
Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 1

Harvesting-Aware Energy Management for
Time-Critical Wireless Sensor Networks with Joint

Voltage and Modulation Scaling
Bo Zhang, Robert Simon, Member, IEEE, and Hakan Aydin, Member, IEEE

Abstract—As Cyber-Physical-Systems (CPSs) evolve they
will be increasingly relied on to support time-critical and
performance-intensive monitoring and control activities. Further,
many CPSs that utilize Wireless Sensor Networking (WSN)
technologies will require the use of energy harvesting methods
to extend their lifetimes. For this application class, there are
currently few algorithmic techniques that combine performance-
sensitive processing and communication with efficient manage-
ment techniques for energy harvesting. Our paper addresses this
problem. We first propose a general purpose, multi-hop WSN ar-
chitecture capable of supporting time-critical CPS systems using
energy harvesting. We then present a set of Harvesting Aware
Speed Selection (HASS) algorithms. Our technique maximizes
the minimum energy reserve for all the nodes in the network,
thus ensuring highly resilient performance under emergency
or fault-driven situations. We present an optimal centralized
solution, along with an efficient, distributed solution. We propose
a CPS-specific experimental methodology, enabling us to evaluate
our approach. Our experiments show that our algorithms yield
significantly higher energy reserves than baseline methods.

Index Terms—Wireless sensor networks, Energy harvesting,
Dynamic voltage scaling, Dynamic modulation scaling

1. INTRODUCTION

There is an increasing need to effectively support WSN ap-
plications that have significant data collection and processing
requirements. Examples range from Wireless Network Video
Systems for surveillance [29] to Cyber-Physical Systems such
as smart power grid using 802.15.4/Zigbee technology [21]
or networks consisting of lab-on-chip nodes [12] used for
monitoring large scale water distribution systems. These types
of systems are time-critical and performance sensitive. For
instance, smart power grid systems need to provide real-time
pricing information while water distribution systems need to
instantly react to a contamination by performing coordinated
tracking and flow shut-off operations. Further, many of these
unattended and deeply-embedded systems will be expected to
last for several decades, and therefore must carefully manage
available energy resources. The challenge faced by system
designers is to balance performance and system availability
requirements with energy management policies that can max-
imize system lifetime.

One approach to maximize the system’s lifetime is based on
energy harvesting [13] [3]. By harvesting energy from environ-
mental sources such as solar, wind or water flow, WSN nodes

Bo Zhang, Robert Simon, and Hakan Aydin are with the Department of
Computer Science, George Mason University, Fairfax, VA, 22030 USA e-
mail: (bzhang3@gmu.edu; simon@cs.gmu.edu, aydin@cs.gmu.edu).

may potentially have a perpetual energy supply. However,
given the large energy demands of computational and com-
munication intensive WSN applications, and the potentially
limited availability of the harvested environmental power, the
perpetual operation of WSN nodes cannot be realized without
deliberate energy management and performance control. This
problem is exacerbated if the application has unpredictable
spikes in workload demand, such as a water distribution
system reacting to a biological contamination. The focus of
this paper is a coordinated energy management policy for
time-critical WSN applications that use energy harvesting and
that must maintain required performance under emergency or
fault-driven situations.

Our approach utilizes two energy management techniques,
Dynamic Voltage Scaling (DVS) [6] and Dynamic Modulation
Scaling (DMS) [28]. The DVS technique saves computation
energy by simultaneously reducing CPU supply voltage and
frequency. The DMS technique saves communication energy
by reducing radio modulation level. We propose a set of
Harvesting Aware Speed Selection (HASS) algorithms that use
both DVS and DMS in conjunction with energy harvesting
modules. The purpose of the HASS framework is to maxi-
mize energy reserves while meeting application performance
requirements, therefore maximizing the system’s resilience in
the face of emergency situations. One difficulty in managing
energy for these systems is that nodes may have quite different
workload requirements and available energy sources. This may
arise from natural factors such as the differences in nodes’
energy harvesting opportunities, unbalanced distribution of
processing workloads, or network traffic among nodes. Be-
cause of these conflicting design considerations, the HASS
approach attempts to maximize the energy reserve levels of
nodes in the network while guaranteeing the required system
performance levels. Our ultimate goal is to maximize system
resilience to network-wide workload burst or shortage in the
amount of energy harvested.

Our specific contributions are summarized as follows: We
first provide a basic architectural description for DVS-DMS
capable nodes that use energy harvesting, and a general
network and performance model for time-critical WSN ap-
plications. Based on our device and application models, we
formulate the problem of maximizing the minimum energy
reserve while maintaining required performance as an opti-

Copyright (c) 2009 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2

mization problem. We then solve this problem with an optimal
and efficient centralized algorithm, along with a distributed
version. As a further improvement, we propose a speed reduc-
tion scheme that increases energy levels by reducing the perfor-
mance levels of certain nodes while maintaining all energy and
system-wide performance constraints. We conducted extensive
simulations to evaluate our HASS solutions under a variety
of data processing, communication and performance require-
ments. We propose an experimental methodology to simulate
a WSN system utilizing energy harvested from water flow in
a water distribution system. Our results show that both the
centralized and distributed solutions significantly improve the
capacity of time-critical WSN systems to deal with emergency
situations, in addition to meeting performance requirements.

2. BACKGROUND AND RELATED WORK

There is currently much interest in developing and deploy-
ing time-critical and processing intensive WSN systems [12],
[21], [29]. A major motivating factor is that WSN technology
is a key enabler of many types of proposed Cyber Physical
Systems (CPS) [25]. Many researchers have identified the
fundamental requirements of CPS as the need to operate in
an unattended and perpetual fashion, with short unavailability
periods [27]. These requirements strongly suggest the need
to combine methods for energy-harvesting, performance man-
agement and emergency response planning. We now briefly
review related work in this area.

DVS and DMS based scheduling for wireless embedded
systems has been explored in [22], [28]. In [22], Kumar
et al. addressed a resource allocation problem with the aim
of minimizing energy consumption. They assume a system
containing a mixed set of computation and communication
tasks. In [28], Yu et al. proposed a DMS-based approach for
tree-based WSNs which periodically collect data from sensor
nodes. Their objective is minimizing the network-wide energy
consumption. Unlike our work, [22], [28] assume battery-
powered systems without energy harvesting capability.

Many existing studies explored the use of DVS technique
for energy harvesting WSNs. In [19], Moser et al. proposed the
LSA algorithm (Lazy Scheduling Algorithm) for scheduling
real-time tasks in the context of energy harvesting. LSA
defers task execution and hence energy consumption as late as
possible so as to reduce the amount of deadline misses. Liu et
al. [14] proposed EA-DVFS (Energy-Aware Dynamic Voltage
and Frequency Scaling) which improves energy efficiency of
LSA by using DVS. [34] proposes an improved version of EA-
DVFS which further enhances energy efficiency and reduces
deadline miss ratio. Both LSA and EA-DVFS manage only
the CPU energy and ignore the radio energy. [33] proposes a
novel task scheduler based on the linear regression model.
The scheduler aims to improve the task accuracy and the
number of measurements taken. DVS is used to improve
energy usage efficiency. Additionally, [11], [30], [31] [1],
[4] studied the design of real-time wireless sensor networks.
[11] proposed energy aware routing approach for real-time
and reliable communication in industrial WSN system. [30]
uses two-hop velocity information to enhance real-time data
delivery in WSNs. [31] uses a topology management approach

to ensure real-time and energy-efficient data communication.
[1] proposes a scheduling algorithm for minimizing energy
consumption of nodes inside a cluster tree while meeting
all the deadlines of pre-defined data flows. [4] proposes a
message scheduling algorithm for guaranteeing real-time com-
munication between sensor nodes by controlling parameters
of 802.15.4 MAC, such as beacon order, super-frame order.
Further, [2] targets prolonging the lifetime of sensor nodes by
dynamically adjusting their sleep schedules, while matching
the network demands.

Many other works studied the design of energy harvesting
WSNs. For instance, the work in [17] presents a multi-
parametric set of algorithms for predicting harvesting rates and
setting service levels. Similar to our approach, this work uses
a task-oriented control method. Additional research including
[9], [13], [18], [35] propose to maximally utilize the harvested
energy so as to maximize the amount of completed work,
and hence the system performance. System performance was
correlated to nodes’ duty cycles in [13], data sampling rate in
[9], [18], and application-defined utility values in [35]. None of
these papers considers maximizing the minimum energy levels
by using joint DVS-DMS techniques. The assumption of these
studies is that the more workload the sensor nodes complete,
the higher the quality of results of the application. We note that
many CPS applications do not have this requirement. Rather,
the number of sense tasks and associated computation and
communication activities are fixed by the application and crit-
icality of the task. Unlike these papers, our goal is to enhance
the system’s ability to tolerate unexpected energy usage and
energy shortage by maintaining sufficient energy storage, given
a fixed application-defined performance requirement.

Part of the motivation for defining our epoch based approach
is to provide a complementary node-based solution that can
be used within network-wide energy management policies and
architectures, such as those presented in [5], [7], [10]. Our
work is easily paired with these energy aware architectural
approaches, since our optimization formulation can be used as
the application-defined reward or utility metric. For instance,
the IDEA approach [7] provides a network-level service by
distributing performance and state information allowing nodes
to optimize application-based performance metrics. Our con-
trol objectives and methods for determining epoch length and
frame type could therefore be implemented within an IDEA-
like architecture.

3. SYSTEM ARCHITECTURE AND ASSUMPTIONS

This section describes our architecture for energy harvesting
WSN systems supporting time-critical applications. It consists
of a basic node and device model, a task-based workload and
energy consumption analysis, and a performance model.
A. Device model

Without loss of generality, we assume that each node has
several functional units, including an energy harvester head,
an energy storage unit, a DVS-capable CPU, a DMS-capable
radio, as well as the required sensor suites. The harvester
head is energy source-specific, such as a solar panel or
wind generator. The energy storage unit (e.g. rechargeable
battery or super-capacitor) has a maximum energy capacity of

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 3

Γmax joules. This unit receives power from the harvester, and
delivers power to the sensor node. We take the commonly used
approach that the amount of harvested power is uncontrollable,
but reasonably predictable, based on the source type and
harvesting history [13]. To capture the time-varying nature of
environmental energy, time is divided into epochs of length
S. Harvested power is modeled as an epoch-varying function
denoted by Pi, where i is the epoch number. Pi remains
constant within the course of each epoch i, but changes for
different epochs. The time unit used for harvesting prediction
is therefore one epoch. In our approach, one needs to know
the harvested power prediction only for the next epoch.

The node consumes power via either processing, radio
communication or sensing. We now describe how to model
energy consumption of an individual node. The basic time
interval over which energy consumption is calculated is called
a frame, defined below. Frames are invoked periodically, and
each prediction epoch consists of multiple frames.

We assume the DVS-enabled CPU has m discrete fre-
quencies f1<...<fm in units of cycles/second, and the DMS-
enabled radio has n discrete modulation levels, b1<...<bn.
We use the terms CPU frequency and computation speed
interchangeably. In practice, the modulation level represents
the number of bits encoded in one signal symbol [28]. Let
R be the fixed symbol rate. Then the modulation level b is
associated with the communication speed d expressed as:

d = R · b (1)

The computation power P cp is a function of com-
putation speed f . Given m discrete frequency levels
{f1, ..., fm}, there are m different levels of computation
power, {P cp(f1), ..., P cp(fm)}. [6] models P cp as having
a cubic relation to f . The communication power P cm is a
function of communication speed d. Given n discrete levels
of communication speeds d, there are n different radio power
levels {P cm(d1), ..., P cm(dn)}. Following [28] P cm is con-
sidered to have an exponential relation with d. Let C and M
be the computation and communication workloads in a frame,
where C is the number of CPU cycles to be processed, and M
is the number of bits to be transmitted. The computation and
communication energy in a frame, denoted by ecp and ecm are
function of f and d respectively, given below:

ecp(f) = P cp(f) · (C/f) (2)
ecm(d) = P cm(d) · (M/d) (3)

Since we target time-critical and performance senstitive
WSN applications, we assume a sufficient level of coordinated
sleeping and time-slotted transmission scheduling, so that the
radio energy consumed by listening channel activities is not
a significant factor. Let esen represent the constant energy
required for each sensing operation. We can give the total
energy consumed in a frame, ec as:

ec(f, d) = esen + ecp(f) + ecm(d) (4)

B. Network and application model

The system consists of N sensor nodes V1, . . . , Vn. The
base station is denoted by BS. The sensor nodes are divided
into two types: source nodes perform sensing, processing and

.

π

(a)

π π
S
(a)

π

.

π π

(b)

S

sense process communicate

Fig. 1: Frame-based Data Collection. S: epoch length, π: frame
length. Figure 1(a) and (b) show a sequence of frames invoked on a
source node and a relay node, respectively

communication operations, while relay nodes only perform
processing and communication. Our data processing archi-
tecture is general, and supports systems that perform some
levels of aggregation at each node, as well as systems that do
not allow any aggregation. We represent a time-critical and
performance sensitive WSN application by requiring all the
source nodes report their readings every π time units. The time
interval π is the length of each frame. Such a frame-based data
collection mechanism is quite common for WSN applications
[15], [22], [28]. All sensed, processed or aggregated data must
reach the BS by the end of each frame. For example, at the
start of the kth frame (i.e. at time (k − 1) · π), each source
node senses the environment and sends their readings to BS.
The data is routed by other nodes and must reach BS by the
end of that frame, at time k · π. We assume all the nodes are
time-synchronized so that they are aware of the same frame
start and end times. Figure 1(a-b) show a sequence of frames
executed by the source nodes and relay nodes within an epoch,
along with the relationship of frames to a prediction epoch
respectively. Given the epoch length S and frame length π,
there are bSπ c frames in any epoch. The source nodes perform
sensing, processing, and communication tasks (Fig 1(a)); the
relay nodes only process and forward data (Fig 1(b)).

On a per-frame basis, energy consuming activities within
each node are represented using a task-based model. In this
way, the frame-based energy consumption is determined by
examining the energy demands of individual tasks (Eq. (4)).
There are a total of three task types: sensing, computation and
communication. We assume in each frame, a sensor node per-
forms sensing first, then process the sensor reading (computa-
tion), and finally transmit the processed data (communication).
The workloads of the computation and communication tasks
of any node Vi are fixed over any frame in a given epoch,
and denoted as Ci and Mi, respectively. The packet size Mi

can be obtained based on the packet format specified by the
application, and will be upper bounded by the data link layer,
such as 127 bytes in 802.15.4. The CPU cycle count Ci can
be estimated using existing techniques such as [32].

We assume that each node uses standard WSN energy
management techniques for transitioning to sleep states when
there is no active task. We also assume that the computation

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 4

and communication speeds only change at the start of an
epoch. This design decision reduces the required level of
control and synchronization overhead.

Using this analysis we can calculate the time required by
each node Vi to carry out all the activities during a frame,
referred as the per-node latency, li. The per-node latency
depends upon the computation speed fi and communication
speed di. Then li is given by

li = tsen +
Ci
fi

+
Mi

di
(5)

tsen is the sensing time which is a constant. Note that tsen

is zero for relay nodes. We assume that the effective data
transmission time dominates the overall communication time
while ignoring the carrier sense time [22], [28]. Thus, the
communication time is inversely proportional to di.

The system is organized into a data collection and process-
ing tree rooted at BS. We assume the availability of a real-time
and reliable routing protocol for time-critical and performance
sensitive WSNs, such as EARQ [11]. In order to support time-
critical operation we must define and calculate the path latency
and data collection latency. These two values are used in the
optimization formulation in Sections 4 and 5 to ensure that all
latency requirements are maintained.

We define the path ρi from a node Vi to the root BS as
the series of nodes and wireless links connecting Vi and BS.
The notation Vj ∈ ρi signifies that Vj is an intermediate node
on path ρi. The latency Hi of ρi is defined as:

Hi =
∑

j:Vj∈ρi

lj (6)

In each frame, a node Vi receives data from a set of child
nodes denoted as Children(Vi). Vi then forwards packets to
its parent node, Parent(Vi) after receiving data from all its
children. Then, we define the collection latency of the subtree
rooted at node Vi, denoted as Li, in a recursive fashion:

Li = Max.{Lj + lj |Vj ∈ Children(Vi)} (7)

Li is the latency for Vi to collect data from any source nodes
in the subtree . The subtree rooted at a leaf node contains only
the leaf itself, and hence incurs zero latency. Then the total
collection latency of the entire tree Ltot is given by

Ltot = Max.{Li + li|Vi ∈ Children(BS)} (8)

Ltot is the time interval between the start of a frame, and
when BS collects all sensed data. Note that by resolving the
recursion in Eq. (8), Ltot actually equals to the latency of the
longest path in the tree, i.e. Max.{Hi|∀ρi}.

4. HARVESTING AWARE SPEED SELECTION

Based on the node and network model presented in Section
3, we now formally define the Harvesting Aware Speed Selec-
tion (HASS) problem. Our goal is to maintain end-to-end per-
formance while maximizing system’s resilience to abnormal
or emergency situations. This is accomplished by maximizing
the minimum energy level of any node in the network. The
computation and communication speeds at individual nodes

are adjusted at the start of each epoch, and remain fixed
throughout that epoch. As defined in Section 3-A, an epoch
is a time interval over which an energy harvesting prediction
can be reasonably made. Within an arbitrary epoch, the energy
consumption eci , and the latencies Li, Hi of a node Vi are fixed
over any frame k. Then the energy level Γi of a node Vi at
the end of a given epoch is given as:

Γi = Γiniti + Pi · S − bS/πc · eci (9)

Γiniti is the starting energy level of Vi in the epoch. Recall
that S is the epoch length. bS/πc gives the number of frames
in an epoch. Using this notation, we define Γmin as:

Γmin = Min.{Γi|∀Vi} (10)

Then the goal of our approach is to maximize Γmin. We
achieve this goal by regulating nodes energy level and hence
Γmin through adjustment of two variables, the computation
and communication speeds fi, di of any node Vi. Given N
nodes in the tree, there are 2N unknowns in our problem.
The optimal solution to this problem consists of N speed
configurations (fi, di), one for each node which maximize
Γmin. The problem HASS is given as:

Max. Γmin (11)
s.t. ∀ρi, Hi ≤ π (12)

∀Vi, fi ∈ {f1, ..., fm}, di ∈ {d1, ..., dn} (13)
∀Vi, 0 < Γi ≤ Γmax (14)

The constraint (12) ensures that the latency of any path ρi in
the tree is smaller than the frame period π. As mentioned in
Section 3-B, this is equivalent to ensuring that the collection
latency of the entire tree is smaller than π. The constraint (13)
gives the available ranges of f and d. The constraint (14)
requires that the energy level of any node Vi must be confined
to the range (0,Γmax]. The left-hand side of the constraint (14)
(called the positivity constraint) must hold in order to ensure
positive energy level at any time, so that an energy harvesting
sensor node can operate without any interruption. The right-
hand side (called the capacity constraint) is used to model the
energy storage capacity.

Vi A node in the network
CHILDREN(Vi) The set of children of node Vi

N Number of nodes in the network
Γi Energy storage level of node Vi
S Epoch length
Pi Harvested power of node Vi
f, d Computation and communication speed

esen, ecp, ecm Unit sensing, computation and communica-
tion energy

C,M Computation and communication workload
π Data collection frame period
li Per-node latency of node Vi

Li, Ltot Data collection latency at node Vi and BS
ρi Path from node Vi to base station
Hi Latency of path ρi

TABLE I: List of notations

5. CENTRALIZED AND DISTRIBUTED SOLUTIONS

This section provides centralized and distributed solutions
to problem HASS. The centralized version provides an op-
timal solution, while the distributed version is appropriate

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 5

for systems that need to avoid single control point. We first
give Lemma 1 which states that solving the problem HASS
with the full constraint set is equivalent to solving the same
problem but without constraint (14). This enables us to remove
constraint (14) and focus on a new problem obtained in this
manner, denoted as HASS-N. Note that the objective function
and all other constraints are retained in HASS-N.

Lemma 1: If in the optimal solution to HASS-N, Γmin is
strictly positive, then the solution to HASS is identical to that
of HASS-N. Otherwise, HASS has no feasible solution.

The proof of Lemma 1 can be found in the Appendix. In the
rest of this paper, we will focus on solving problem HASS-N. A
naive approach to solve HASS-N is to exhaustively search over
all possible solutions. For a system with N nodes where each
node has m computation speeds and n communication speeds,
there are (mn)N possible solutions, making brute force search
impractical.

We notice that many different solutions yield identical
Γmin. Using this observation we can simply enumerate each
possible Γmin, check if there exists a feasible solution that
yields a minimum energy level (among any node) equaling
the enumerated Γmin, while satisfying constraints (12-13).
The highest Γmin that passes this check is by definition the
maximum Γmin that we are looking for.

For each node, mn speed configurations correspond to mn
different power consumption levels. Since each node’s power
consumption is fixed throughout an epoch, a node has exactly
mn energy consumption levels over an epoch. Thus, given
a known starting energy level and a fixed prediction for how
much energy can be harvested, a sensor node could end with at
most mn possible energy levels in an epoch. Given N nodes,
at the end of an epoch, there could be at most mnN different
energy levels in the network, and Γmin can be only of these
possible values. The set of possible Γmin values is referred as
EL (Energy Level), and has at most mnN elements.

A. Centralized version

We call the centralized HASS algorithm CHASS; this is
shown in Algorithm 1. It runs on the base station, and requires
that BS collects Γinit from each node in the system. It is also
aware of the available speed configurations of sensor nodes.
CHASS first computes the possible energy levels of all the
nodes using Eq. (9) to build the set EL, then sorts EL in
non-increasing order (line (1)). CHASS proceeds iteratively
over the sorted EL starting from the first element (i.e. the
highest energy level in EL) (line (2)). In each iteration p, it
solves a decision problem called Feasible Solution (FSp), by
calling the algorithm Is-Feasible (line (3)). The pth element
in EL, EL[p] is input to Is-Feasible. The problem FSp is
specified as ”Is there a solution which yields Γmin = EL[p],
while satisfying the constraints (12-13)?”

The loop in line (2-9) iterates through all the elements
in EL. It continues if the answer to problem FSp, ansp is
negative, and terminates once it discovers a FSp with positive
answer. In other words, it terminates during iteration z in
which FSz is the first problem encountered with positive
answer, z = Min.{p ∈ [1, |EL|]|ansp = TRUE} (line (4)).

By definition of problem HASS-N and FS, and the ordering of
EL, EL[z] is the maximum Γmin that can be achieved (line
(5)), while satisfying all the constraints. If CHASS proceeds
to the end of EL and never received a positive answer, this
implies problem HASS-N has no feasible solution.

The algorithm Is-Feasible for solving problem FSp is given
in Algorithm 2. The algorithm has one input, the energy level
enumerated in iteration p of CHASS, EL[p]. It returns three
values, the boolean answer to problem FSp, ansp, and two
speed vectors of length N , F ∗, D∗ which contain f and d
derived for all the nodes in the current iteration; they are
returned only if ans is positive, otherwise they are empty.

Algorithm 1 CHASS

1: Compute and sort EL (in non-increasing order)
2: for p = 1 to |EL| do
3: [ansp, F

∗
p , D

∗
p] = Is-Feasible(EL[p])

4: if ansp == TRUE then
5: Max Γmin = EL[p]
6: [F opt, Dopt] = [F ∗p , D

∗
p]

7: Break from for-loop
8: end if
9: end for

Algorithm 2 Is-Feasible - Input: EL[p]

1: Γmin = EL[p]
2: for i = 1 to N do
3: (F ∗[i], D∗[i], lmini) = find fastest(Γmin, Vi)
4: end for
5: Compute Hi =

∑
j:Vj∈ρi l

min
j for any path ρi

6: if ∀ρi, Hi ≤ π then
7: ans = TRUE
8: else
9: ans = FALSE, F ∗ = ∅, D∗ = ∅

10: end if
11: return [ans, F ∗, D∗]

The Algorithm Is-Feasible is specified as follows: First,
by making Γmin = EL[p] (line (1)), Γi ≥ Γmin = EL[p]
must hold for any node Vi. Then the algorithm calls function
find fastest for each node (line (2-4)) to search over all its
mn speed configurations for the fastest one, while yielding
Γi ≥ EL[p]. Let Γi(f, d) and li(f, d) represent the energy
level and per-node latency achieved using speed configuration
(f, d), respectively. Then, find fastest returns a speed config-
uration for Vi, (F ∗[i], D∗[i]) which satisfies:

F ∗[i] ∈ {f1, fm}, D∗[i] ∈ {d1, dn} (15)
Γi(F

∗[i], D∗[i]) ≥ EL[p] (16)

∀(f
′
, d

′
) ∈ {(f, d)|Γi(f, d) ≥ EL[p])}, (17)

li(F
∗[i], D∗[i]) ≤ li(f

′
, d

′
)

find fastest also returns the per-node latency lmini at Vi
achieved by using the derived (F ∗[i], D∗[i]). Note that lmini

is the least achievable latency according to Eq. (17). Then
for each path ρi, we compute its latency Hi by summing up

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 6

any lminj , Vj ∈ ρi (line (5)). Since (F ∗, D∗) minimizes the
per-node latency at any node, it also minimizes the latency of
any path Hi. Therefore, if Hi ≤ π,∀ρi, the constraint (12) is
met, hence the answer to problem FSp is positive (line (6-7)).
Otherwise, constraint (12) can never be met, hence the answer
is negative (line (8-9)). Note that it is possible that function
find fastest does not return an answer, as there may exist
some nodes having no possible energy level larger than the
input EL[p]. In this case, the algorithm immediately returns
FALSE. The speed sets F ∗, D∗ found in iteration z is set to
be the optimal solution to problem HASS-N and also HASS
(line (6) in Algorithm 1). EL[z] is set to be the maximum
achievable Γmin.

It is possible to reduce the runtime of the above algorithm.
In order to do so we present Lemma 2 and Corollary 1, which
is used as the basis for CHASS∗, the faster algorithm. The
key idea of CHASS∗ is to implement a binary search for
FSz . This reduces the number of iterations in CHASS from
O(|EL|) to O(log(|EL|)).

Lemma 2: For any node Vi, the least per-node latency
found by invoking algorithm Is-Feasible with Γ1 as input is no
smaller than the one found with Γ2 as input, where Γ1 ≥ Γ2.

The proof of Lemma 2 can be found in the Appendix. Given
Lemma 2, we have:

Corollary 1: For any node Vi, the least per-node latency
found in iteration p is no smaller than the one found in
iteration q, ∀q ≥ p.

Corollary 1 holds because EL[p]≥EL[q], given that EL
was sorted in non-increasing order. Corollary 1 implies that
the latency of any path found in iteration p is also no smaller
than the one found in iteration q, ∀q ≥ p. Therefore, we can
implement the search for FSz using binary search. The search
starts from the pth element of EL, p = |EL|

2 , and
• continues on the first half (i.e. [1, p − 1]) if FSp has

positive answer. Due to the smaller path latency associ-
ated with iteration q, q > p, any FSq problem on the
second half must also have positive answer, hence it is
unnecessary to search that region. Rather, the search on
the first half may yield a larger achievable Γmin.

• continue on the second half (i.e. [p+1, |EL|]) if FSp has
negative answer. Due to the larger path latency associated
with q where q < p, any FSq on the first half will violate
the constraint (12), thus having a negative answer.

The binary search continues on either half depending on the
answer to FSp, until FSz is found. The binary search based
implementation reduces the number of iterations in CHASS
from O(|EL|) to O(log(|EL|)).

Complexity analysis: Given mn speed configurations, the
run time of find fastest is O(mn). Given N nodes, the loop
in line (2-4) of Algorithm 2 has run time O(mnN). Also,
computing the latency for all the paths (line (5)) can be
achieved in O(N) time with N nodes. Therefore, the run
time of Is-Feasible is O(mnN). Since CHASS∗ iterates
for O(log(|EL|))=O(log(mnN)) rounds, its total complexity
is O(mnN log(mnN)). Since m and n are typically much
smaller than N , the algorithm can be seen as an efficient
one in practice. In terms of the communication overhead, the

gathering of initial energy levels from all the nodes at BS
requires one round of data collection.

B. Speed reduction for nodes on non-critical paths

We note that the function find fastest in Algorithm 2
produces node speed assignments that run at the highest
possible speed configuration that satisfies Γi ≥ Γmin. This
speed assignment is not always desirable or necessary, and we
now present a scheme to reduce speed for the unnecessarily
fast nodes, given that Γmin has been maximized by CHASS.
We first define a critical path. Given the speed assignment
derived by CHASS, a critical path in the tree is any path
on which no nodes can further reduce their computation or
communication speeds without violating the constraint (12).
Note that such critical paths must exist. This is because if
the tree does not contain a critical path, then we can further
reduce the speed of nodes on any path without violating the
constraint (12). This will increase the energy level of these
nodes, hence CHASS will proceed to a new iteration and find
a higher Γmin. This contradicts the optimality of CHASS that
Γmin is already maximized.

Recall that Hi is the latency for packets from Vi to reach
BS, and Li is the time for Vi to collect packets from all its
descendent source nodes. For any node Vi on a critical path,
Hi is fixed since we cannot reduce the speed of any node on ρi.
Since the latency from Vi to BS is fixed at Hi, in order for Vi
to collect and forward packets sensed by its descendent nodes
to BS within the latency constraint π, any of those packets
must reach Vi in no more than time π −Hi. In other words,
the collection latency of Vi, Li must be smaller than π −Hi.
Therefore π −Hi can be interpreted as the latency constraint
at Vi, denoted as LCi.

We refer to the speed reduction scheme as SpeedReduction,
and give it in Algorithm 3. SpeedReduction reduces speeds
of nodes based on the speed assignment derived by CHASS.
Line 1 identifies the path with the largest latency in the tree,
denoted as ρmax. Notice that ρmax must be a critical path,
and the base station is also on ρmax.

Lines (2-7) iterate over every node Vi on ρmax (from
BS down to the leaf node on ρmax) to reduce speeds
of their descendent nodes, while ensuring that the resulted
collection latency Li is smaller than the latency constraint
at Vi, LCi. Specifically, in each iteration of the for-loop,
procedure DoSpeedReduction is called over any immediate
children of Vi, except the one resided on ρmax. The procedure
DoSpeedReduction given in Algorithm 4 executes in recursive
fashion. In this way, lines (2-7) will ultimately visit every node
in the tree exactly once, in a top-down fashion.

Now we specify Algorithm 4, DoSpeedReduction.
DoSpeedReduction has two inputs, the node Vj whose speed
is to be reduced, and the collection latency constraint of its
parent, LCi. DoSpeedReduction reduces speed for Vj , while
fixing the speeds of Vj’s children. That is, lj(f, d) is to be
increased, while Lj remains fixed. Specifically lines (2-3)
reduce the speed configuration of any node Vj to a level
(f̃ , d̃) that yields the minimum energy consumption Ec(f̃ , d̃)
(Eq. 4), among any (f, d)s that give Lj + lj(f, d) ≤ LCi.
This will yield the maximum energy level increment at these

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 7

Algorithm 3 SpeedReduction

1: Identify ρmax in the tree.
2: for any node Vi on ρmax, from BS down to the leaf node

on ρmax do
3: LCi = π −Hi

4: for any child Vj of Vi do
5: If Vj 6∈ ρmax then DoSpeedReduction(LCi, Vj);
6: end for
7: end for

Algorithm 4 DoSpeedReduction

1: Input: LCi, Vj
2: (f̃ , d̃) = argmin{Ec(f, d)|Lj + lj(f, d) ≤ LCi}
3: Assign (f̃ , d̃) to Vj
4: Set LCj = LCi − lj(f̃ , d̃) = π −Hi − lj(f̃ , d̃)
5: for any child Vk of Vj do
6: DoSpeedReduction(LCj , Vk);
7: end for

nodes. The reduction of speed to (f̃ , d̃) will yield a new
latency at Vj , lj(f̃ , d̃).

After the speed reduction at Vj , lines (5-7) continue re-
ducing the speeds of Vj’s children Vks, where the latency
constraint LCj at Vj is set to π − Hi − lj(f̃ , d̃) in line 4.
As procedure DoSpeedReduction executes recursively until the
leaf nodes are reached, it visits every descendent node of Vi,
and reduces their speeds.

DoSpeedReduction has the desirable property of reducing
the speed of nodes it visits earlier in the procedure. This is
desirable because in any tree-structured network high level
nodes, nodes which will be visited earlier by the procedure,
have more descendant nodes than the low level nodes, and
hence are more critical to the system in terms of network
connectivity. Therefore, we need to obtain more energy for
these nodes in order to prevent them from energy depletion
and consequently network partition and service interruption.

Complexity analysis: As mentioned earlier in this
subsection, SpeedReduction and the recursive procedure
DoSpeedReduction visit every node in the network exactly
once. For each node visited, DoSpeedReduction finds the speed
configuration (f̃ , d̃) according to line 2 of DoSpeedReduction
which has time cost of O(mn) given mn speed configurations.
Therefore, given N nodes in the network, the total complexity
of SpeedReduction is O(mnN).

C. Distributed Version

We next describe the distributed HASS solution called
DHASS. The purposes of the distributed version is to enable
any node in the network to act as the base station, thereby
enabling that node to make command and control decisions.

The algorithm DHASS also proceeds in binary-search fash-
ion. It requires one initialization round during which each
sensor node sends an initialization message containing two
pieces of information, its estimated lowest and highest energy
levels at the end of the epoch, denoted as Γlow and Γhigh.
After the initialization round, all the nodes agree on the

global lowest and highest achievable energy levels (within the
entire tree). The continuous range between the two energy
levels is the starting binary search space. It then runs for
Y computation rounds, each of which corresponds to one
iteration of binary search, and solves one instance of problem
FS using the distributed Is-Feasible. In each computation
round, the midpoint of the search space is used as the input
energy level to Is-Feasible. Given that input, each node calls
function find fastest individually to derive its fastest speed
configuration and associated per-node latency. It then com-
putes the accumulative latency at it, i.e. Li + li and sends
to its parent as a latency message. The parent computes its
accumulative latency as well based on the received latency
messages from its children. By making all the nodes compute
and report their latencies accumulatively, the latency of the
entire tree Ltot will be ultimately computed at the root. The
root then compares Ltot to π in order to determine the answer
to problem FS, and disseminates it to all the nodes as a
decision message. Note that any node in the network can be
the root.

In the initialization round, each node estimates its local
Γlow, Γhigh, then forwards to its parent as an initialization
message. Γlow is calculated using Eq. 4 and 9 while assuming
use of the highest speed configuration. Γhigh is also calculated
using these two equations but assuming the lowest speed
configuration. A node receives initialization messages from its
children, and compares Γlow, Γhigh received to its own values,
in order to derive Γlow and Γhigh among its children and itself.
The derived Γlow, Γhigh are sent to its parent as well. When
the root receives initialization messages from all its children,
it derives the global Γlow and Γhigh which actually equals
to the minimum and maximum elements in EL, Min(EL),
Max(EL). Then the root disseminates the global Γlow and
Γhigh to all the nodes for the use in the first computation
round. Their values will be updated in each computation round
according to a rule given in the following paragraphs. The
initialization round ends when all the nodes have received the
global Γlow and Γhigh values .

The procedure of the distributed Is-Feasible is different for
non-root and root nodes. Algorithm 5 presents the non-root
node case, while Algorithm 6 presents the root node case. Both
proceeds iteratively for Y computation rounds. Y is tunable
parameter defined by system designers. Each computation
round starts by requiring the leaf nodes to send latency
messages upwards over the tree. These latency messages will
then trigger the computation procedure on the non-leaf nodes.

Lines 3-26 in Algorithm 5 specify the procedure of the dis-
tributed Is-Feasible in one computation round at the non-root
nodes. Line 26 starts a new computation round by directing
the execution to line 3. Algorithm 5 has two inputs Γlow and
Γhigh which have been derived in the initialization round,
and outputs the optimal speed configuration and the maximum
Γmin found, i.e. MAX Γmin. It also uses a variable round
to keep track of the current computation round. round is
initialized to 0.

Algorithm 5 can be explained as follows: Line 3 sets the
current computation round. If node Vi is a non-leaf node, then
before it starts computation, it must wait to receive latency

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 8

Algorithm 5 Procedure of Distributed Is-Feasible at a non-root node
Vi

1: Input: Γlow, Γhigh

Output: (F opt[i], Dopt[i]), MAX Γmin
2: Initialization: round = 0
3: round = round+ 1
4: if Vi is a non-leaf node then
5: Wait to receive Lj + lminj from every child Vj
6: end if
7: Compute Li = Max.{Lj + lminj |Vj ∈ Children(Vi)}
8: Compute X = Γlow+Γhigh

2
9: (∗, ∗, lmini) = find fastest(X,Vi)

10: Send Li + lmini to Parent(Vi)
11: Wait to receive decision message (containing ans) from

the root
12: if ans == TRUE then
13: Γlow = X
14: else
15: Γhigh = X
16: end if
17: if round == Y then
18: if ans == TRUE then
19: MAX Γmin = X
20: else
21: MAX Γmin = Γlow

22: end if
23: (F opt, Dopt, ∗) = find fastest(MAX Γmin, Vi)
24: Return
25: end if
26: Goto line 3

Algorithm 6 Procedure of Distributed Is-Feasible at the root

1: Wait until Lj + lminj has been received from all children
2: Ltot = Max.{Lj + lminj |Vj ∈ Children(Root)}
3: if Ltot ≤ π then
4: ans = TRUE
5: else
6: ans = FALSE
7: end if
8: Disseminate ans across the tree

messages from each of its children Vj (line 4-6). A latency
message contains Lj + lminj computed by its child Vj . Using
the received Lj + lminj , Vi computes its collection latency Li
using Eq. 7 in line 7. If Vi is a leaf node which has no child,
then it has Li = 0 and does not wait for latency messages.
Next in line 9, Vi derives the smallest per-node latency lmini

while satisfying Γi ≥ X , by calling function find fastest

specified in 5-A. X = Γlow+Γhigh

2 is the input energy level
in the current computation round (line 8). Then Vi adds up
lmini to Li, sends to its parent (line 10), and waits to receive
decision message to be disseminated from the root (line 11).

In Algorithm 6, the specification of the root-side procedure
of distributed Is-Feasible. As each node Vi receives Lj + lminj

from its children, it computes and sends its own Li + lmini ,
the root will compute the total collection latency Ltot after

receiving Lj + lminj from all its children (line 1-2). In line
3-7, the root compares Ltot to the latency constraint π. If
Ltot ≤ π, the root sets the answer to the associated problem
FS in the current round, i.e. ans as TRUE; otherwise it sets
ans to FALSE. Finally, the root disseminates ans across the
tree (line 8).

Returning to Algorithm 5, when Vi receives the decision
message from the root (line 11), it updates the binary search
range (represented by Γlow and Γhigh) for the next compu-
tation round. This is based on the answer ans enclosed in
the decision message. If ans == TRUE, Vi sets Γlow to X
which directs the binary search to the higher half of the current
search range, otherwise it sets Γhigh = X which directs the
search to the lower half (line 12-16). Then Vi starts a new
computation round by directing the execution to line 3. Finally,
if the current computation round is the Y th round (line 17),
then Vi determines MAX Γmin as follow:
• If ans == TRUE, MAX Γmin is set to be the X in

the Y th round (line (18-19)).
• Otherwise, MAX Γmin is set to be the Γlow in the Y th

round (line (20-22)).
Using the derived MAX Γmin, Vi calls function find fastest
to determine the optimal speed configuration (F opt[i], Dopt[i])
(line 23), and terminates (line 24).

We can now present Theorem 1, showing that the perfor-
mance of DHASS is very close to optimal.

Theorem 1: The maximum Γmin found by algorithm
DHASS is smaller than the optimal value, by at most
(Max(EL)−Min(EL))/2Y−1.
The proof of Theorem 1 can be found in the Appendix. As
seen from Theorem 1, using a larger Y for DHASS achieves
closer performance to the optimal, however this comes at cost
of higher complexity shown as follow.

Complexity analysis: In a computation round, the major
time cost of a node comes from function find fastest which
equals O(mn). Given Y computation rounds, the total cost is
O(mnY). The root compares Ltot to π in each computation
rounds, this causes a time cost of O(Y). In the initialization
round, each node sends exactly one initialization message. In
any computation round, each node sends exactly one latency
message. The optimal speed configurations are computed on
each node individually, hence there is no dissemination cost.

6. PERFORMANCE EVALUATION

A. Experimental Methodology

Without loss of generality we evaluated our approaches
within a WSN system designed for residential monitoring
of water usage and quality. Each customer (residence) is
coupled to a supply pipe through a water meter. Water meters
are increasingly used to provide customers and companies
instantaneous pricing information, measurements of water
quality, detecting the presence of containments. Further, these
meters can be equipped with actuators to deal with emergency
situations such as contamination and breakage. Our simulation
environment assumes that each water meter is coupled with a
DVS-DMS enabled node. Energy is harvested from the flow of
water. The amount of harvested energy is therefore dependent
upon the rate at which the customer uses water.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 9

We have developed simulation software upon TOSSIM:
the standard high-fidelity WSN simulator, combined with
EPANET [26], a public domain, water distribution system
modeling program. Based on water utilization and water
quality patterns, the software simulates energy harvesting, and
various WSN processing and communication activities. The
presented results are based upon a 36, 64 and 100 node
residential water distribution topology. The topology is derived
from an existing suburban area.

Due to a typical consumer repetitive water usage pattern
with a cycle of 6 hours, we fixed the harvesting horizon at
H=6 hours. The horizon is then divided into 24 epochs with
equal length S=15 minutes. We run EPANET for 48 hours,
containing 8 horizons or equivalently 192 epochs, and obtained
hydraulic simulation reports. Using these reports we generate
water harvesting profile based on the observed water usage
at the customers. The frame period is set to π=240ms. Both
CHASS and DHASS were implemented in our simulation along
with the speed reduction schemes. As noted in Section 2, due
to architectural and performance objective issues, there are no
algorithms that are comparable to ours. Therefore, we compare
HASS algorithm to an energy harvesting unaware scheme,
NPM (No Power Management) scheme which simply maxi-
mizes performance by using the highest frequency and modu-
lation levels on all nodes, in order to meet, whenever possible,
the data collection timing constraints. Our experiments con-
sidered two basic application types: applications that support
complete-aggregation and applications those do not require
any aggregation (non-aggregation). By complete-aggregation,
we mean that each node aggregates multiple packets received
into one single packet, while in non-aggregation case a node
forwards all packets to its parent without aggregation. The
packet size is randomly selected between M=[64, 128] bytes;
the computational workload is randomly selected between
C=[0, 3000000] cycles. The two scenarios produce highly
different levels of workload and network traffic.

The hardware basis for a DVS-DMS capable platform is
the widely available iMote-2 sensor node [8]. The iMote-2
platform has a Intel Xscale PXA27x CPU [16] and a ChipCon
CC2420 radio [23]. The frequency and power specification of
PXA27x processor is given in Table (II). Although CC2420
does not support DMS, we model a DMS-capable radio by
assuming four modulation levels: b = {2, 4, 6, 8} [28] which
gives four communication speeds, d = {125, 250, 375, 500}
kbps (symbol rate R = 62.5k [23]). The radio power levels
are calculated using the CC2420 specification [23] and the
radio energy model used in [28]. We assume a light sensor
TSL2561 which takes 12ms to get one reading and consume
0.72mW. Each sensor node uses a rechargeable battery with
capacity Γmax = 1000 joules. All nodes start with the same
initial energy level, Γinit = 600 joules.

Freq.(MHz) 104 208 312 416 520 624
Power(mW) 116 279 390 570 747 925

TABLE II: Specification of Intel Xscale Pxa27x

Nodes operate in either normal or emergency mode. We
represent the emergency mode by scaling up the frame-based

workload by w times upon the normal mode, where w is a
tunable parameter. This reflects the fact that nodes will need
to perform additional duties during those times. By using
EPANET functionality we simulate emergency scenarios by
introducing contaminant into the system at random times.
This can, for instance, represent a terrorist attack on the
water supply. As contaminant spreads, the water quality in
the residences decreases and is finally detected by sensor
nodes. A sensor node then switches to emergency mode and
executes additional workload over a series of epochs, until the
water quality returns to normal. We consider three different
types of emergency scenarios. The first type is a random
(RAND) attack. In this case, nodes fail according to a negative
exponential distribution, and are picked according to a random
uniform distribution from among all the nodes still operating in
normal mode. The second mode is a spreading attack (SPRD).
This represents an emergency that increases its area of impact
over time. The third mode is area instant (INST) attack. Under
this scenario a large contiguous area of the network is affected.

B. Results

In CHASS scheme, the set EL contains 2400 elements,
given 6 CPU frequencies, 4 modulation levels, and 100 nodes.
In DHASS scheme, we set the number of search iterations
to be log(|EL|) ≈ 11. We evaluated the performance of
our algorithms under normal and all three emergency modes.
Each scenario was tested using complete aggregation and non-
aggregation. We also varied emergency workload levels.

1) Non-aggregating applications: In Fig. 2(a-c), we com-
pare different schemes in terms of the achieved Γmin, while
assuming non-aggregating applications. We fix the emergency
level w at 3.0, meaning that the emergency workload is three
times the normal workload. In normal mode (Fig. 2(a)), the
Γmin value can be seen to vary semi-repetitively. It stays
close to full capacity at most time, however drops down twice
in every horizon (24 epochs). This is because the workload
and energy demand in normal mode is relatively low, such
that the energy level is dominantly affected by the amount
of harvested water energy which varies in repetitive pattern.
However in Fig. 2(b,c), the significantly increased workload
demand (in RAND and SPRD emergency modes) turns to have
a dominant effect on energy level, therefore one emergency
in each horizon leads to one drop of Γmin in each horizon.
This observation demonstrates the effects of harvested energy
and workload demand over energy level when operating in
different work modes. Due to space limitations, we have
omitted the Γmin plot under INST mode.

As seen from all above figures, in the normal and emer-
gency modes, the CHASS scheme achieves the highest Γmin,
followed by DHASS with slightly lower Γmin, and then NPM.
In normal mode (Fig. 2(a)), NPM scheme also achieves a high
Γmin. This is because the harvested energy is much larger
than energy demand in normal mode. As workload demand
increases in emergency modes (Fig. 2(b,c)), the performance
of NPM drops drastically; its achieved Γmin drops to zero
around the 58th epoch for all three emergency modes. In
comparison both HASS approaches achieve much higher Γmin
than NPM (Fig. 2(b,c)). This is because the HASS method

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 10

900

1000

1100

CHASS

DHASS

(Joules)min
Γ

600

700

800

1 20 39 58 77 96 115 134 153 172 191

DHASS

NPM

Epoch

(Joules)min
Γ

600

800

1000

1200

CHASS

DHASS

Epoch0

200

400

1 20 39 58 77 96 115 134 153 172 191

DHASS

NPM

(Joules)min
Γ

600

800

1000

CHASS

DHASS

Epoch0

200

400

1 20 39 58 77 96 115 134 153 172 191

NPM

a. Normal b. RAND mode c. SPRD mode

Fig. 2: Min. energy level, non-aggregation

allows energy-rich nodes run at faster speeds and therefore
permits to allow the harvesting-poor to slow down.

Notice that DHASS achieves a Γmin level very close to that
of CHASS. In normal mode (Fig. 2(a)), the achieved Γmin
of CHASS and DHASS almost overlap. In emergency modes,
the performance difference between them increases slightly
due to the increased influence of workload demands over
energy level. This observation indicates that DHASS scheme
can achieve near-optimal performance when it runs enough
number of binary search iterations, as claimed in Theorem 1.

w 1 1.5 2.0 2.5 3.0
RAND 0% 0% 27.2% 31.6% 33.4%
SPRD 0% 0% 38.7% 41.6% 43.2%
INST 0% 0% 32.8% 53.9% 55.2%

TABLE III: Percentage of interrupted nodes: NPM, Non-aggregation

We then conducted a stress test over the system while using
different schemes. We raise the intensity of emergency by
increasing the value of w from 1.5 to 3.0 with an increment
of 0.5. The aim of this stress test is to evaluate the resilience
of different schemes to various emergency intensities. We
measure the system resilience to emergency in terms of the
percentage of nodes that are interrupted by energy depletion.

Table III gives the percentage of interrupted nodes in all
three emergency modes under various emergency intensities,
using NPM scheme. As seen from Table III, as emergency
intensity increases, the percentage of interrupted nodes in-
creases noticeably in all modes when using NPM, implying
the low resilience of the harvesting-unaware NPM scheme to
emergency situations. We then found that though there are
very limited number of nodes who ran out of energy in the
network, large amount of nodes are also interrupted. This is
because the depleted nodes are mostly close to BS which have
large group of descendent nodes and thereby high workload
demands. The depletion of these nodes interrupts all their
descendent nodes. While using CHASS and DHASS, the same
increase in emergency intensity interrupts no node at all in the
network. The results of the stress test demonstrates the benefit
of our harvesting-aware approaches in mitigating the impact
of emergencies over the system.

2) Aggregating applications: For aggregating applications,
we repeat the same set of experiments conducted for non-
aggregating applications. In Fig. 3(a-c), we also fix the emer-
gency intensity at w = 3.0 and plotted the Γmin achieved by

w 1 1.5 2.0 2.5 3.0
RAND 0% 0% 0% 0% 26.9%
SPRD 0% 0% 0% 0% 49.1%
INST 0% 0% 0% 0% 47.5%

TABLE IV: Percentage of interrupted nodes using NPM - aggregation

900

1000

1100

36 nodes

64 nodes

(Joules)min
Γ

Epoch600

700

800

1 20 39 58 77 96 115 134 153 172 191

64 nodes

100 nodes

Fig. 4: Min. energy level as a function of different network sizes -
Normal, complete aggregation

using different schemes. In all the modes, CHASS and DHASS
schemes again achieve much higher Γmin than NPM. DHASS
performance is very close to the CHASS scheme. As seen from
all figures, the Γmin achieved by our HASS approaches never
drops to zero, while the achieved Γmin by NPM schemes
drops to zero many times. We then repeat the stress test. No
nodes are interrupted when HASS scheme is used, while large
percentage of nodes are interrupted when emergency intensity
increase to w = 3.0 for the INST and SPRD modes.

We next present in Fig. 4 the achieved Γmin using CHASS
scheme for networks of different sizes (with 36, 64 and 100
nodes). As seen from the figure, the 36-nodes network has the
highest Γmin, followed by 64-nodes and 100-nodes networks.
Although the difference of Γmin among different networks is
small, we observe that the smaller the network, the higher
the value of Γmin. This is because given the fixed end to end
latency constraint (240 ms), nodes in large networks have more
hops in a path to BS, thus the intermediate nodes have less
time slack for processing and communication, thereby must
use high computation and communication speeds.

In Fig. 5, we assume inaccurate prediction of harvested
energy and workloads, and plot Γmin values for SPRD attack,
at emergency level w = 3.0 for aggregating applications.
That is, the actual amount of energy harvested is up to 25%
higher or lower than the harvesting prediction. Also, the actual

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 11

900

1000

1100

CHASS

DHASS

(Joules)min
Γ

600

700

800

1 20 39 58 77 96 115 134 153 172 191

DHASS

NPM

Epoch

(Joules)min
Γ

600

800

1000

1200

CHASS

DHASS

0

200

400

1 20 39 58 77 96 115 134 153 172 191

DHASS

NPM

Epoch

(Joules)min
Γ

600

800

1000

1200

CHASS

DHASS

0

200

400

1 20 39 58 77 96 115 134 153 172 191

DHASS

NPM

Epoch

a. Normal b. SPRD mode c. INST mode

Fig. 3: Min. energy level, complete aggregation

600

800

1000

1200

CHASS

DHASS

Energy Level (J)

0

200

400

1 20 39 58 77 96 115 134 153 172 191

NPM

Epoch

Fig. 5: Min. energy level with probabilistic harvesting profile and
workloads - SPRD, complete aggregation

computation and communication workloads, C and M are
25% lower than the workload prediction, as both C and M are
the worst-case workloads and tasks may complete earlier. As
seen from the figures, our HASS approach still outperforms
NPM under assumption of probabilistic energy harvesting and
workloads, however the performance difference decreases as
compared to Fig. 3(b) which share the same experiment setting
but with accurate harvesting and workload predictions. This
is because, due to prediction inaccuracy, our HASS schemes
outputs sub-optimal speed assignment, while NPM scheme is
not affected by prediction inaccuracy as it always uses the
maximum speed configuration.

Finally, we calculated the communication overhead of
DHASS. In our experiments, DHASS requires each node to
send 1 initialization message, and 11 latency messages for the
11 computation rounds. Since DHASS needs to run only once
in each epoch, each node sends in total 12 control messages in
an epoch. Given a frame period π = 240 ms, and epoch length
S = 15 minutes, each node executes 3750 frames and sends
3750 data messages. Therefore we derive the communication
overhead to be 12/(3750 + 12) ≈ 0.32%. This implies that
our HASS approaches have also the benefit of high efficiency.

7. CONCLUSIONS

This paper presented an epoch-based approach for energy
management in performance-constrained WSNs that utilize
energy harvesting. We adjust radio modulation levels and CPU
frequencies in order to satisfy performance requirement. The
goal of our approach is to maximize the minimum energy
reserve over any node in the network. Through this objective
we ensure highly resilient performance under both normal
and emergency situations. We formulated our problem as

an optimization problem, and solved it with centralized and
distributed algorithms. Through simulation we show our algo-
rithms achieve significantly higher performance than a baseline
approach under both normal and emergency situations.

APPENDIX

Proof of Lemma 1:

Proof: We denote the optimal solution of problem HASS-N as SN ,
and the achieved minimum energy level using SN as ΓN

min. Note that
SN is optimal in the sense that it maximizes Γmin, without considering
constraint (14). Similarly, we denote the optimal solution of problem HASS
as S∗, and its achieved minimum energy level as Γ∗

min. We will show that, if
SN satisfies the positivity constraint, i.e. ΓN

min > 0, then we have S∗ = SN ;
otherwise, S∗ does not exist. We consider the following three cases:

• If using SN , 0 < Γi ≤ Γmax holds for any node Vi, we must have
S∗ = SN .

• In case that SN leads to Γi > Γmax, ∃Vi, we claim that the
computation and communication speeds contained in SN can still be
used. This is because as soon as the maximum capacity of the energy
storage is reached, the harvesting circuitry can be automatically turned
off, keeping its energy level at Γmax. In another words, in this case,
we still have S∗ = SN .

• If SN leads to Γi ≤ 0, ∃Vi, this implies ΓN
min ≤ 0. Assume

S∗ exists, then using S∗ will lead to ∀Vi, Γi > 0 in S∗, since
S∗ must satisfy the positivity constraint by definition. This indicates
Γ∗
min > 0 ≥ ΓN

min which contradicts the fact that SN maximizes
Γmin (recall that the feasible region of HASS is contained in that of
HASS-N). Therefore, if SN violates the positivity constraint, S∗ cannot
exist.

Proof of Lemma 2:

Proof: Let (f1, d1) and (f2, d2) denote the fastest speed configurations
at Vi found when the algorithm FS is invoked by using Γ1 and Γ2 as input
respectively, where Γ1 ≥ Γ2. We use lmin

i,1 and lmin
i,2 to denote the (least)

per-node latencies at Vi obtained by using (f1, d1) and (f2, d2), respectively.
We will show lmin

i,1 ≥ lmin
i,2 .

When the FS problem is solved with Γ1 as input, (f1, d1) yields lmin
i,1 ,

while satisfying Γi(f1, d1) ≥ Γ1. When it is solved with Γ2 as input, the
function find fastest could at least find (f2, d2) = (f1, d1) which yields
lmin
i,2 = lmin

i,1 , while satisfying Γi(f2, d2) ≥ Γ2 (because Γi(f2, d2) =
Γi(f1, d1) ≥ Γ1 ≥ Γ2). Notice that in many cases, (f2, d2) will yield an
even smaller lmin

i,2 .

Proof of Theorem 1:

Proof: Denote Γlow and Γhigh in the Y th round as Γlow,Y and
Γhigh,Y , respectively. According to the property of binary search, in the
Y th round, the maximum Γmin which is our search target is confined to
the range [Γlow,Y ,Γhigh,Y]. As a result, the maximum Γmin can be larger
than the Γmin found in the Y th round by at most Γhigh,Y − Γlow,Y . In
the Y th round, Γhigh,Y −Γlow,Y = (Max(EL)−Min(EL))/2Y −1.

REFERENCES

[1] Hanzalek, Z., Jurcik, P., ”Energy Efficient Scheduling for Cluster-Tree
Wireless Sensor Networks With Time-Bounded Data Flows: Application
to IEEE 802.15.4/ZigBee”, IEEE Trans. on Industrial Informatics, vol.6,
no.3, pp.438-450, Aug. 2010

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 12

[2] G. Anastasi, M. Conti, M. Di Francesco, ”Extending the Lifetime of
Wireless Sensor Networks Through Adaptive Sleep ,” IEEE Trans. on
Industrial Informatics, vol. 56, no. 3, pp. 351 - 365, July 2009.

[3] Y. K. Tan, S. K. Panda, ”Energy Harvesting From Hybrid Indoor Ambient
Light and Thermal Energy Sources for Enhanced Performance of Wireless
Sensor Nodes,” IEEE Trans. on Industrial Electronics, vol. 58, no. 9, 2011

[4] S. E. Yoo, P. K. Chong, D. Kim, Y. Doh, M. L. Pham, E. Choi, J.
Huh, ”Guaranteeing Real-Time Services for Industrial Wireless Sensor
Networks With IEEE 802.15.4 ,” IEEE Trans. on Industrial Electronics,
vol. 57, no. 11, pp., Nov. 2010.

[5] Allen, G. W., Haggerty, S. D. and Welsh, M., Lance: Optimizing high-
resolution signal collection in wireless sensor networks, In the 6th ACM
conference on Embedded network sensor systems, Raleigh, NC, 2008

[6] Aydin, H. et al., Power-aware scheduling for periodic real-time tasks, In
IEEE Trans. on Computers, vol 53, page 584-600, 2004

[7] Challen, G. W., Waterman, J. and Welsh, M., Integrated distributed energy
awareness for wireless sensor networks, In the 7th ACM Conference on
Embedded Networked Sensor Systems (sensys’09), Berkeley, CA, 2009

[8] Crossbow Technology, iMote2 datasheet, www.xbow.com
[9] R. S. Liu, K. W. Fan, Z. Z. Zheng, Sinha, P., ”Perpetual and Fair

Data Collection for Environmental Energy Harvesting Sensor Networks”,
IEEE/ACM Trans. on Networking, vol.19, no.4, pp.947-960, Aug. 2011

[10] Mainland, G., Parkes, D. C. and Welsh, M., Decentralized, adaptive
resource allocation for sensor networks, In the 2nd conference on Sym-
posium on Networked Systems Design and Implementation (NSDI’05),
Boston, MA, 2005

[11] Heo, J., Hong, J. and Cho, Y., EARQ: Energy aware routing for real-
time and reliable communication in wireless industrial sensor networks,
In IEEE Trans. on Industrial Informatics, vol 5, no 1, pp. 3-11. Feb. 2009

[12] Hwang, W. L., Fei, S. and Chakrabarty, K., Automated design of pin-
constrained digital microfluidic arrays for lab-on-a-chip applications, In
ACM Design Automation Conference, San Francisco, CA, 2006

[13] Kansal, A. et al., Power management in energy harvesting sensor
networks, In ACM Trans. on Embedded Computing Systems, vol 6 no 4,
Sept. 2007

[14] Liu, S., Qiu, Q. and Wu, Q., Energy aware dynamic voltage and
frequency selection for real-time systems with energy harvesting, In
Design Automation and Test in Europe, Munich, Germany, 2008

[15] Madden, S. et al., TAG: a Tiny AGgregation service for ad-hoc sensor
networks, In the USENIX Symposium on Operating Systems Design and
Implementation (OSDI’02), Boston, MA, 2002

[16] Marvell Technology Group Ltd., Xscale pxa27x data sheet, www.intel.
com/design/intelxscale

[17] Moser, C., Chen, J. and Thiele, L., An energy management framework
for energy harvesting embedded systems, ACM Journal on Emerging
Technologies in Computing Systems, vol. 6 no. 2, June 2010

[18] Moser, C., Thiele, L., Brunelli, D., Benini, L., ”Adaptive Power Manage-
ment for Environmentally Powered Systems,” IEEE Trans. on Computers,
vol.59, no.4, pp. 478-491, April 2010

[19] Moser, C. et al., Real-time scheduling with regenerative energy, In
Euromicro Conference on Real-Time Systems (ECRTS’06), Dresden,
Germany, 2006

[20] Paek, J. et al., The TENET architecture for tiered sensor networks, In
ACM Trans. on Sensor Networks, vol. 6, no. 4, 2010.

[21] Shah, P. et al., Power management using zigBee wireless sensor network,
In International Conference on Emerging Trends in Engineering and
Technology (ICETET’08), Nagpur, India, 2008

[22] Sudha Anil Kumar, G., Manimaran, G. and Wang Z., ”End-to-end energy
management in networked real-time embedded systems,” IEEE Trans. on
Parallel and Distributed Systems, pp. 1498-1510, Nov., 2008

[23] Texas Instrument, CC2420 data sheet, docs.tinyos.net/index.php/CC2420
[24] Tidwell, T. et al., Optimal time utility based scheduling policy design

for cyber-physical systems, Department of Computer Science, Washington
University, TR 2010-27, May 2010

[25] US Department of Energy, National SCADA test bed study of security
attributes of smart grid systems current cyber security issues, April 2009

[26] US Environmental Protection Agency, EPANET 2.0, Water supply and
water resources, www.epa.gov/nrmrl/wswrd/dw/epanet.html, 2010

[27] Verissimo, P. et al., Designing modular and redundant cyber architectures
for process control: lessons learned, In the 42nd Hawaii International
Conference on System Sciences (HICSS’09), 2009

[28] Y. Yu, Prassana, V.K., Krishnamachari, B., ”Energy Minimization for
Real-Time Data Gathering in Wireless Sensor Networks”, IEEE Trans.
on Wireless Communications, vol.5, no.11, pp.3087-3096, Nov. 2006

[29] Zamora, N. H., Kao, J. C. and Marculescu, R., Distributed power
management techniques for wireless network video systems, In Design
Automation and Test in Europe, Nice Acropolis, France, 2007

[30] Yanjun Li, Chung Shue Chen, Ye-Qiong Song, Zhi Wang, Youxian Sun,
”Enhancing Real-Time Delivery in Wireless Sensor Networks With Two-
Hop Information ,” IEEE Trans. on Industrial Informatics, vol. 56, no. 2,
pp. 113 - 122, April 2009.

[31] L. LoBello, E. Toscano, ”An Adaptive Approach to Topology Manage-
ment in Large and Dense Real-Time Wireless Sensor Networks ,” IEEE
Trans. on Industrial Informatics, vol. 56, no. 3, pp. 314 - 324, July 2009.

[32] Bernat, G.; Colin, A.; Petters, S.M.; , ”WCET analysis of proba-
bilistic hard real-time systems,” IEEE Real-Time Systems Symposium
(RTSS’02), Austin, TX, 2002

[33] A. Ravinagarajan, D. Dondi, and T Simunic Rosing. DVFS based task
scheduling in a harvesting WSN for structural health monitoring. In
the Conference on Design, Automation and Test in Europe (DATE’10).
Leuven, Belgium

[34] Shaobo Liu, Qing Wu, and Qinru Qiu. An adaptive scheduling and
voltage/frequency selection algorithm for real-time energy harvesting sys-
tems. In Proceedings of the 46th Annual Design Automation Conference
(DAC’09), New York, NY. 2009

[35] Clemens Moser, Jian-Jia Chen, and Lothar Thiele, Power management
in energy harvesting embedded systems with discrete service levels. In
Proceedings of the 14th ACM/IEEE international symposium on Low
power electronics and design (ISLPED’09), New York, NY. 2009

Bo Zhang Bo Zhang receives his BS. degree from
Huazhong University of Science and Technology,
Wuhan, China; and MS. degree from University
of Cincinnati, Cincinnati, OH, both in computer
science. He is currently a PhD student in computer
science department of George Mason University,
Fairfax, VA. His research interests include wireless
sensor networks, low-power embedded systems.

Robert Simon Dr. Robert Simon is an Associate
Professor of Computer Science at George Mason
University in Fairfax, VA. He received a B.S. in
History and Political Science from the University
of Rochester, and a Ph.D. in Computer Science
from the University of Pittsburgh. His research in-
terests include embedded systems, wireless and mo-
bile computing, distributed systems and performance
modeling and analysis and distributed computing.
He has published over 80 peer-reviewed journal and
conference papers on these topics. His research has

been supported by a number of agencies, including NSF, DARPA, the US
Department of Defense and private industry.

Hakan Aydin Hakan Aydin received the BS and MS
degrees in control and computer engineering from
Istanbul Technical University in 1991 and 1994,
respectively, and the PhD degree in computer science
from the University of Pittsburgh in 2001. He is
currently an associate professor in the Computer
Science Department at George Mason University,
Fairfax, Virginia. He has served on the program
committees of several real-time and embedded sys-
tems related conferences and workshops. He was the
Technical Program Committee Chair of 2011 IEEE

Real-time Technology and Applications Symposium (RTAS’11). He received
the US National Science Foundation (NSF) Faculty Early Career Development
(CAREER) Award in 2006. His research interests include real-time embedded
systems, low-power computing, and fault tolerance. He is a member of the
IEEE.

