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Abstract. As Cyber-Physical Systems (CPSs) evolve they will be in-
creasingly relied on to support time-critical monitoring and control ac-
tivities. Further, many CPSs that utilize Wireless Sensor Networking
(WSN) technologies require energy harvesting methods to extend their
lifetimes. For this important system class, there are currently no effec-
tive approaches that balance system lifetime with system performance
under both normal and emergency situations. To address this problem,
we present a set of Harvesting Aware Speed Selection (HASS) algo-
rithms. We use an epoch-based architecture to dynamically adjust CPU
frequencies and radio transmit speeds of sensor nodes, hence regulate
their power consumption. The objective is to maximize the minimum
energy reserve over any node in the network, while meeting application’s
end-to-end deadlines. Through this objective we ensures highly resilient
performance under emergency or fault-driven situation. Through exten-
sive simulations, we show that our algorithms yield significantly higher
energy reserves than the approaches without speed and power control.

1 Introduction

There is an increasing need to effectively support Wireless Sensor Network appli-
cations that have significant data collection and processing requirements. Ex-
amples range from Wireless Network Video Systems for surveillance [19] to
Cyber-Physical Systems such as smart power grid using 802.15.4/Zigbee tech-
nology [14]. These types of systems often have strict timing and performance
specifications. For instance, smart power grid systems need to provide real-time
pricing information, while water distribution systems need to instantly react to a
contamination. Further, many of these self−∗, unattended and deeply-embedded
systems will be expected to last for several decades, and therefore must carefully
manage available energy resources. The challenge faced by system designers is
to balance the performance and system availability requirements with energy
management policies that can maximize system lifetime.

One approach for maximizing system lifetime is to use energy harvesting [6].
By harvesting energy from environmental sources such as solar, wind or wa-
ter flow, WSN nodes potentially have perpetual energy supply. However, given
the large energy demands of the computational and communication intensive
WSN applications, and limited availability of environmental power, perpetual
operation of WSN nodes cannot be realized without deliberate energy manage-
ment. This problem is exacerbated if the application has unpredictable spikes in
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workload demand, such as a water distribution system reacting to a biological
contamination. The focus of this paper is a coordinated energy management pol-
icy for time-critical WSN applications that use energy harvesting and that must
maintain required performance under emergency or fault-driven situations.

Our approach is to make combined use of two energy saving techniques,
Dynamic Voltage Scaling (DVS) [2] and Dynamic Modulation Scaling (DMS)
[18]. The DVS technique saves computation energy by simultaneously reducing
CPU supply voltage and frequency. The DMS technique saves communication
energy by reducing radio modulation level and hence transmit speed. To take
advantage of these methods we propose a set of Harvesting Aware Speed Se-
lection (HASS ) algorithms that use both DVS and DMS in conjunction with
energy harvesting modules. The purpose of the HASS approach is to maximize
energy reserves while meeting application performance requirements, therefore
maximize the system’s resilience to emergency situations.

One difficulty in managing energy for these systems is that nodes may have
quite different workload demands and available energy sources. This may arise
from natural factors such as differences in nodes energy harvesting opportuni-
ties, or unbalanced distribution of processing workloads or network traffic. Be-
cause of these conflicting design considerations, the HASS approach attempts
to maximize the minimum energy reserve level over any node in the network,
while guaranteeing required system performance. Specifically, HASS adjusts
CPU processing speed and radio transmit speed, with a goal that the harvesting-
rich nodes run faster to allow the harvesting-poor nodes to slow down and save
energy, given tight end to end data collection latency constraint. The reduced
energy consumption will secure higher energy reserves for the poor nodes.

Our specific contributions are summarized as follows: We first provide a basic
architectural description for DVS and DMS nodes that use energy harvesting.
We then propose a general network and performance model for time-critical
WSN applications. Unlike the majority of existing works in energy harvesting
WSN systems which mainly focus on individual nodes, we target a multi-hop
sensor network with an end-to-end performance requirement. Next, we show
how to formulate the problem of maximizing the minimum energy reserve while
maintaining required performance as an optimization problem. We prove that
this problem can be solved optimally and efficiently. We also propose and evalu-
ate both centralized and distributed protocols to implement the HASS solution.
We conducted extensive simulations to evaluate our methods under a variety of
processing, communication and performance requirements. Unlike most existing
works which assuming solar energy as the environmental sources in their simu-
lations, we propose an experimental methodology to simulate energy harvesting
WSN systems utilizing energy harvested from water flow in a water distribu-
tion system. Our results show that both centralized and distributed solutions
significantly improve the capacity of time-critical WSN systems to deal with
emergency situations, in addition to meeting performance requirements.

2 Background and Related Work

The joint use of DVS and DMS in wireless embedded systems has been explored
in [7] and [17]. In [7], Kumar et al. addressed a resource allocation problem with
the aim of minimizing energy consumption. They assume a system containing a
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mixed set of computation and communication tasks. In [17], the energy manage-
ment problem is formulated as a convex optimization problem, which is then
addressed through the use of genetic algorithms. In [18], Yu et al. proposed
DMS-based approach for a multi-hop WSNs. They assume a data collection
application in which a base station periodically collects sensed data from WSN
nodes over a tree-based routing structure. In [21], we proposed a joint DVS-DMS
energy management approach for individual energy harvesting WSN nodes with
a goal of maximizing the minimum energy level over time. Unlike our work, [7],
[17], [18] assume battery-powered system and target prolonging system lifetime
by reducing energy consumption, without considering the need of ensuring per-
petual operation through energy harvesting.

Many existing studies explored the design of energy harvesting WSNs. In
[10], Moser et al. proposed the LSA algorithm (Lazy Scheduling Algorithm) for
scheduling real-time tasks in the context of energy harvesting. LSA defers task
execution and hence energy consumption as late as possible so as to reduce the
amount of deadline misses. Liu et al. ([8]) proposed EA-DVFS (Energy-Aware
Dynamic Voltage and Frequency Scaling) which improves the energy efficiency
of LSA by using DVS. Both LSA and EA-DVFS manage only the CPU energy,
while ignoring radio energy. Other related work includes [5] and [12] which
aim at balancing energy supply and energy demand in energy harvesting WSN
systems. Finally, [6], [11] proposed to maximally utilize harvested energy for
maximizing the amount of completed works, and hence system performance.
Neither of these works considered maximizing minimum energy level by using
joint DVS-DMS techniques.

3 System Architecture

This section describes our architecture for energy harvesting WSN systems sup-
porting time-critical applications. It consists of a basic node and device model,
a task-based workload model and energy consumption analysis, and a perfor-
mance model. This will provide a systematic methodology for modeling and
analyzing the performance of this type of systems.

3.1 Device Model
Without loss of generality, we assume that each node has several functional
units, including an energy harvester head, an energy storage unit, a DVS ca-
pable CPU, a DMS capable radio, as well as required sensor suites. The har-
vester head is energy source-specific, such as solar panel or wind generator. The
energy storage unit (e.g. rechargable battery or super-capacitor) has a maxi-
mum energy capacity of Γmax joules. This unit receives power from the energy
harvester, and delivers power to the sensor node. We take the commonly used
approach that the amount of harvested power is uncontrollable, but reasonably
predictable, based on the source type and harvesting history [6]. To capture
the time-varying nature of environmental energy, time is divided into epochs
of length S. Harvested power is modeled as an epoch-varying function denoted
by Phi , where i is the epoch sequence number. Phi remains constant within the
course of each epoch i, but changes for different epochs. To be precise, Phi is
the actual power received by energy storage which incorporating the loss during
power transfer from energy harvester to energy storage, and the power leakage
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of energy storage. The time unit used for harvesting prediction is therefore one
epoch. The prediction horizon, H is an interval containing a number of epochs
during which predictions can be reasonably made. Our approach needs to know
the harvested power prediction of only the coming epoch, at the epoch start.

The node consumes power via either processing, radio communication or
sensing. We now describe how to model energy consumption for an individ-
ual node. The basic time interval over which energy consumption is calcu-
lated is called a frame, defined precisely below in Section 3.2. Frames are in-
voked periodically. We assume the DVS-enabled CPU has m discrete frequencies
fmin=f1<...<fm=fmax in unit of cycles per second, and the DMS-enabled ra-
dio has n discrete modulation levels, bmin=b1<...<bn=bmax. We use the terms
frequency and compute speed interchangeably. In practice, the modulation level
represents the number of bits encoded in one signal symbol [18]. To understand
this relationship, let R be the fixed symbol rate. Then modulation level b is
associated with communicate speed d and expressed as:

d = R · b (1)

Let esen represents the energy required for each sensing event. Note that
esen is a constant. The computation energy ecpk in the kth frame is a function of
compute speed fk and supply voltage Vdd,k [2]. The communication energy ecmk
in the kth frame is a function of communicate speed dk [18]. Then we have:

ecpk = [αfkV 2
dd,k + P ind,cp] · C

fk
(2)

ecmk = [βR(2dk/R − 1) + P ind,cm] · M
dk

(3)

Above, C and M are the computation and communication workloads in a frame.
C is the number of CPU cycles to be processed, M is the number of bits to be
transmitted. The α in Eq. (2) is the CPU switching capacitance which is a con-
stant. The β in Eq. (3) is a constant determined by the transmission quality
and noise level [18]. The terms αfkV 2

dd,k and βR(2dk/R − 1) give the speed-
dependent power of CPU and radio which vary with fk, Vdd,k, and dk respec-
tively. P ind,cp and P ind,cm are two constants representing the speed-independent
power of CPU and radio. By using DVS, the supply voltage Vdd,k can be reduced
linearly alongside with fk to obtain energy saving (i.e. fk ∝ Vdd,k), making the
speed-dependent CPU power a cubic function of fk. Our model assumes a suf-
ficient level of coordinated sleeping and transmission scheduling, so that the
radio energy consumed by listening channel activities is not a significant factor.
Finally, the total energy consumed in frame k, eck equals:

eck = esen + ecpk + ecmk (4)

3.2 Network and Application Model

The system consists of N sensor nodes and the set of wireless links connecting
them. A sensor node is denoted as Vi. Base stations or control points are denoted
as BS. The N nodes are divided into two types: source nodes perform sensing,
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processing and communication operations, while relay nodes only perform pro-
cessing and communication. Our data processing architecture is quite general,
and supports systems that perform some levels of aggregation at each node, as
well as systems that do not allow any aggregation. We represent a time-critical
and performance sensitive WSN application by requiring all source nodes report
their readings, which may or may not be aggregated into other readings, every
π time units. The time interval π is the length of a data collection frame. Such
frame-based data collection mechanism is quite common for WSN applications
[7] [13] [18]. In other words, all sensed, processed or aggregated data must reach
BS by the end of each frame. For example, at the start of the kth frame (i.e.
at time (k − 1) · π), each source node senses the environment and sends sensed
data to BS. The data is routed by other nodes and must reach BS by the end
of that frame, at time k · π. We assume all nodes are time-synchronized so that
they are aware of the same frame start and end times.

On a per-frame basis, energy consuming activities within each node are rep-
resented using a task-based model. In this way, frame-based energy consumption
is determined by examining the energy demands of individual tasks (Eq. (4)).
There are a total of three task types: sensing, computation and communication.
Without loss of generality and in order to simplify the modeling process, we as-
sume the three tasks are executed in the order of sense→compute→communicate.
That is, in each frame, a node performs sensing first, then processes the sensor
reading, then transmits the processed data. The workloads of the computation
and communication tasks of any node Vi are fixed over any frame in a given
epoch, and denoted as Ci and Mi, respectively.

We assume that each node uses standard WSN energy management tech-
niques for transitioning to sleep states when there is no active task. We also
assume that compute and communicate speeds only change at the start of an
epoch. This design decision reduces the required level of control and synchro-
nization overhead. For instance, the modulation level of a node must not change
frequently, since each such change must be conveyed to its receiver in order to
ensure correct demodulation of the transmitted data. Using this analysis we can
calculate the time required by each node Vi to carry out all activities during
frame k, referred as the per-node latency, li,k. The per-node latency depends
upon the compute speed fi,k and the communicate speed di,k. Then li,k is given
by

li,k = tsen +
Ci
fi,k

+
Mi

di,k
(5)

tsen is the sensing time which is a constant. Note that tsen equals zero for relay
nodes. We make a common assumption that the effective data transmission time
dominates the overall communication time while ignoring the carrier sense time
[7], [17], [18]. Thus, the communication time is inversely proportional to di,k.

The system is organized into a data collection and processing tree rooted at
BS, using tree construction algorithms such as [1]. In order to support time-
critical operation we must define and calculate the maximum data collection
latency and individual path latency. These two values are used in the optimiza-
tion formulation in Sections 4 and 5 to ensure that all latency requirements are
maintained. In each frame, a node Vi receives data from a set of child nodes
denoted as Children(Vi). Vi then forwards packets to its parent node, denoted
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as Parent(Vi), after received data from all its children. Then the maximum
data collection latency Ltot,k in frame k is the time interval between the start
of frame k, and when BS collects all sensed data, given by

Ltot,k = Max.{Li,k + li,k|Vi ∈ Children(BS)} (6)

Above, Li,k is the latency of the subtree rooted at node Vi, i.e. Li,k = Max.{Lj,k+
lj,k|Vj ∈ Children(Vi)}. The subtree rooted at a leaf node contains only the leaf
itself, and hence incurs zero latency.

Next, we define the path ρi from a node Vi to the root BS as the series of
nodes and wireless links connecting Vi and BS. The notation Vj ∈ ρi signifies
that Vj is an intermediate node on path ρi. The latency Hi,k of ρi is defined as:

Hi,k =
∑

j:Vj∈ρi

lj,k (7)

Note that by resolving the recursion in Eq. (6), Ltot,k actually equals to the
latency of the longest path in the tree, i.e. Max.{Hi,k|∀ρi}.

4 Harvesting Aware Speed Selection
Based on the node and network model presented in Section 3, we now formally
define the Harvesting Aware Speed Selection (HASS) problem. Our goal is to
maintain end-to-end performance while maximizing the system’s resilience to
abnormal or emergency situations. This is accomplished by maximizing the
minimum energy level of any node.

The compute and communicate speeds at individual nodes are adjusted at
the start of each epoch, and remain fixed throughout that epoch. As defined in
Section 3.1, an epoch is a time interval over which an energy harvesting predic-
tion can be reasonably made. For an arbitrary epoch, the energy consumption
eci,k and performance latencies Li,k, Hi,k of node Vi are fixed over any frame
k. For simplicity we therefore rewrite them as eci , Li and Hi. Then the energy
level Γi of a node Vi at the end of a given epoch is given as:

Γi = Γ initi + Phi · S − bS/πc · eci (8)

Γ initi is the starting energy level of Vi in the epoch. Recall that S is the epoch
length. bS/πc gives the number of frames in an epoch. Using this notation, we
define Γmin as

Γmin = Min{Γi|∀Vi} (9)

Then the goal of our approach is to maximize Γmin. The variables of the
problem are the compute and communicate speeds fi, di used by any node Vi
in an epoch. Given N nodes in the tree, there are 2N unknowns in our problem.
The optimal solution to this problem consists of N speed configurations (fi, di),
one for each node which maximize Γmin. The problem HASS is given as:

Max Γmin (10)
s.t. ∀ρi, Hi ≤ π (11)
∀Vi, fi ∈ [fmin, fmax], di ∈ [dmin, dmax] (12)
∀Vi, 0 < Γi ≤ Γmax (13)
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The constraint (11) ensures that the latency of any path ρi in the tree is smaller
than the frame period π. As mentioned in Section 3.2, this is equivalent to
ensuring that the latency of the entire tree is smaller than π. The constraint (12)
gives the available ranges of f and d. The constraint (13) requires that the energy
level of any node Vi must be confined to the range (0, Γmax]. In [6], the authors
introduced the energy neutrality condition, which essentially states that the
energy consumed must be no larger than the energy available, such that Γi will
never drop to zero. This is a necessary condition for an energy harvesting sensor
node to operate non-interruptively and we therefore adopt it as a requirement.
The left hand side of constraint (13) (called the positivity constraint) must
hold in order to ensure energy neutrality, while the right hand side (called the
capacity constraint) is used to model energy storage capacity. Given known and
fixed harvested power, and fixed speeds and power consumption, the variation
of energy level also fix throughout an epoch, i.e. either monotonically increase
or decrease at a fixed rate. Therefore, ensuring a positive energy level at the
end of an epoch also ensures positive energy level at the end of any frame in
that epoch.

5 Centralized and Distributed Solutions

This section provides centralized and distributed solutions to problem HASS.
The centralized version provides an optimal solution, while the distributed ver-
sion is appropriate for systems that need to avoid single control point.

We first give Lemma 1 which states that solving problem HASS with full con-
straint set is equivalent to solving the same problem but without constraint (13).
This enables us to remove constraint (13) and focus on a new problem obtained
in this manner, denoted as HASS-N. Note that the objective function and all
other constraints are retained in HASS-N.

Lemma 1 If in the optimal solution to HASS-N, Γmin is strictly positive, then
the solution to HASS is identical to that of HASS-N. Otherwise, HASS has no
feasible solution.

The proof of Lemma 1 can be found in [20]. In the rest of this paper, we will focus
on solving problem HASS-N. Solving HASS-N requires non-linear optimization
methods, since it has a non-linear objective function (Eq. (10)). Such costly
methods are difficult to implement on resource-constrained sensor nodes. We
will show how to obtain an optimal solution efficiently.

A naive approach to solve HASS-N is to exhaustively search over all possible
solutions. For a system with N nodes where each node has m compute speeds
and n communicate speeds, there are (mn)N possible solutions, making brute
force search impractical. However, we notice that many different solutions yield
identical Γmin. Using this observation we can simply enumerate each possible
Γmin, check if there exists a feasible solution that yields a minimum energy level
(among any node) equaling the enumerated Γmin, while satisfying constraints
(11) and (12). The highest Γmin that passes this check is by definition the
maximum Γmin that we are looking for.

For each node, mn speed configurations correspond to mn different power
consumption levels. Since each node’s power consumption is fixed throughout an
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epoch, a node has exactly mn energy consumption levels over an epoch. Thus,
given a known starting energy level and a fixed prediction for how much energy
can be harvested, a sensor node could end with at most mn possible energy
levels in an epoch. Given N nodes, at the end of an epoch, there could be at
most mnN different energy levels in the network, and Γmin can be only of these
possible values. The set of possible Γmins is referred as EL (Energy Level), and
has a size of mnN .

5.1 Centralized Version

The centralized HASS algorithm is called CHASS, and is presented in Algorithm
1. It runs on the base station, and assumes that BS must collect Γ init from each
node in the system, and is aware of the available speed configurations of sensor
nodes. CHASS first computes the possible energy levels of all the nodes using
Eq. (8) to build the set EL, then sorts EL in non-increasing order (line 1).
CHASS proceeds iteratively over the sorted EL starting from the first element
(i.e. the highest energy level in EL) (line 2). In each iteration p, it solves a
decision problem, called Feasible Solution denoted by FSp, by calling algorithm
Is-Feasible (line 3). The pth element in EL, EL[p] is input to Is-Feasible. The
problem FSp is specified as ”Is there a solution which yields Γmin=EL[p], while
satisfying constraints (11-12)?”

The loop in line 2-9 iterates through all the elements in EL. It continues
if the answer to problem FSp, ansp is negative, and terminates once it met
a FSp with positive answer, i.e. in iteration z where FSz is the first problem
encountered with positive answer, z = Min.{p ∈ [1, |EL|]|ansp = TRUE} (line
4-8). By definition of problem HASS-N and FS, and the ordering of EL, EL[z]
is the maximum Γmin that can be achieved (line 5), while satisfying all the
constraints. If CHASS proceeds to the end of EL and never received a positive
answer to any of the FSp, this implies problem HASS-N has no feasible solution.

The algorithm Is-Feasible for solving problem FSp is given in Algorithm
2. The algorithm has one input, the energy level enumerated in iteration p of
CHASS, EL[p]. It has three returned values, the answer to problem FSp, ansp,
and two speed sets of length N , F ∗, D∗ which contain f and d derived for all
the nodes in the current iteration. F ∗, D∗ are returned only if ans is positive,
otherwise they are empty.

Algorithm 1 CHASS

1: Compute and sort EL (in non-increasing order)
2: for p = 1 to |EL| do
3: [ansp, F

∗
p , D

∗
p] = call Is-Feasible(EL[p])

4: if ansp == TRUE then
5: Max Γmin = EL[p]
6: [F opt, Dopt] = [F ∗p , D

∗
p]

7: Break from for-loop
8: end if
9: end for
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Algorithm 2 Is-Feasible - Input: EL[p]

1: Γmin = EL[p]
2: for i = 1 to N do
3: (F ∗[i], D∗[i], lmini ) = call find fastest(Γmin) on Vi
4: end for
5: Compute Hi =

∑
j:Vj∈ρi

lminj for any path ρi
6: if ∀ρi, Hi ≤ π then
7: ans = TRUE
8: else
9: ans = FALSE, F ∗, D∗ = ∅

10: end if
11: return [ans, F ∗, D∗]

We now demonstrate that Algorithm 2 is correct. First, by making Γmin =
EL[p] (line 1), Γi ≥ Γmin = EL[p] must hold for any node Vi. Then the algo-
rithm calls function find fastest for each node (line 2-4) to search over all its mn
speed configurations for the fastest one, while yielding Γi ≥ EL[p]. Specifically,
find fastest returns a speed configuration for Vi, (F ∗[i], D∗[i]) which satisfies:

F ∗[i] ∈ [fmin, fmax], D∗[i] ∈ [dmin, dmax] (14)
Γi(F ∗[i], D∗[i]) ≥ EL[p] (15)
∀(f, d), li(F ∗[i], D∗[i]) ≤ li(f, d) (16)

Γi(f, d) and li(f, d) represent the energy level and per-node latency achieved
using speed configuration (f, d). find fastest also returns the per-node latency
lmini at Vi achieved by using the derived (F ∗[i], D∗[i]). Note that lmini is the least
achievable latency according to Eq. (16). Next, for each path ρi, we compute its
latency Hi by summing up any lminj , Vj ∈ ρi (line 5). Since (F ∗, D∗) minimizes
the per-node latency at any node, it also minimizes the latency of any path
Hi. Therefore, if Hi ≤ π,∀ρi, the constraint (11) is met, then the answer to
problem FSp is positive (line 6-7). Otherwise, constraint (11) can never be met,
hence the answer is negative (line 8-9). Note that it is possible that function
find fastest does not return an answer, as there may exist some nodes having
no possible energy level larger than the input EL[p]. In this case, the algorithm
immediately rejects EL[p]. The speed sets F ∗, D∗ found in iteration z is set to
be the optimal solution to problem HASS-N and also HASS (line 6 in Algorithm
1). EL[z] is set to be the maximum achievable Γmin (line 5 in Algorithm 1).

It is possible to reduce the runtime of CHASS by implementing the search
for FSz in a binary search fashion. This will reduce the number of itera-
tions in CHASS from O(|EL|) to O(log(|EL|)). We describe a faster algorithm
CHASS∗ implemented in this manner and give a complexity analysis in [20].

5.2 Distributed Version

We next describe the distributed HASS solution called DHASS. The purpose of
the distributed version is to enable any node in the network to act as the base
station, and therefore enable that node to make command and decisions.
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The algorithm DHASS proceeds also in binary-search fashion. It requires
one initialization round during which each sensor node sends an initialization
message containing two pieces of information, its estimated lowest and highest
energy levels at the end of the epoch, denoted as Γ low and Γhigh. After the
initialization round, all the nodes agree on the global lowest and highest achiev-
able energy levels (among the entire tree). The continuous range between the
two energy levels is the starting binary search space. Then, it runs for Y com-
putation rounds, each of which corresponds to one iteration of binary search,
and solves one problem FS using the distributed Is-Feasible. The distributed
Is-Feasible requires accumulative collection of nodes’ latency values, which are
in turn used for the root to calculate the end-to-end latency Ltot. The root
then compares Ltot to π in order to determine the answer to problem FS, and
disseminates it to all the nodes. Note that any node in the network can be the
root. The specification of DHASS is given in [20]. Though DHASS is only a
heuristic-based solution, we demonstrate in [20] that it can closely match the
performance of CHASS.

6 Performance Evaluation

We performed a series of simulations to evaluate the effectiveness of our HASS
approaches. The goal of the evaluation is to determine how well both the CHASS
and DHASS algorithm maximize the minimum energy level across the system.
The evaluation examined a number of workload scenarios, including several
emergency scenarios where there are sudden, unexpected peaks in the demand.

6.1 Experimental Methodology

We evaluated our approaches within a WSN system designed for residential
monitoring of water usage and quality. Each customer (residence) is coupled
to a supply pipe through a water meter. Each water meter is coupled with a
DVS-DMS enabled node. Energy is harvested from the flow of water, using a
device such as the one described in [15]. The amount of harvested energy is
therefore dependent upon the rate at which the customer uses water. To our
best knowledge, we are the first to simulate energy harvesting WSN systems
utilizing water flow as the energy source.

We have developed simulation software combining TOSSIM, the standard
WSN simulator, with EPANET [9], a public domain, water distribution system
modeling program developed by the US Environmental Protection Agency. Our
simulator can take as input a variety of WSN topologies, water distribution sys-
tem configurations and customer usage patterns. Based on water utilization and
water quality patterns, the software simulates energy harvesting, and various
WSN processing and communication activities. The presented results are based
upon a 100 node residential water distribution topology. The topology is derived
from an existing suburban area of 100 houses. The 100 nodes installed in the
water meters then form a WSN system. We use the Collection Tree Protocol [1]
to organize the nodes into a data collection tree.
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Due to standard repetitive water usage patterns we use a 6 hours cycle, as
specified in EPANET. We fix the harvesting horizon at H=6 hours. A hori-
zon is then divided into 24 epochs with equal length S=15 minutes. We run
EPANET for 48 hours, containing 8 horizons or equivalently 192 epochs, and
obtained hydraulic simulation reports. Using these reports we generate water
energy harvesting profile for each node based on the observed water usage at the
customer. Note that the difference in the amount of water used across residences
will lead to quite different power harvesting profiles across nodes. In [20], we
plotted the harvesting profile of one selected node. The frame period is set to
π=240ms.

Both algorithm CHASS and DHASS were implemented in our simulation en-
vironment. Although there are no schemes that are directly comparable to our
algorithms, we implemented a baseline scheme called No-Power-Management
(NPM ). Unlike the HASS approaches, NPM scheme is harvesting-unaware in
the sense that it uses the highest frequency and modulation level for all the nodes
in order to guarantee data collection timing constraint. Our experiments consid-
ered two basic application types: applications that support complete-aggregation
and applications that do not require any aggregation (non-aggregation). By
complete-aggregation, we mean that each node aggregates multiple packets re-
ceived into one single packet, while in the non-aggregation case a sensor node
forwards all packets to its parent without aggregation. The packet size is ran-
domly selected between M=[64, 128] bytes, and the computational workload is
randomly selected between C=[0, 3000000] cycles.

The hardware basis for a DVS-DMS capable platform is the widely available
iMote-2 sensor node [16]. The iMote-2 platform has a Intel Xscale PXA27x
CPU [4] and a ChipCon CC2420 radio [3]. PXA27x CPU has 6 frequency and
power levels as specified in [4]. We derived the radio speed-independent power
P cm,ind = 26.5mW, radio symbol rate R = 62.5k symbols/sec, and β = 2.74×
10−8 based on CC2420 specification [3] and Eq. (3). We note that the CC2420 is
not DMS-capable, so as in [18] we assume four modulation levels, b = {2, 4, 6, 8}
which give four communicate speeds: d = {125, 250, 375, 500} kbps (Eq. (1)).
The radio energy is calculated using Eq. (3). We assume a light sensor TSL2561
which takes 12ms to get one reading and consume 0.72mW. Each sensor node
uses a rechargeable battery with capacity Γmax = 1000 joules. All nodes start
with the same initial energy level, Γ init = 600 joules.

Nodes operate in either normal or emergency mode. We represent the emer-
gency mode by increasing the frame-based workload by w times upon the normal
mode, where w is a tunable parameter. This reflects the fact that nodes will need
to perform additional duties during those times. We simulate emergency sce-
narios by introducing contaminant into the system at random time. This can be
done by deteriorating the water quality at the water reservoir or a residence. As
the contaminant spreads out, the water quality in the residences will decrease
and finally been detected by sensor nodes. A sensor node then switches to emer-
gency mode and perform additional workloads over a series of epochs, until the
water quality returns to normal.

We consider three different types of emergency scenarios. The first type is
random (RAND) attack. In this case, nodes fail according to a negative expo-
nential distribution, and are picked according to a random uniform distribution
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from among all the nodes still operating in normal mode. The second mode
is a spreading attack (SPRD). This represents an emergency that increases its
area of impact over time. We introduce contaminant into the system from one
randomly selected contamination source node. The contaminant spreads out of
the system with the flow of water, and lasts a few epochs until water valves are
shut off to stop further spreading. The third mode is area instant (INST) attack
under which a large contiguous area of the network is affected. We simulated
one emergency in each horizon, while an emergency started in one horizon may
continue to affect multiple successive horizons.

6.2 Results
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Fig. 1: Min. energy level Γmin

In CHASS scheme, the set EL contains 2400 elements, given 6 CPU frequen-
cies, 4 modulation levels, and 100 nodes. The experiment setting of DHASS is
given in [20]. We evaluated the performance of our algorithms under normal
and all three emergency modes. We also varied emergency workload levels.

In Fig. 1a-2b, we compared different schemes in term of the achieved Γmin,
while assuming non-aggregating applications. We fix the emergency level w at
3.0 which means the emergency workload is three times the normal workload. In
normal mode (Fig. 1a), the Γmin value can be seen to vary semi-repetitively, i.e.
though it stays close to full capacity at most time, however drops down twice in
every horizon (24 epochs). This is because the workload and energy demand in
normal mode is relatively low, such that the energy level is dominantly affected
by the amount of harvested water energy which varies in repetitive pattern.
However in Fig. 1b-2b, the significantly increased workload demand turns to
have a dominant effect on energy level, therefore one emergency in each hori-
zon leads to one drop of Γmin in each horizon. This observation demonstrates
the effects of harvested energy and workload demand over energy level when
operating in different work modes.

As seen from all above figures, in normal and all emergency modes, the
CHASS scheme achieves the highest Γmin, followed by DHASS with slightly
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lower Γmin. In normal mode (Fig. 1a), NPM scheme is able to support Γmin
close to full capacity, this is because the harvested energy is much larger than
energy demand in normal mode which keeps the energy storage at high level.
However, as workload demand increases in emergency mode (Fig. 1b-2b), the
performance of NPM drops dramatically: its achieved Γmin drops to zero after
the 61th epoch in all emergency modes. This implies that at least one node in
the network fails to maintain non-empty energy storage and is forced to stop
operation. The failure of these nodes will cause service interruption to the entire
data collection application during the rest of the epochs. Such lasting service
interruption is apparently unacceptable to the mission-critical applications. On
the other hand, both HASS approaches achieve much higher Γmin than NPM.
In fact, CHASS and DHASS never drop to zero in RAND and SPRD modes,
and only becomes zero during the last ten epochs in INST mode. This is because
by using HASS approaches, the harvesting-rich nodes run at faster speeds to
allow the harvesting-poor nodes to slow down, given tight end-to-end latency
constraint. The reduced speeds allow the poor nodes to maintain a higher energy
storage level, hence enhance the system’s capacity to deal with emergencies.
Although under extremely intensive emergency, zero Γmin is inevitable even
using the HASS approaches, it nevertheless demonstrates the importance of
in-network data aggregation with regard to energy efficiency.

Another observation from our results is that DHASS closely matches the
performance of CHASS in term of the value of Γmin. In normal mode (Fig.
1a), the achieved Γmin of CHASS and DHASS almost overlap. In emergency
modes, their performance difference enlarges slightly due to increased influence
of workload demands over energy level. This observation indicates that DHASS
scheme can achieve near-optimal performance. Also, we observed that DHASS
occasionally achieves higher performance than CHASS, e.g. between the 1st

and 21st epoch in Fig. 2b, this is due to the energy overheads caused by packet
collisions and retransmissions.

We then conducted a stress test over the system while using different schemes.
That is, we raise the intensity of emergency by increasing the value of w from
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w 1 1.5 2.0 2.5 3.0

RAND 0% 0% 7% 10% 10%

SPRD 0% 0% 6% 9% 9%

INST 0% 0% 7% 10% 16%

Table 1: Percent of depleted nodes: NPM

1.5 to 3.0 with an increment of 0.5. The aim of this stress test is to evaluate the
resilience of different schemes to various emergency intensities. We measure the
system resilience to emergency in term of the percentage of nodes that ran out
of energy at the epoch which has the lowest Γmin among all 192 epochs. The
smaller the percentage of depleted nodes under the same emergency intensity,
the higher resilience supported by a scheme compared to others. Table 1 gives
the percentage of depleted nodes in all three emergency modes under various
emergency intensities, using NPM scheme. As seen from Table 1, as emergency
intensity increases, the percentage of depleted nodes increases noticeably in all
modes when using NPM, which implying the low resilience of the harvesting-
unaware NPM scheme to emergency situations. While using both CHASS and
DHASS, the same increase in emergency intensity depletes almost no node in
the network, except for the scenario when operating in INST mode with a inten-
sity level w = 3.0. The results of the stress test demonstrates the benefit of our
harvesting-aware approaches in mitigating the impact of emergencies over the
system. We then repeated the same set of experiments above for aggregating
applications, the results can be found in [20]. Due to in-network data aggrega-
tion, the network traffic pattern and workload demands across nodes are quite
different to non-aggregating case, hence it would be very interesting to evaluate
our solutions for this type of applications.

7 Conclusion
This paper presented an epoch-based approach for energy management in per-
formance constrained WSNs that utilizing energy harvesting combined with
DVS and DMS. We adjust radio modulation levels and CPU frequencies in or-
der to satisfy performance requirement, while maximizing the minimum energy
reserve over any node in the network. Through this objective, we ensure highly
resilient performance under both normal and emergency situations. Through ex-
tensive simulations we demonstrated significant performance improvement by
using both our solutions over a baseline scheme.
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