for up to 100 m. This increase is due to aforemen-

tioned increase in the output power level. For a good

measure of comparison we ran tests with 915 MHz but this

time with 60 dB amplifier gain. This gain value corre-

sponded approximately to 0 dBm according to National

Instruments internal tests [20]. However, this time we did

not have a sub-1gig radio to compare RSSI values. We

have observed similar but slightly better results compared

to 2.4 GHz. This was likely due to a combination of

slightly higher output power level created by 60 dB gain

915 MHz center frequency as oppose to 70 dB 2.4 GHz

and lower free space propagation loss of 915 MHz band as

oppose to 2.4 GHz band [29].

Lastly, we have expanded our distance testing to include

wide variety of output amplifier gain values. Our opti-

mization problem (see Sect. 6) assumes the energy con-

sumption per modulation level, distance and output power

level is known. In order to set realistic parameters for our

simulation setup, we have run these additional SDR tests.

These tests aim to find the PDR given a modulation level,

sender–receiver distance and output power level. To

accomplish this, we have used various output power levels,

specifically �10;�7;�5;�3;�1; 0 dBm levels which

CC2420 supports [24]. More precisely, we have set the

output and receiver amplifier gains to 60, 63, 65, 67, 69,

70 dB respectively to achieve the desired power output

levels using 2.485 GHz center frequency. Figures 16, 17,

Fig. 13 Packet delivery rates of different modulation levels using

2.4 GHz center frequency with 70 dB output amplifier gain in terms

of distance

Fig. 14 Packet delivery rates of different modulation levels using 915

MHz center frequency with 70 dB output amplifier gain in terms of

distance

Fig. 15 Packet delivery rates of different modulation levels using 915

MHz center frequency with 60 dB output amplifier gain in terms of

distance
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and 18 shows the obtained results for 2DPSK, 4DPSK,

8DPSK respectively. In these Figures, you can see distance

matrix on the x-axis, output power levels on z-axis and

corresponding PDR values on y-axis.

These results have important implications for topology

control. Connection driven topology control protocols such

as Span [8], ASCENT [7] aim to find the minimum number

of relay nodes necessary to forward packets to the coor-

dinator. The goal is to reduce the number of active nodes

and hence the number of hops. Lowering modulation level

allows approaches that work by enabling nodes to broaden

their communication range while reducing their energy

consumption. As a result, these similar topology control

protocols can further reduce the number of active relay

nodes. Assume an example where a sensing node is 120 m

away from the coordinator and needs 2 relay nodes posi-

tioned 40 m apart to forward its packets using modulation

level 4. According to our tests, reducing modulation level

to 2 will increase the reliable communication range up to

60 m and only a single relay node will be sufficient to

forward the packets. Here, the total energy savings will be

the sum of energy saving from the sensing node, relay node

and coordinator by reducing their modulation levels and

energy savings by putting a relay node into deep sleep, a

figure which is quite significant.

5.1.3 Elevation testing

In our last set of experiments, we have measured PDR of

{2, 4, 8} DPSK in terms of elevation difference between

sender and receiver. We have placed the sender outside of a

building at 1.08 m, 8.9 m, and 13.6 m high in reference to

the receiver. The receiver is placed on the ground level

(slightly elevated). Figure 19 shows the tests area and

Fig. 20 shows the height of the sender and the distance

between sender and the receiver. In applications such as

residential automatic meter reading, it is possible for sen-

der and receiver to have elevation difference such as a

transmitter can be placed on a current-meter higher of the

ground or an application where an elevated pipeline

equipped with sensors broadcasting the current pressure

inside the pipe.

Figure 21 shows the PDR of {2, 4, 8} DPSK with 915

MHz center frequency and 60 dB output amplifier gain as

we have used in Sect. 5.1.2. Some conclusions we draw

can be listed as follows: (1) Higher elevations cause higher

packet loss for both 915 MHz and 2.484 GHz center fre-

quency although 2.484 GHz center frequency with 70 dB

output amplifier gain had higher PDR for both 4 and 8

DPSK as shown in Fig. 22. We should mention here that

we were using different antennas for 915 MHz and

Fig. 16 2DPSK packet delivery rate given a transmitter–receiver

distance and an output power level

Fig. 17 4DPSK packet delivery rate given a transmitter–receiver

distance and an output power level

Fig. 18 8DPSK packet delivery rate given a transmitter–receiver

distance and an output power level
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2.484 GHz tests that are both omni-directional vertical

antennas (Ettus Research VERT900 and VERT2450

respectively). Different antennas may have different

polarization characteristics typically either vertical, hori-

zontal or circular in x–y axis. Elevation difference requires

the signals to be transmitted in the z axis where VERT900

and VERT2420 antennas likely to have different charac-

teristics in this direction. (2) 2DPSK seems to be not

effected by the elevation difference with the tested output

gain values making it the best candidate for the afore-

mentioned types of applications. (3) If we compare the

results from Figs. 21 and 22 with Figs. 13 and 15, it shows

us that elevation difference has a higher impact on PDR

compared to distance difference with the same elevation.

Figures 13 and 15 indicates that all the modulation levels

have 80% or above PDR for distances up to 20 m ( with no

elevation difference) whereas when the transmitter is ele-

vated 13.6 m and placed 17.48 m apart from the receiver,

the PDR reduces dramatically for 4 and 8 DPSK as low as

54% and 28% respectively .

6 Optimization problem formulation

Previous work in literature has shown that connection

driven topology control has tremendous potential to

decrease energy consumption and/or latency

[2, 7, 8, 11, 27]. DMS changes transmission energy levels

Fig. 19 Test area that was used for elevation tests. Receiver is placed

on the ground and the sender is elevated

Fig. 20 The height of the sender and the distance of the sender from

the receiver

Fig. 21 Packet delivery rates of difference modulation levels using

915 MHz center frequency with 60 dB output amplifier gain in terms

of elevation difference

Fig. 22 Packet delivery rates of difference modulation levels using

2.484 GHz center frequency with 70 dB output amplifier gain in

terms of elevation difference
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and has a direct impact on packet loss rate and propagation

distance. However, current work does not provide any

multi-cluster communication solutions which incorporate

DMS into already managed transmission energy level

control. In this section, we address this gap by formulating

Mixed Integer Nonlinear Programming formulation of

DMS enabled transmission scheduling for deadline driven

networks. Later in Sect. 7, we explain how to convert it to

a linear programming problem.

Here, we present the optimization problem formulation

of a given a network topology with known potential parent

nodes per modulation level, choose a parent and a modu-

lation level for each node while minimizing the total net-

work energy consumption given a maximum delay bound of

when the base station has to collect all the information

from the network.

Figure 23 gives an example case from a single node’s

perspective, node4 in this case. The arrows show the con-

nection between nodes with possible modulation levels and

corresponding delay and energy consumption values. The

goal is to find a path from node4 to the base-station,

denoted with b, bounded by 3t. There are three possible

routes in this case; r1 : n4 ! n2 ! n1 ! b,

r2 : n4 ! n3 ! b, and r3 : n4 ! n1 ! b. The lowest delay

r1 can provide is 3t with 12e of corresponding total energy

consumption. For r2 and r3, these values are 4t with 2e and

3t with 5e respectively. Only r1 and r3 satisfies the given

delay bound where r3 has the lower corresponding energy

consumption. Hence, in this example n4 should use r3.

Our optimization formulation finds these paths for each

node and their transmission start times such that the total

energy consumption of the whole network is minimized

while the time it takes to collect data from each node is

bound by the given deadline. Table 2 is the list of the

variables and their definitions used in our problem for-

mulation. The integer variables in our formulation are the

bi;kl and Ii;k binary integer variables. The remaining vari-

ables are real numbers (except for IRi
l which is a set). When

bi;kl equal to 1, that means node i will transmit to node

k using modulation level l. The same notation is also used

for the remaining variables. The value of e
i;k
l might differ

for each link even for the ones which are using the same

modulation level depending on the current noise level of

the channel as well as the distance between transmitter and

the receiver. Energy consumption between node i and all

non-reachable nodes are set to 1. Similarly, delay variable

d
i;k
l is also set to 1 if node i cannot reach node k via

modulation level k.

min.
Xn

i¼1

Xn

k¼1

Xbmax

l¼bmin

bi;kl e
i;k
l ð3aÞ

s.t.
Xn

k¼1

Xbmax

l¼bmin

bi;kl ¼ 1 ð3bÞ

bi;kl ðSi þ d
i;k
l Þ ¼ bi;kl Ei ð3cÞ

bi;kl Ei � Sk ð3dÞ

bi;kl Ei � bi;kl ðSj þ Ii;jQÞ ð3eÞ

bi;kl Ej � bi;kl ðSi þ ð1� Ii;jÞQÞ ð3fÞ

bi;ki1 b
m;t
l2
Ei � bi;ki1 b

m;t
l2
ðSm þ Ii;mQÞ ð3gÞ

bi;ki1 b
m;t
l2
Em � bi;ki1 b

m;t
l2
ðSi þ ð1� Ii;mÞQÞ ð3hÞ

Si � 0 ð3iÞ

Sbasestation �D ð3jÞ

bi;kl 2 f0; 1g ð3kÞ

Ii;k 2 f0; 1g ð3lÞ

Equation 3a is the objective function which is to mini-

mize the total sum of each node’s energy consumption.

When bi;kl is 1, we sum the corresponding energy con-

sumption of node i transmitting to node k using modulation

level l.

Constraint 3b forces each node to select a single mod-

ulation level and a parent node to transmit its data.

Constraint 3c sets the transmission end time of each

node, Ei, to its transmission start time plus transmission

delay of the chosen parent and chosen modulation level. Ei

is an auxiliary variable to ease the readability of the for-

mulation. When bi;kl is 1, the transmission start time of

node i (Si) plus the transmission delay of node

Fig. 23 Optimization problem demonstration from a single node’s

perspective
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i transmitting to node k using modulation level l (d
i;k
l )

equals to the transmission end time of node i.

Constraint 3d makes sure if node i chooses node j as its

parent then node j can start transmitting only after node

i stops transmitting. If there are are multiple nodes who

transmits to node k, Sk has to be greater than the largest Ei

value which implies that a node can start transmitting only

after all of its children stops transmitting. When bi;kl is 0, Sk
has to be greater than or equal to 0 which is trivial.

Constraints 3e and 3f ensure the nodes which are

interfering with each other do not transmit simultaneously.

More specifically, either the start time of node i is after the

end time of node j or the start time of node j is after the end

time of node i. When bi;kl is 1, for all the nodes which are in

node i’s interference range of modulation level l the fol-

lowing holds; Ei � Sj þ Ii;jQ and Ej � Si þ ð1� Ii;jÞQ. If Ii;j
equals to 1 then it becomes Ei � Sj þ Q and Ej � Si. Since

Q is a very large number Ei �1 is trivially satisfied and

node i is allowed to transmit only after node j stops

transmitting. If Ii;j equals to 0 then the constraints become

Ei � Sj and Ej � Si þ Q. The second constraint is trivially

satisfied again and node j is allowed to start transmitting

only after node i stops transmitting.

Constraints 3g and 3h are to prevent collision due to

hidden node problem. Even though we have prevented

interfering nodes from co-scheduling (Constraints 3e and

3f), it is still possible to have colliding nodes. In Fig. 24

nodes i and m are not within each other’s interference

range. However, if they were to transmit to nodes k and

t respectively, node k may not have been able to recover i’s

signal since k is within interference range of m. Hence,

node k shouldn’t be scheduled to receive any packets while

node m is transmitting. When node i transmitting to node

k and any node which node k is in its interference range is

also transmitting, the product bi;kl1 b
m;t
l2

becomes 1. Here we

used two different variables for the modulation levels l1
and l2 to emphasize that the nodes i and m might be using

different modulation levels and node k has to be in the

interference range of node m’s currently chosen modula-

tion level l2. When this holds, the constraints becomes

Ei � Sm þ Ii;mQ and Em � Si þ ð1� Ii;mQÞ. Using the same

logic we have demonstrated for the Constraints 3e and 3f,

these conditions enforces either the transmission start time

of node m to be after node i’s transmission end time or vice

versa.

The remaining constraints are straight forward. Con-

straint 3i is to make sure nodes do not start transmitting

prematurely whereas Constraint 3j is to enforce the dead-

line which is to make sure base-station receives all the

packets in at most D seconds. Lastly, Constraints 3k and 3l

defines the variable b and I as binary integers.

6.1 Polynomial time heuristics

Generally, integer programming problems are known to be

intractable. We therefore designed polynomial time

heuristics. To evaluate the performance of the optimization

problem described in Sect. 6, we have designed two

polynomial time heuristics (explained in Sect. 6.1) and

Table 2 The variables used in the problem formulation and their description

e
i;k
l

Transmission plus computation energy consumption when node i sends a packet to node k via modulation level l

d
i;k
l

Transmission and computation delay when node i sends a packet to node k via modulation level l

bi;kl Binary integer variable to ensure node i only picks a single parent node k to send its packets

Si The time when node i starts transmitting

Ei The time when node i stops transmitting

Ii;k Binary integer variable to ensure only node i or node k is scheduled to transmit at any given time, never both

n Total number of nodes in the tree

IRi
l

Modulation l interference range of node i

D Deadline constraint

Q A very large number

Fig. 24 Hidden node scheduling problem
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compared them against the optimal solution. There are

some components which are shared by both, and are now

explained next.

6.1.1 Finding the minimum delay path

First shared step is finding the minimum delay path. This

step involves running Dijkstra’s shortest path algorithm

from each node until the shortest path to the base-station is

found. We assigned the delay of each edge as its weight.

Let’s call the total number of nodes in the network

including the base-station n, and the total number of

modulation levels b. Complexity of Dijkstra’s algorithm

implemented with a binary heap is OðjEj þ jVjlogjV jÞ [5].
In our set up, the number of edges in the worst case is

b � n2. Hence each Dijkstra’s algorithm run is

Oðb � n2 þ n log nÞ. We run Dijkstra’s algorithm from each

node so the total is Oðb � n3 þ n2 log nÞ. Here b is constant

so the total complexity is Oðn3Þ.
After the end of this process, each node now knows their

shortest path parent and which modulation level to use

when sending to the base-station.

6.1.2 Interference aware ordering

The next shared step is interference aware ordering. This

step aims to find a schedule among all the nodes such that

no interfering nodes will be co-scheduled as well as no

parent will be scheduled before its children. In order to

accomplish this, we run a topological sort on the directed-

acyclic-graph (dag) generated after the first step described

above. Topological sort of a dag is the ordering of its

vertices such that if there is an edge (u, v), u appears before

v in the ordering. After we know the topological sort of the

dag, we start assigning orders to the nodes as the following.

We initialize each node’s order to - 1. Following the

topological sort, each node is assigned the first available

order in the range [maximum order of its children þ 1,

maximum order among all the nodes in its interference

range of every modulation level and their minimum delay

parents þ 1]. Moreover, when a node is assigned an order,

its parent node is also temporarily assigned the same order

to prevent interference due to hidden node. Topological

sort makes sure no parent is scheduled before its children

and our ordering mechanism makes sure no interfering

nodes are co-scheduled. Time complexity of topological

sort is OðjV j þ jEjÞ, the worst case number of edges in our

setup is b � n2 where b is number of modulation levels and

n is the number of nodes in the network including the base-

station. The time complexity of assigning orders is Oðn2Þ.
All together, the total time complexity of this step is

Oððbþ 1Þ � n2 þ nÞ which is Oðn2Þ.

6.1.3 Computing minimum delay

The third and the last shared step is computing minimum

delay. Since now we know each node’s minimum delay

parent, minimum delay modulation level and its order, in

this step we compute each node’s minimum delay such that

the minimum time it takes for that node to send its packet

to the base-station. This is calculated by first computing

time-slot lengths. There are same number of time-slots as

the maximum order value (the order of the base-station).

Each time slot length is equal to the maximum delay of the

nodes which has the same order as that time slot number.

Minimum delay of a node is then computed by summing up

the time slot lengths from its order till (and including) the

order of the node in its shortest path which is directly

connected to the base-station. The calculated minimum

delay of a node means this is the shortest time it would take

for this node to send its packet to the base-station according

to the path and ordering chosen by the previous steps. The

time complexity of computing time slot lengths is O(n).

Computing minimum delay of each node can be done

recursively such that mindelay(i) = sum of time slot lengths

from i to its minimum delay parent p ? mindelay(p). And if

we memoize the previously computed minimum delay

values, each node is only visited once and hence the time

complexity is O(n). The total time complexity of this step

is O(2n) which is O(n).

The total time complexity of all shared steps is Oðb �
n3 þ n2 log nþ ðbþ 1Þ � n2 þ 3nÞ where b is a constant and
equals to the number of modulation levels and n is the

number of nodes in the network including the base-station

which is Oðn3Þ.
Next, we describe our heuristics.

6.1.4 Aggresive

Our first heuristic starts with computing minimum delay of

each node by following the steps described in the beginning

of this section. When given a maximum delay bound, a.k.a.

deadline, Aggressive first checks to make sure the minimum

delay of each node is at least as long as the deadline. If all

the nodes can meet the deadline, we calculate the slack

which is the difference between the delay of node with the

longest minimum delay and the deadline. As long as the

slack is large enough to compensate for the additional delay

by a reduction of a modulation level, the time-slot which has

the most number of nodes with minimum delay modulation

levels greater than the lowest modulation level is chosen.

The modulation levels of these nodes are reduced by one

level. The slack is then recomputed and the process is

repeated till we no longer have a large enough slack.

Algorithm 1 is the pseudocode of Aggressive.
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Comparing minimum delay of each node against the

deadline can be done in O(n) time complexity. Finding the

time-slot with the with the highest number of nodes with

modulation levels greater than bmin can be done in O(2n);

first by going over the each node and updating the corre-

sponding time-slot information and then by iterating over

the time-slots to return the maximum. In the worst case each

node will occupy a different time-slot and hence it will take

O(n) time. Lowering each node’s modulation level can also

be done in O(n) in the worst case which in when all the

nodes share a single time-slot and all are eligible for a

modulation level reduction. The time complexity of com-

puting minimum delays of the nodes are explained in the

third bullet of the shared steps explained previously which is

O(2n). The while loop can at most loop for ðb� 1Þn times

since each node can at most reduce its modulation level

b� 1 times. Hence the total complexity of Aggressive

without the initial shared steps is Oð5ðb� 1Þn2 þ nÞ if we
include these steps the time complexity becomes Oðbn3 þ
n2 log nþ ð6b� 4Þn2 þ 4nÞ which is Oðn3Þ.

6.1.5 Explorer

Our second heuristic is an improved version of Aggressive

where it also starts with computing the minimum delay of

each node by following the shared steps with one addition:

while we are running Dijkstra’s algorithm to compute the

minimum delay paths, we also store the cumulative

energy consumption of each node. Suppose a node’s,

nodea’s, cumulative energy consumption equals to the sum

of each node’s individual energy consumption which are

on that nodea’s shortest path including nodea.

Using the collective information of both cumulative

energy consumption and minimum delay, the nodes now

explores more options to forward their packets other than

their minimum delay parents. Instead of aggressively for-

warding packets to their minimum delay parents, now the

nodes look among all the nodes within its reach with higher

order number and picks the one with the (minimum

cumulative energy consumption ? energy to send to it)

among the nodes which have short enough (minimum

delay ? delay to send to it) value to meet the deadline.

Algorithm 2 shows the pseudocode of the Explorer

Heuristic.

Explorer keeps track of each node’s individual deadline

requirement separately. This is because each node’s
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individual deadline will change according to the nodes’

which pick it as their parent. Algorithm 2 starts with ini-

tializing each node’s individual deadline requirement to the

given application’s deadline requirement. Then, it proceeds

node by node from the one with the smallest order to the

largest. Let’s assume Explorer currently picked nodei and

will try to find a parent for it. The other nodes need to

satisfy two conditions to be qualified as a candidate; (1) its

order has to be greater than the nodei’s, (2) its minimum

delay has to be less than or equal to nodei’s individual

delay. By iterating over the nodes according to their orders

and picking the nodes with greater order ensures that the

minimum delay computed initially still holds because the

nodes with greater order still has the potential to pick their

minimum delay parents if necessary. Nodei picks the node

with the lowest cumulative energy consumption among the

set of candidates, let’s call this nodej. Next the individual

delay of nodej has to be updated. Nodej now has to be

make sure it can delivery the packet in the worst case of

(individual delay of nodei—transmission delay from nodei
sending to nodej by using the chosen modulation level).

Only updating the individual delay of nodej is not enough.

Not only nodej but also all the nodes with greater order

than nodei’s has to have at least the individual delay of

nodei. This is because if any of the nodes with greater order

than nodei’s, delivers its packet with a longer delay than of

nodei’s individual delay then there is a chance for nodei to

miss the deadline.

After Explorer picks a parent for each node, it recom-

putes the interference aware ordering with the new set of

edges. Please recall that interference aware ordering was

topological sort based, now with the new set of edges, it is

possible for a node to be a leaf node whereas it was not

according to initially computed shortest paths based on

Dijkstra’s algorithm, this has the potential to lower its

minimum delay because now it does not have have to wait

for its children and grandchildren to finish before start

transmitting. On the down side, the nodes which has the

same order with different minimum delay parents might

now be interfering if Explorer was to choose them the same

parent. Because of the potential changes in ordering,

Explorer recomputes the orders and checks if the deadline

is still met. If so it runs the Aggressive Heuristic with the

new edges chosen by Explorer. Otherwise, the Aggressive

Heuristic is run with the edges chosen by Dijkstra’s algo-

rithm as if Explorer did not even execute to begin with.

Sorting the nodes according to their orders take

Oðn log nÞ time. There can be at most bðn� 1Þ nodes with
the reach to be a parent candidate per node. Hence the for

loop of Algorithm 2 has the time complexity of

Oðn log nþ bnðn� 1ÞÞ. We have already discussed the

time complexity of interference aware ordering and

computing minimum delay which are Oððbþ 1Þ � n2 þ nÞ
and O(2n) respectively. The time complexity of the last

step which is to run Aggressive Heuristic without the

shared steps is Oð5ðb� 1Þn2 þ nÞ and the time complexity

of the shared steps were Oðb � n3 þ n2 log nþ
ðbþ 1Þ � n2 þ 3nÞ. altogether the time complexity of

Explorer becomes Oðbn3 þ n2 log nþ 8bn2 � 3n2 þ
n log nþ 7nÞ which is Oðn3Þ.

6.1.6 noDMS

Our last algorithm is designed to compare the performance

our heuristics against no dynamic modulation scaling based

energy management. Here, we assume the nodes are

equipped with radios fixed to a modulation level which will

guarantee to meet a given deadline. However, noDMS is

capable of selecting different output power levels based on

the distances between pair of nodes for a given modulation

level.

noDMS follows a greedy algorithm where each nodes

picks a parent which is closest to itself and hence uses the

lowest possible output power levels to communicate.

7 Performance evaluation

In order to evaluate the optimal solution and the heuristics,

we have created a custom Java simulator to simulate var-

ious network setups. The implementation of optimization

problem is done by using IBM ILOG CPLEX Optimization

Studio libraries [23].

In order to use CPLEX we needed to take the following

into account. In the Mixed Integer Nonlinear Programming

formulation we have presented in Sect. 6, the Con-

straints 3c, 3e, 3f, 3g and 3h are not necessarily convex

functions which is a problem for the CPLEX software

because CPLEX will throw an exception and stop execu-

tion when faced with non-convex constraints. To overcome

this issue and convert the formulation into a linear pro-

gramming problem, we needed to create an additional

auxiliary variable, z, for each integer variable indicator (b)
and a continuous variable (S and E) product such that:

z� deadline � b
z� 0

z� S

z� S� deadline � ð1� bÞ

Here is b is 0 then z� 0 and z� 0 forces z to be equal to 0.

If b is 1 then z� S and z� S forces z to be equal to S.

Lastly, for the deadline factor of 1 all the algorithms,

except for Optimal, choose the closest parent to itself and
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only uses 2DPSK since meeting the deadline is trial and

does not require DMS.

7.1 Network topology setup

Our simulation starts with the network topology setup

process with the following parameters:

• x–y plane size: The size of x axis and the y axis of the

setup area.

• number of nodes: The total number of nodes in the

network in addition to the base station.

• energy consumption: The energy consumption of each

modulation level per transmitter and receiver distance

obtained from Figs. 16, 17, and 18.

• delay: The time it takes to send a packet per modulation

level.

• deadline factor: the percentage of the longest delay

which is when each node is using the lowest modulation

level. For example when deadlinefactor is 0.6 that

means the delay bound D of the Constraint 3j is

(number of nodes x delay of a transmitting a packet

with modulation level 1 � 0.6).

We preset the location of the base-station and x, y positions

for the remaining nodes are randomly generated while

making sure no two nodes are assigned the same coordi-

nates. Next step is to setup the connections. For each pair

of nodes (including the base-station), their straight line

distance to each other is computed and the energy con-

sumption for this pair of nodes per each modulation level is

assigned as the following; for each curve that is plotted in

Figs. 16, 17, and 18, we have fitted the curves with 5th

degree polynomial trend-lines with the coefficient of

determination values of 0.99 and above. We have then

assigned the corresponding smallest possible output power

levels while making sure there is at least 75% PDR. This

corresponds to the e
i;k
l parameter of our MINLP where the

pair of nodes are i and k and the modulation level is l. If

this pair of nodes are unreachable for a modulation level or

has a PDR of less than 75%, the energy consumption and

the delay of that modulation level is assigned to infinity.

Moreover, we have assumed the interference range is 1.2

times of the communications range [38]. If after this pro-

cess, there exists a node such that it is not within the reach

of any other node, then we reassign a new location to that

node, once again randomly. This process is repeated till

every node is connected.

7.2 Results

In our first set of tests, we have placed the coordinator at

the coordinate (0,0) and positioned the remaining 10 nodes

by following the procedure described in Sect. 7.1. The

optimal algorithm is solution obtained from the CPLEX

software. Each data point on Figures are the averaged

results over 100 repetitions.

In all experiments, noDMS algorithm has used a fixed

modulation of 8DSPK for deadline factors of [0.25, …,

0.45], 4DPSK for [0.5,…, 0.95] and 2DPSK for 1. Because

only these modulation levels can give real-time guarantees

for their respective deadline factors. As a result you will

see flat performance lines from noDMS for these intervals.

We have experimented with 250� 250, 500� 500, and

750� 750 m2 areas with deadline factor from 0.25 to 1.

Figures 25, 26, 27 show the total sum of each node’s power

consumption (except for the base-station) for a given

deadline factor and the maximum size of the area which the

nodes are spread. It is seen that for each density level and

deadline factor, there is a strict ordering of power con-

sumption as Optimal\ Explorer\Aggressive\ noDMS

except for when the deadline factor equals 1. At this point,

the deadline is large enough for all the nodes to use the

lowest modulation level to meet the deadline by simply

choosing the closest node as their parents. Note that

Optimal in Fig. 26 is missing data points for deadline

factor 0.25 and in Fig. 27 for 0.25 and 0.30. For these data

points, no solution has been found. This shows that when

the density of the network decreases, it is harder to meet

the shorter deadlines. If you recall our distance test results

based on various power output levels (Figs. 13, 14, 15, 16,

17, 18), higher modulation levels have lower successful

communication ranges which forces sparse networks to use

lower modulation levels to stay connected which in turn

increases transmission delay. For the same reason, noDMS

was also not be able to find a parent for almost every time

when it was only allowed to use 8DPSK as a result no data

points are shown in Figs. 26 and 27.

In terms of the impact of network density, a denser

network decreases the Optimal’s as well as the Heuristics’

total power consumption for tighter deadlines. As networks

get denser, they will have more potential paths to choose

from. In fact a network will preserve all of its potential

paths if it was to get squeezed. This is because any con-

nection provided by any modulation level will still remain

valid when the distances between sender and receiver pairs

are decreased. It is possible there will even appear new

potential paths. However, the co-schedulability of the

nodes will be effected due to the increased interference.

Another observation is the performance difference between

our algorithms shrinks as the network gets more sparse.

This also due to decrease in the number of potential paths.

Higher number of potential paths allows Optimal solution

to perform exhaustive search over more potential solutions.

However, due to the polynomial time nature of our
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Heuristics, Aggressive and Explorer does not benefit from

higher number of potential paths as much as Optimal does.

The rate of which the total power consumption decrea-

ses as the deadline factor increases is not constant. We can

see that there are slight reductions in total power con-

sumption when the deadline factor goes from 0.6 to 1 for

all density levels. Although from the Figures the line looks

relatively flat, there are roughly 14%, 35%, and 42%

reduction in power consumption between deadline factors

of 0.6 and 1 for Optimal, Explorer, and Aggressive

respectively for each case. Our SDR based experimental

results indicated that the power consumption difference

between 2DPSK and 4DPSK is significantly lower than the

difference between 4DPSK and 8DPSK. Hence, the

reduction in total power consumption when more and more

nodes are allowed to use 2DPSK rather than 4DPSK as the

deadline factor approaches 1 is less than that of when more

and mode nodes are allowed to use 4DPSK as opposed to

8DPSK when the deadline factor approaches 0.5. This

further emphasizes the benefit of DMS on wide ranges of

topologies for multi-hop networks and its relatively low

scarifies of additional power consumption for a significant

reduction in total transmission delay.

Similar traits are also observed when we repeat the tests

but this time the base-station is placed in the center of the

grid as oppose to corner. Placing the base-station in the

center will reduce the average height of the tree and the

nodes will have less hops to reach to it. This in return will

improve co-schedulability due to less number of nodes

affected by parent-children constraint (Sect. 6, Optimiza-

tion Formulation 3, Constraint 3d). Since the size of the

area is kept the same, the co-schedulability due to inter-

ference constraints will be unaffected (Sect. 6, Optimiza-

tion Formulation 3, Constraints 3e, 3f, 3g, and 3h). The

results are shown in Figs. 28, 29, 30. If we compare the

results shown in Figs. 25 to 28, 26 to 29, and 27 to 30, we

can see that total power consumption has been reduced in

each case. This is due to the improved co-schedulability as

explained. Moreover, we can see that as the network area

increase, so does the total power consumption just as we

have seen in Figs. 25, 26, 27.

Next, in order to analyze the effect of interference we

have conducted a test by significantly reducing the test area

by forcing the nodes to be placed on a line with 250, 500,

and 750 m length. Reducing the test area size to 1
250

, 1
500

, and
1

750
of the previous test areas substantially increased the

interference and reduced co-schedulability. However, due

to the significantly reduced space the average distance

between nodes are also reduced which was reflected as the

overall reduction in total system power. Figures 31, 32, 33

show the results. Once again we have observed that as the

network area gets larger, the total power consumption

increases. The reason is the reduced number of potential

paths as we discussed previously. If we compare these

results with Figs. 28, 29, 30, we can see that the power

consumption in each case has descreased, that is for each

area size and deadline factor. This comparison also gives

us a good insight into the co-schedulability performance of

our heuristics. We observe that the performance difference

between our algorithms has decreased as we reduced the

test area size. This is due to the suboptimal ordering

Fig. 25 Comparison of optimal solution against heuristics when the

base-station is placed at (0,0) with 10 nodes on a 250 � 250 m2 area

Fig. 26 Comparison of optimal solution against heuristics when the

base-station is placed at (0,0) with 10 nodes on a 500 � 500 m2 area

Fig. 27 Comparison of optimal solution against heuristics when the

base-station is placed at (0,0) with 10 nodes on a 750 � 750 m2 area

Wireless Networks

123



mechanism used by our heuristics (See Sect. 6.1) which

has a negative impact on co-schedulability.

The interference model we have adapted in this paper is

first and big step forward towards a more realistic analysis

of DMS on WSNs. In our interference model, each mod-

ulation level has its own interference range which is 1.2

times of their real work communication range measure-

ments obtained from our SDR tests. The work in literature

typically assumes equal interference ranges for different

modulation levels. In order to see the effect of our new

interference model, we conducted the following test; 10

nodes plus the coordinator placed at (0,0) on a 500�
500m2 area. The same layout used for generating Fig. 26.

However, this time the interference range of all the

Fig. 28 Comparison of optimal solution against heuristics when the

base-station is placed at the center with 10 nodes on a 250 � 250 m2

area

Fig. 29 Comparison of optimal solution against heuristics when the

base-station is placed at the center with 10 nodes on a 500 � 500 m2

area

Fig. 30 Comparison of optimal solution against heuristics when the

base-station is placed at the center with 10 nodes on a 750 � 750 m2

area

Fig. 31 Comparison of optimal solution against heuristics when the

base-station is placed at (0,0) with 10 nodes on a 250 � 1 m2 area

Fig. 32 Comparison of optimal solution against heuristics when the

base-station is placed at (0,0) with 10 nodes on a 500 � 1 m2 area

Fig. 33 Comparison of optimal solution against heuristics when the

base-station is placed at (0,0) with 10 nodes on a 750 � 1 m2 area
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modulation levels equal to that of modulation level 1. In

other words, 4DPSK and 8DPSK also has the same inter-

ference range of 2DPSK. This is a hypothetical assumption

since the communication ranges of all the modulation

levels were kept the same. noDMS is not affected by

interference because it always uses a fixed modulation

level which already guarantees to meet the deadline. Fig-

ure 34 shows the results. On average there were 5.7%,

2.46%, and 4.11% increase on power consumption for

Optimal, Aggressive, and Explorer respectively when

compared to the results shown in Fig. 26. The increase in

power consumption was more pronounced for smaller

deadline factors. For the deadline factor of 0.35, the per-

formance difference was 21.95%, 5.92%, and 19.52% for

Optimal, Aggressive, and Explorer respectively. This

shows the significance of co-schedulability especially for

shorter deadlines.

We want to mention another observation from com-

paring the results from various topologies presented so far.

The performance difference between these various tests

becomes relatively smaller when the deadline factor is 0.5

or more. For Optimal at deadline factor of 0.5, the differ-

ence between the maximum and the minimum observed

power consumption is 22%. This value is 33% and 37% for

Explorer and Aggressive respectively. For the deadline

factor of 0.6, these differences shrink to 14%, 25%, and

35% for Optimal, Explorer, and Aggressive. The reason

behind this is the relatively close performance of 2DPSK

and 4DPSK. At these deadline factors, the nodes are

dominantly using either 2DPSK or 4DPSK. The percentage

of each changes from case to case but the differences in

these percentages create a relatively small difference in

performance.

To analyze the scalability of our algorithms, we have

run a set of experiments with 5–15 nodes in a 500�
500m2 area and a coordinator is placed at the coordinates

(0,0) with a deadline factor of 0.5. We chose 500� 500m2

and a deadline factor of 0.5 to have relatively low com-

putational load (smaller area sizes significantly increases

the time optimal solution is computed due to increased

interference among nodes) and still have a connected net-

work (as the deadline factor decreases so does the con-

nectivity of the network). We could only go up to 15 nodes

because after that point, we were unable to find an optimal

solution even after 5 days of running. Figure 35 shows the

results fitted with linear regression lines to each algorithm.

Coefficient of determination (R2) values of linear regres-

sion analysis were above 95% for all of the algorithms.

This is a strong indication that the energy consumption of

the particular setup we had grows linearly in terms of

number of nodes. Moreover, the aims of the linear

regression lines were also similar for the algorithms, 0.29,

0.26, and 0.22 for Aggressive, Explorer and Optimal

respectively. That means although the performance dif-

ference between the algorithms diverges as the number of

nodes increases, it is with a slow rate. So one can expect

similar performances from all the algorithms as the number

of nodes increases.

8 Conclusion

Applicability of Dynamic Modulation Scaling (DMS) in

low-power wireless systems, including IEEE 802.15.4

networks, as an energy management technique has been

widely studied in literature and shown that DMS can

achieve significant energy savings. In this paper we have

addressed the problem of applying DMS to multi-

hop/multi-cluster real-time WSNs. We first presented the

Mixed Integer Nonlinear Programming (MINLP) formu-

lation of minimizing total network energy consumption

while satisfying the deadline requirements. This formula-

tion picks the most energy efficient parent node and a

modulation level for each node in the network. We later

Fig. 34 Comparison of optimal solution against heuristics when every

modulation level has the same interference range of modulation level

1. Area size is 500 � 500 m2 and network size is 10 nodes plus the

coordinator placed at (0,0)

Fig. 35 Scalability analysis in terms of number of nodes in a 500 �
500 m2 area and the coordinator is placed at the coordinates (0,0) with

a deadline factor of 0.5
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show how to linearize this MINLP formulation to convert it

into Mixed Integer Linear Programming (MILP) problem

which is typically a requirement for problem solving

engines such as IBM’s CPLEX.

However, much the work that has been done so far lacks

substantial empirical analysis of DMS on Wireless Sensor

Networks (WSNs). As a result, only a generalized mathe-

matical evaluation of DMS were available to the

researchers. These evaluations were not enough to for us to

move forward with the solution to the problem we have

formulated. Hence, this paper addresses that gap and pro-

vides empirical results that can be used by not just us but

future researchers as a complement to currently available

mathematical techniques. To accomplished this, we used

Ettus B210 Software Defined Radios (SDRs) and config-

ured them according to the 2015 IEEE 802.15.4 standard.

We experiments with various Signal-to-Noise-Ratios and

corresponding Packet-Delivery-Rates for {2, 4, 8, 16}-PSK

as well as DPSK modulations. Our results show that

increasing PSK modulation levels requires more trans-

mission power increase compared to scaling functions

(such as those shown in Table 1). On the other hand, DPSK

requires significantly less power increase compared to the

same scaling function. We have also shown that the scaling

ratios between consecutive modulation levels are not equal.

Next, we measured the PDRs for {2, 4, 8}-DPSK for dis-

tances up to 100 m. The results have shown that lower

modulation levels can achieve higher communication dis-

tances. We have also shown the performance difference

between 915 MHz and 2.484 GHz and observed 915 MHz

has higher packet delivery rate with the same output

amplifier gain. Lastly, we have shown that elevation dif-

ference between transmitter and receiver affects these

results tremendously. 4-DPSK and 8-DPSK had as low as

54% and 28% PDR for elevation difference of 11.6 m and

17.48 m apart. The same modulations had 99% and 76%

PDR respectively for distances up to 20 m with no eleva-

tion difference.

We later designed two polynomial time heuristics and

compared them against the optimal solution obtained by

CPLEX software. In order to have an accurate network

model, we have incorporated the empirical measurements

obtained from our SDR tests into our custom simulator. We

ran various tests with different network area sizes and base-

station locations and showed our polynomial time heuris-

tics perform very closely to the optimal solution especially

for larger deadlines. We have also shown that there is

relatively less energy consumption penalty if the deadline

of the system were to be halved that is if more and more

nodes needed to use 4DPSK rather than 2DPSK. However,

as the deadline further reduced and more nodes are

required to use 8DPSK to meet the deadline, there is a

significant increase in total energy consumption.
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