On the Networking Challenges of Mobile Augmented Reality

Wenxiao Zhang Bo Han Pan Hui
Department of Computer Science and AT&T Labs Research Department of Computer Science and
Engineering 1 AT&T Way Engineering
Hong Kong University of Science and Bedminster, New Jersey 07921 Hong Kong University of Science and
Technology bohan@research.att.com Technology
Hong Kong SAR, China Hong Kong SAR, China
wzhangal@cse.ust.hk panhui@cse.ust.hk

ABSTRACT

In this paper, we conduct a reality check for Augmented Reality (AR)
on mobile devices. We dissect and measure the cloud-offloading
feature for computation-intensive visual tasks of two popular com-
mercial AR systems. Our key finding is that their cloud-based recog-
nition is still not mature and not optimized for latency, data usage
and energy consumption. In order to identify the opportunities for
further improving the Quality of Experience (QoE) for mobile AR,
we break down the end-to-end latency of the pipeline for typical
cloud-based mobile AR and pinpoint the dominating components
in the critical path.

CCS CONCEPTS

+ Networks — Network measurement; Cloud computing; « Human-

centered computing — Ubiquitous and mobile computing
design and evaluation methods; - Information systems —
Image search;

KEYWORDS

Augmented reality, cloud offloading, reality check, networking chal-
lenges, end-to-end latency

ACM Reference format:

Wenxiao Zhang, Bo Han, and Pan Hui. 2017. On the Networking Challenges
of Mobile Augmented Reality. In Proceedings of VR/AR Network ’17, Los
Angeles, CA, USA, August 25, 2017, 6 pages.
https://doi.org/10.1145/3097895.3097900

1 INTRODUCTION

Augmented Reality (AR) has recently drawn tremendous attention
from both the industry and the research community, due to the
advances on AR devices and platforms (e.g., Google Glass!, Google
Tango platform?, and Microsoft HoloLens®). A typical AR system
recognizes nearby objects and augments them with content (either
Ihttps://www.google.com/glass/

https://get.google.com/tango/
3https://www.microsoft.com/microsoft-hololens/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

VR/AR Network ’17, August 25, 2017, Los Angeles, CA, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5055-6/17/08...$15.00
https://doi.org/10.1145/3097895.3097900

Object Feature
Preprocessing Detection

Object Template Object
Tracking Matching Recognition

¥

Annotation
Rendering

| ———————
| s Scenario 1 i
[=Scenario2 |

Figure 1: Pipeline of typical mobile AR systems. Tasks are
colored according to their computation demands (i.e., the
darker, the heavier). The blue solid line and red dotted line
mark two cloud offloading scenarios (i.e., sending camera
frames or their feature points to the cloud).

real or virtual). When running on mobile devices, such as smart-
phones, an AR application takes the camera feed as the input and
locates objects of interest in the current view using computer vision
technologies [1, 7]. The key challenge of enabling AR on mobile
devices, that needs no prior knowledge of a user’s environment, is
the heavy computation demands of recognizing surrounding ob-
jects for augmentation. Another issue is the ability of recognizing
a large number of objects, which usually requires the storage of
large datasets and may not be feasible on mobile devices.

Cloud offloading is a promising technology to fill the gap be-
tween the insufficient mobile processing capability and the high
computation demands of AR applications. A cloud-based AR system
offloads certain visual tasks (e.g., feature extraction and object recog-
nition) to the cloud [4]. While it addresses the computation issue,
it introduces extra latency which may render the Quality of Experi-
ence (QoE) unsatisfactory. For a 30 frame-per-second (FPS) camera
feeding rate, the frame interval is around 33 ms. Thus, ideally the
cloud should return the recognition results within that interval,
especially for continuous recognition [1] which does not require a
user to pause the camera at an object for seconds. Otherwise, the
results may be stale.

In this paper, we attempt to answer the question whether it is
feasible to enable cloud-based mobile AR with acceptable QoE? We
investigate carefully and systematically the cloud recognition pro-
cedure of a few existing commercial AR systems and measure their
performance (Section 3). The metrics we are interested in are end-to-
end latency, data usage and energy consumption on mobile devices.
Our key finding is that they are still in the very early stage. For ex-
ample, the end-to-end latency of two systems under consideration

https://doi.org/10.1145/3097895.3097900
https://www.google.com/glass/
https://get.google.com/tango/
https://www.microsoft.com/microsoft-hololens/
https://doi.org/10.1145/3097895.3097900

VR/AR Network *17, August 25, 2017, Los Angeles, CA, USA

is longer than 1 second. To better understand the performance bot-
tleneck, we then break down the latency of the typical AR pipeline
via our prototype implementation and pinpoint the dominating
visual tasks (Section 4). The latency lower bound is around 250ms,
which means there is a room for further improvements. We also
discuss the opportunities to optimize the performance and QoE
of mobile AR systems by thoroughly exploring the design space
(Section 5). For example, one possible improvement is to leverage
technologies such as GPU to further push the limit of AR latency.

2 BACKGROUND

In this section, we first analyze the pipeline of typical mobile AR
systems and existing cloud offloading scenarios. We then present
several use cases of mobile AR, such as entertainment and training.

2.1 Mobile AR Pipeline

We draw the pipeline of typical mobile AR systems in Figure 1.
The first step is object detection, which recognizes targets in the
view of a phone’s camera by checking the existence of targets and
finding the regions of interest (ROI) corresponding to the target.
For each RO, the next step is to apply feature extraction to extract
feature points from it. The final step is to utilize object recognition
to identify the original image stored in a database corresponding
to target.

With the original image and the current frame, template match-
ing verifies the result of object recognition as well as calculates
the poses of targets, which are used as the initial input to object
tracking. The goal of a tracker is to avoid object recognition for
every frame. After the target is recognized, the identified original
image determines the content associated with the target. Finally,
annotation rendering will render the associated content to augment
the recognized target. In Figure 1, we color different tasks according
to their computation demands (the darker, the heavier), in terms
of the time taken to complete a task on either a mobile device or a
cloud server. For example, object recognition may take much more
time than feature extraction (as we will show in Section 4).

Computation power and battery life are still restricting the per-
formance of the current generation of mobile devices. To avoid
heavy computation on them, AR systems can offload a set of the
tasks mentioned above to the cloud. We use the blue and red lines
to mark two existing common cloud offloading scenarios, by sepa-
rating the tasks that will be executed on mobile devices and cloud
servers. Scenario 1 (blue solid line) sends camera frames to the
cloud for tasks starting from object detection [7]; whereas Scenario
2 (red dotted line) performs object detection and feature extraction
on mobile devices and uploads the feature points to the cloud for
object recognition [8]. Moreover, mobile devices can first run all the
tasks locally and try to recognize the target with a small database.
If object recognition fails, they can leverage the above two schemes
to rescue and offload part of the tasks to the cloud with a large
database.

2.2 Use Cases

In this section, we explain the use cases of mobile AR, including
entertainment, training, driving, communication and healthcare.

Wenxiao Zhang, Bo Han, and Pan Hui

Entertainment. The most popular use case of AR may be en-
tertainment. There are numerous games leveraging AR technology.
The most famous one is Pokemon Go?, which is a location-based
augmented reality game released in July 2016. Using the GPS on
mobile devices, players can locate, train, capture, and battle the so
called Pokemon (i.e., virtual creatures), who appears on the screen
as if it was in the same real-world location as the player. The player
may throw a Poke Ball to capture that Pokemon.

Training. AR has also been widely used in education and train-
ing. The assembly tasks of aircrafts are known to be complicated,
where mistakes from erroneously installing in the wrong order
can be costly. To reduce costs and boost efficiencies, Boeing has
been actively exploring augmented reality to train workers with
complex and changing manufacturing requirements [9]. Accord-
ing to the study from Boeing, compared to the traditional training,
the AR-trained workers are more willing to accept quickly the
instructions.

Driving. Another emerging use case of AR is related to the safety
of driving, for example, enhancing the dashboard and windshield
of vehicles. Toyota is developing a system to display readings from
speed and steering-angle sensors on the windshield in real time [18].
It employs an interior camera to track the view of a driver and a
front-mounted camera to recognize the lane markings. As vehicles
move, the system displays an image showing where the bound-
aries of the vehicle are within a lane. This real-time positioning
information can greatly improve driving safety.

Communication. AR enables efficient collaborative communi-
cation among users from geo-separated sites. Holoportation [11]
can capture, compress and transmit in real time high-quality 3D
models of people to anywhere in the world. The models are then
reconstructed and displayed by HoloLens. In order to make the
system truly mobile, the recently enhanced Holoportation signifi-
cantly reduces its bandwidth requirements by 97% (to 30-50 Mbps),
and at the same time maintains good quality.

Healthcare. Healthcare is probably one of the most practical AR
applications, as AR can significantly improve the quality of treat-
ment that healthcare providers offer to their patients. On average
pharmacists may fill up to 150 prescriptions per day and pharma-
ceutical mistakes can happen due to unfamiliarity with dosage,
drug names, pill appearance, etc. AR apps can guide pharmacists
to fill prescriptions quickly without any errors [10]. Moreover, by
showing nearby defibrillator, AR can save the life of a person under
heart attack.

3 STATE-OF-THE-ART CLOUD AR

In this section, we first review the cloud offloading initiatives for AR
in the research community. We then investigate a few commercial
AR Software Development Kits (SDKs) that provide cloud-offloading
features.

3.1 Research Initiatives

We can divide existing research projects into two categories: non-
continuous and continuous AR. For the non-continuous case, mobile
devices cannot move before the results are returned by the cloud.

“http://www.pokemongo.com/

http://www.pokemongo.com/

On the Networking Challenges of Mobile Augmented Reality

Client Server Client Server
iti Recognition Camera frame
Recognition Camera frame gnit e
Request Request Image
Target information! Retrieval
Image
. Retrieval Feature Feature set ID
Target ima Request | ————__| Feature
Target feature s
feature /) re
Extracti Template
xtraction Matching
Template Annotation
Matching Request
Annotation . 3HTe: Annotation
Rendering {—=HrTes| Rendering i TS|

(a) SDK-V

(b) SDK-H

Figure 2: Cloud recognition procedures of SDK-V and SDK-H.
Only one HTTPS request is involved in SDK-V, but two
HTTPS requests and one HTTP request are involved in
SDK-H.

Non-Continuous Case. Overlay [7] is an AR system for indoor
labeling and annotation. Its input consists of both camera images
and sensor data which is leveraged to narrow down the object
recognition search space by learning the geometric relation of
objects. The cloud returns simple annotation text back to mobile
devices after recognizing the uploaded camera frame. Built on top
of Overlay, VisualPrint [8] reduces the bandwidth requirements by
uploading fingerprints of extracted feature points instead of camera
frames. VisualPrint carefully selects these fingerprints in order
to increase the chance of yielding a unique match on the cloud.
However, the impact on the end-to-end latency is not reported,
when mobile devices run the feature extraction and fingerprint
generation tasks.

Continuous Case. As we mentioned above, it is challenging
to perform continuous object recognition, because the end-to-end
latency may be longer than the camera-frame intervals. Glimpse [1]
is a continuous object recognition system for faces and road signs.
It hides the offloading latency by leveraging an active cache of
camera frames to track objects on mobile devices upon receiving
the recognition results from the cloud. In order to reduce bandwidth
usage, Glimpse selects trigger frames and sends only them to servers
for recognition, instead of uploading all camera frames.

3.2 Commercial SDKs

In this section, we investigate two popular commercial AR SDKs,
SDK-V and SDK-H, by analyzing their cloud offloading strategies.

We study the cloud offloading features of these SDKs using the
following approaches. Since we have no access to the source code of
SDK-V and SDK-H, we set up a man-in-the-middle proxy, Fiddler?,
to capture and decrypt the messages exchanged between our mobile
device and the cloud. We use the official Android demo App from
SDK-V and the official Unity demo App from SDK-H (also deployed
on the Android platform).

By analyzing the traces captured on our proxy, we plot the cloud
recognition procedure of SDK-V in Figure 2a, which finishes within
a single HTTPS session. The request contains a frame in the view

Shttps://www.telerik.com/fiddler

VR/AR Network *17, August 25, 2017, Los Angeles, CA, USA

of the camera, which is compressed as a JPEG file in gray-scale
with a resolution of 640x360 (the resolution of the camera feed is
1920%1080). The response includes the recognized image saved in
the cloud database. It is also compressed as a JPEG file in gray-scale
with a width of 320, while the height varies between different im-
ages. After receiving the recognized image, the Android app applies
feature extraction and template matching to identify the pose of
the target within the current frame. When we conducted this study,
SDK-V did not provide the cloud storage for annotation content
and thus we packed the content into the Android application.

Similarly, we plot the cloud recognition of SDK-H in Figure 2b,
which employs two HTTPS sessions and one HTTP session. The
request of the first HTTPS session contains a camera frame, which
is compressed as a JPEG file in color with a resolution of 640x360
(the same as SDK-V). Its response includes the URL of the original
image, the key to the corresponding feature-point set in a server
database, and the name of an annotation content file. The second
HTTPS session requests the feature-point set. Compared to SDK-V,
the feature extraction step is skipped on the client. SDK-H applies
template matching to find the pose of the target in the view of
current frame. Finally the last HT TP session requests the annotation
content to be rendered on mobile devices.

We also investigated a third SDK, SDK-W, which does not pro-
vide a free-trial license for developers. Thus, we obtain the infor-
mation presented below from its API documentation. The cloud
recognition of SDK-W is similar to SDK-V, which finishes within
one HTTPS session. The request body contains a camera frame, and
the response includes the original image of the recognized target
in the view of the camera.

3.3 Measurement Study

In this section, we evaluate the performance of SDK-V and SDK-H,
by measuring the data usage, latency and energy consumption. As
Overlay [7], VisualPrint [8] and Glimpse [1] are not open sourced
yet, we cannot evaluate their performance at this moment.

The experimental procedure is as follows. We collect 100 movie
posters online, upload them to the cloud servers of both SDK-V and
SDK-H, and bind the image database with the corresponding apps.
We then generate 20 image recognition requests for each of the
apps from a Galaxy Note 4 phone via its WiFi interface. They all
can be recognized correctly by both apps. The end-to-end latency
is defined as the time between the camera frame acquisition and
the rendering of results. We capture packet traces on the proxy
to measure the data usage for both uplink and downlink. We use
the Monsoon power monitor® to measure the energy consumption
during the recognition procedure on mobile devices.

We show the experimental results in Table 1. SDK-V requires less
bandwidth than SDK-H due to the following reasons. First, SDK-V
uses images in gray-scale to reduce the uplink traffic. Second, the
feature-point set returned by SDK-H is not optimized for network
transfer and has a much larger size than the source image. The
average size of these 20 original images is around 73.56 KB.

The end-to-end latency of SDK-V is lower than SDK-H, but they
are both much higher than the 33 ms frame interval for 30 FPS. The
cloud recognition of SDK-H is slower than SDK-V due to mainly two

®https://www.msoon.com/LabEquipment/PowerMonitor/

https://www.telerik.com/fiddler
https://www.msoon.com/LabEquipment/PowerMonitor/

VR/AR Network *17, August 25, 2017, Los Angeles, CA, USA

Wenxiao Zhang, Bo Han, and Pan Hui

SDK Uplink Traffic Downlink Traffic Latency (s) Energy Usage
Content Size (KB) Content Size (KB) (mAh)

SDK-V Image 16.28 £1.99 Image 33.45+8.24 1.410+0.14 0.454+0.04

SDK-H Image 26.59 £ 2.59 Features 159.9+54.9 19.32+5.28 7.911+2.11

Table 1: Experimental results of the performance evaluation for SDK-V and SDK-H’s cloud recognition service. For SDK-H, the
results include only the two HTTPS sessions to make the comparison fair. The value after + is the standard deviation.

reasons. First, the recognition request of SDK-H is usually delayed
by a few seconds after the request is triggered in the application.
This delay increases almost linearly with the number of objects
already recognized by SDK-H. Our hypothesis is that it may try
to avoid the cloud-based recognition by comparing the image to
be recognized with the existing results locally using a sequential
one-by-one matching. However, we cannot confirm it due to the
lack of access to the source code of SDK-H.

Second, the Round Trip Time (RTT) from our client to the SDK-V
cloud server is lower than that of SDK-H. We run the ping exper-
iments in Hong Kong to measure the RTT. The servers of SDK-V
and SDK-H are located in Singapore and Shanghai, respectively
(measured via IP geo-location lookup). Although the SDK-V server
is further away from Hong Kong, the RTT is lower than SDK-H,
48 vs. 162 ms. This low RTT of SDK-V leads to a smaller comple-
tion time of the HTTPS session (~200 vs. 800—1000 ms). The result
demonstrates the importance of deploying computation resources
at locations with low RTT to end-users. Note that SDK-H has one
more HTTPS session than SDK-V, which also adds extra latency.
The high end-to-end latency of SDK-H is also a major contributor
of its higher energy consumption than SDK-V (7.91 vs. 0.45 mAh).

Takeaway: This measurement study demonstrates that the com-
mercial cloud-based AR SDKs are still in their early stage with limited
optimization of end-to-end latency and data usage (at least for their
free version).

4 END-TO-END LATENCY BREAKDOWN

In this section, we measure the time taken for each task listed in
Figure 1, using our prototype implementation of a cloud-based
mobile AR system.

4.1 Prototype Implementation

We implement most of the functions with OpenCV”. The client
is an Android App running on a Xiaomi MI5 phone. We develop
the server-side program in C++ and run it on a Google Cloud VM
instance (8 vCPUs @ 2.5GHz and 32GB memory). The VM is located
in Taiwan, not far away from where we run the experiments (in
Hong Kong). Before presenting the measurement results, we first
describe the implementation details of each task, although we have
briefly introduced their functionality in Section 2.1.

Frame Preprocessing shrinks the size of a camera frame, by down-
scaling it from the 1920x1080 resolution to 480270, then convert-
ing it from YUV color space to gray-scale, and finally encoding it
into a JPEG file.

http://opencv.org/

Object Detection identifies the ROI of possible image targets.
We apply a sliding window that iterates through the image, and
computes the variance in pixel gray-scale values for each window.
We further extract rectangular areas with high variances from the
image which are supposed to contain foreground textures.

Feature Extraction is supposed to extract features from the ROI
using ORB [14]. Since we currently do not have the object detection
algorithm implemented on the client, we extract features from the
whole camera frames to make the comparison fair.

Object Recognition is an image retrieval pipeline that recognizes
images. We build offline a Bernoulli Mixture Model (BMM) based on
the features of all dataset images (the same as the ones described in
Section 3.3). Using the BMM model, we first encode the feature de-
scriptors of an image into a single Fisher Vector (FV). We then store
all FVs of the images using a Locality Sensitive Hashing (LSH) for
faster retrieval. To recognize an object, we find the nearest neighbor
in the hash table of the extracted features from the previous stage.

Template Matching verifies the result of object recognition and
calculates a 6DOF (Six Degrees of Freedom) pose of the target. With
the feature descriptors from both the camera frame and the recog-
nized image, we use a brute-force match to find the corresponding
feature pairs, and calculate the homography of the target within
the camera view, which stands for a 2D position transition.

Object Tracking tracks the feature points of an object for ev-
ery frame. We use optical flow tracking [6] to keep the process
lightweight and real-time.

Annotation Rendering updates the 6DOF pose of an object and
calculates a 3D pose of the annotation, based on which we render a
3D content.

4.2 Experimental Results

We show the experimental results in Table 2, which are averaged
over 100 runs. As image preprocessing, object tracking and annota-
tion rendering should be performed on mobile devices, we do not
report their results for the cloud. The tasks of the image retrieval
pipeline, (i.e., object detection, feature extraction, object recogni-
tion, and template matching), are offloadable. We show the results
for both mobile devices and the cloud.

Among the four offloadable tasks, object recognition is the heav-
iest one (58% of the image retrieval pipeline on the server), which
requires large storage of the image dataset and intensive computa-
tion. According to a study [16], it takes on average longer than 2
seconds to finish object recognition on a mobile CPU (Snapdragon
800). Considering the computation power and battery lifetime of
mobile devices, object recognition should be done on the cloud (at
least for the foreseeing future).

http://opencv.org/

On the Networking Challenges of Mobile Augmented Reality

Stage Mobile (ms) Cloud (ms)
Image Preprocessing 34.70 £10.9 N/A

Object Detection N/A 11.49 +0.37
Feature Extraction 131.0 +£43.8 47.41+1.17
Object Recognition >2000 92.37 £ 19.5
Template Matching 143.1 £31.7 9.223 +4.08

Object Tracking 15.11+6.28 N/A
Annotation Rendering 19.28 + 0.47 N/A

Table 2: Breakdown of latency for different AR tasks. The
value after + is the standard deviation.

Object detection locates the ROI so that feature extraction and
image recognition are executed in a smaller area which reduces the
computation overhead. Object detection takes around 11.49ms on
the server side which is not negligible. Although we currently have
not implemented it on the phone yet, we expect it may take much
more time. Feature extraction with the ORB [14] feature detector
and descriptor takes 131ms on a high-end smartphone, which is
almost three times as much as for the cloud.

Template matching on the cloud saves a lot of time compared
to on mobile devices, as we can see from Table 2 (9.22 vs. 143.1ms).
When it is done on the cloud, the server needs to transfer only sim-
ple pose data of the target after calculation, instead of the original
image. However, as the calculated pose on the server is the one
before the recognition request, this pose may be outdated due to
the offloading latency. Another issue of transferring only object
pose information is that tracking failure on the client becomes unre-
coverable (without the original image). As described in Section 3.2,
both SDK-V and SDK-H choose to perform template matching on
the client for better robustness.

We also measure the network latency under various conditions.
The results range from tens of milliseconds to a few hundred mil-
liseconds. The lowest latency we can achieve on a local LTE testbed
is around 14ms. After adding the network delay, the end-to-end
latency of our cloud-based mobile AR system is at least 244ms.

To visualize the dominating factors of the end-to-end latency, we
plot a pie chart in Figure 3 which shows the percentage of each task.
We assume the network latency is 50 ms. Among these tasks, we
offload object detection, feature extraction, object recognition and
template matching to the cloud. This figure clearly demonstrates
that even if we offload feature extraction and object recognition to
the cloud, they still dominate the end-to-end latency.

Takeaway: The latency of cloud mobile AR is still much higher
than the 33 ms normal frame interval for 30 FPS. It is mainly domi-
nated by the object recognition. Although it is challenging, there is
plenty of room to optimize the performance and quality of experience
for mobile AR.

5 DISCUSSION

In this section, we discuss the opportunities to optimize the perfor-
mance and QoE of mobile AR.

5.1 What to Offload?

As mentioned in Section 2.1, we can offload the tasks starting from
either object detection (i.e., sending images) or object recognition

VR/AR Network *17, August 25, 2017, Los Angeles, CA, USA

Network Image
Transfer Preproc.
17.9% 12.4% Object
Detection
o
Annotation 4.1%
Rendering
6.9% /e : Feature
Extraction
Object V 17.0%
Tracking /
5.4%
Template
Matching Object
3.3% Recognition

33.0%

Figure 3: Percentage of each task in the end-to-end latency
(assuming a 50-ms network transfer latency). Object detec-
tion, feature extraction, object recognition and template
matching are on the cloud. Image preprocessing, object
tracking and annotation rendering are on the mobile device.

(i.e., sending feature points) to the cloud. There are pros and cons
of each approach.

Two options exist when sending images to the cloud: video
streams (e.g., H.264) or individual images. Besides the intra-frame
compression that is utilized by images, video streams also leverage
inter-frame compression. Thus, they can provide better frame qual-
ity than individual images under the same data usage and improve
the recognition accuracy. However, sending video streams requires
buffering frames on mobile devices for encoding, which will add ex-
tra latency. There are also two options when sending feature points
to the cloud, either the raw feature points or their fingerprints. The
issue with raw feature points is that their size may be much larger
than the image itself [8]. The challenge of sending fingerprints (as
in VisualPrint [8]) is that generating these fingerprints from feature
points is also computationally intensive, which may consume more
energy and probably add extra latency.

Based on the above discussion, there is clearly a trade-off be-
tween latency, data usage, energy consumption and recognition
accuracy. For example, sending images may lead to a higher data us-
age with a lower latency; whereas sending fingerprints of features
may save data usage but increase the end-to-end latency.

5.2 Where to Offload?

There are multiple places where we can offload the object recog-
nition task to, the remote cloud, the edge cloud [2, 4], and nearby
devices. The first two have more computation power. The main dif-
ference between them is the network latency they introduce. Since
the edge cloud is geographically closer to mobile devices, users
would experience a lower overall latency. However, it may require
architectural changes to the cellular access and core networks. As
proposed in Serendipity [15], it is also possible to offload computa-
tion tasks to nearby devices. The challenge here is to guarantee the
latency requirements for AR systems.

5.3 What Protocol to Use?

For cloud-based object recognition, network transfer influences
both the end-to-end latency and system reliability. SDK-V and

VR/AR Network *17, August 25, 2017, Los Angeles, CA, USA

SDK-H use HTTPS over TCP/IP to maintain a reliable and secure
connection. The problem with a TCP-based scheme is the latency
overhead introduced by its handshake mechanism. We can also
employ UDP-based protocols, such as RTP (Real-time Transport
Protocol) and QUIC (Quick UDP Internet Connections). They aim
at providing lower transmission latency, which is still an important
factor affecting the performance of mobile AR systems.

5.4 Push the Limit of AR Latency

From the above discussion, object recognition should be offloaded to
the cloud. However, executing these tasks on commercial servers is
still computationally intensive. As we can see from Table 2, the time
taken by these tasks is more than 150ms. This server processing
time is the dominating part of the overall latency incurred with
cloud-based AR. While these computer vision tasks are slow with
CPU, utilizing GPU could significantly speed up these visual tasks.
We can implement the entire image recognition pipeline on GPU
to achieve a much lower execution latency.

6 RELATED WORK

In this section, we briefly review existing work on mobile aug-
mented reality and image search.

Augmented Reality. There is a plethora of work on enabling
AR on mobile devices. Gammeter et al. [3] introduce a landmark
recognition system which utilizes mobile clients for object track-
ing and servers for object recognition. The client-side tracking
leverages sensing data to reset the visual tracking when necessary.
Nestor [5] is a mobile system to recognize and estimate 6DOF pose
of planar shapes. It applies recursive tracking to achieve interactive
frame rate. Wagner et al. [17] enhances several feature extraction
algorithms and makes them suitable for mobile platforms. Aug-
mented Vehicular Reality (AVR) [12] is a system to improve the
visibility of autonomous vehicles, by sharing visual information
among neighboring vehicles and thus broadening the horizon of
autonomous driving cars.

Image Recognition has been a key component of mobile aug-
mented reality. CrowdSearch [19] is a crowdsourcing based system
that combines cloud-based image search and real-time human vali-
dation via the Amazon Mechanical Turk. ThirdEye [13] is a smart
glasses based system to track the physical browsing behaviors of
customers in retail stores. When a user is gazing at an item, Third-
Eye triggers an image search to an online service to identify the
item. Gabriel [4] is another system that leverages Google Glass to
assist users with their cognitive abilities. To reduce the end-to-end
latency, it employs mobile edge computing for image recognition.

The above work focuses on enhancing or optimizing the perfor-
mance of specific functions for mobile AR. Our work improves the
understanding of commercial AR SDKs and the latency related to
each component in a work-flow of typical cloud-based AR systems.

7 CONCLUSION

In this paper, we take a bird’s-eye view of cloud-based mobile AR
systems, by analyzing their typical pipeline, investigating the cloud-
offloading features of several commercial SDKs, and measuring the
time consumed by each component in the pipeline on both mobile
devices and servers. We also offer practical suggestions and discuss

Wenxiao Zhang, Bo Han, and Pan Hui

potential opportunities to improve the QoE, especially the end-to-
end latency, for mobile AR systems. We are currently building such
a system by exploring the trade-offs between latency, data usage,
energy consumption and recognition accuracy.

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their insightful comments.
We thank Jennifer Yates, Vijay Gopalakrishnan, Bilal Anwer and
Julius Mueller for discussions and suggestions. This work was sup-
ported in part by the General Research Fund from the Research
Grants Council of Hong Kong under Grant 26211515 and in part by
the Innovation and Technology Fund from the Hong Kong Innova-
tion and Technology Commission under Grant ITS/369/14FP.

REFERENCES

[1] T.Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan. Glimpse:
Continuous, Real-Time Object Recognition on Mobile Devices. In Proceedings of
SenSys, 2015.

[2] J.Cho,K. Sundaresan, R. Mahindra, J. Van der Merwe, and S. Rangarajan. ACACIA:
Context-aware Edge Computing for Continuous Interactive Applications over
Mobile Networks. In Proceedings of CONEXT, 2016.

[3] S. Gammeter, A. Gassmann, L. Bossard, T. Quack, and L. Van Gool. Server-side
object recognition and client-side object tracking for mobile augmented reality. In
Proceedings of IEEE Computer Vision and Pattern Recognition Workshops (CVPRW),
2010.

[4] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satyanarayanan. Towards
Wearable Cognitive Assistance. In Proceedings of MobiSys, 2014.

[5] N.Hagbi, O. Bergig, J. El-Sana, and M. Billinghurst. Shape recognition and pose
estimation for mobile augmented reality. In Proceedings of IEEE International
Symposium Mixed and Augmented Reality (ISMAR), 2009.

[6] B.K.Horn and B. G. Schunck. Determining Optical Flow. Artificial intelligence,
17(1-3):185-203, 1981.

[7] P. Jain, J. Manweiler, and R. Roy Choudhury. Overlay: Practical Mobile Aug-
mented Reality. In Proceedings of MobiSys, 2015.

[8] P.Jain, . Manweiler, and R. Roy Choudhury. Low Bandwidth Offload for Mobile
AR. In Proceedings of CONEXT, 2016.

[9] E. Johnson. Boeing Says Augmented Reality Can Make Work-

ers Better, Faster. http://www.recode.net/2015/6/8/11563374/

boeing-says-augmented-reality-can-make-workers-better-faster, 2015.

[Online; accessed 31-May-2017].

B. Nelson. VR/AR Challenge finalist WayPoint RX take the guess work out of fill-

ing prescriptions. https://developer.att.com/blog/vr-ar-challenge-waypoint-rx,

2017. [Online; accessed 31-May-2017].

[11] S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle, Y. Degtyarev,
D. Kim, P. L. Davidson, S. Khamis, M. Dou, et al. Holoportation: Virtual 3D
Teleportation in Real-time. In Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST), 2016.

[12] H. Qiu, F. Ahmad, R. Govindan, M. Gruteser, F. Bai, and G. Kar. Augmented

Vehicular Reality: Enabling Extended Vision for Future Vehicles. In Proceedings

of HotMobile, 2017.

S. Rallapalli, A. Ganesan, K. Chintalapudi, V. N. Padmanabhan, and L. Qiu. En-

abling Physical Analytics in Retail Stores Using Smart Glasses. In Proceedings of

MobiCom, 2014.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An efficient alternative

to SIFT or SURF. In Proceedings of IEEE International Conference on Computer

Vision (ICCV), 2011.

C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura. Serendipity: Enabling Remote

Computing among Intermittently Connected Mobile Devices. In Proceedings of

MobiHoc, 2012.

M. Shoaib, S. Venkataramani, X.-S. Hua, J. Liu, and J. Li. Exploiting on-device

image classification for energy efficiency in ambient-aware systems. In Mobile

Cloud Visual Media Computing, pages 167-199. Springer, 2015.

D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmalstieg. Real-time

detection and tracking for augmented reality on mobile phones. IEEE Transactions

on Visualization and Computer Graphics, 16(3):355-368, 2010.

[18] M. Watanabe. Head-up display apparatus for vehicle, Apr. 22 2013. US Patent
App. 14/774,564.

[19] T.Yan, V. Kumar, and D. Ganesan. CrowdSearch: Exploiting Crowds for Accurate
Real-Time Image Search on Mobile Phones. In Proceedings of MobiSys, 2010.

[10

[13

[14

[15

=
&

(17

http://www.recode.net/2015/6/8/11563374/boeing-says-augmented-reality-can-make -workers-better-faster
http://www.recode.net/2015/6/8/11563374/boeing-says-augmented-reality-can-make -workers-better-faster
https://developer.att.com/blog/vr-ar-challenge-waypoint-rx

	Abstract
	1 introduction
	2 Background
	2.1 Mobile AR Pipeline
	2.2 Use Cases

	3 State-of-the-Art Cloud AR
	3.1 Research Initiatives
	3.2 Commercial SDKs
	3.3 Measurement Study

	4 End-To-End Latency Breakdown
	4.1 Prototype Implementation
	4.2 Experimental Results

	5 Discussion
	5.1 What to Offload?
	5.2 Where to Offload?
	5.3 What Protocol to Use?
	5.4 Push the Limit of AR Latency

	6 Related Work
	7 Conclusion
	References

