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Abstract

Energy harvesting is rapidly becoming a critical archi-
tectural component for CPS applications that use Wireless
Sensor Networks (WSNs) technology. This paper presents an
epoch-based approach for energy management in resource-
constrained WSNs that utilizing energy harvesting tech-
niques. Each epoch represents a time period over which
energy production can be reasonably predicted. We consider
two energy harvesting hardware models, one that allows
concurrent harvesting and execution, and one that does
not. For both models we propose and analyze a resource
management algorithm that combines energy harvesting with
dynamic voltage scaling and dynamic modulation scaling.
Our algorithm is optimal in the sense that it maximizes
energy reserve levels at individual nodes. We have evaluated
the performance of our approach with standard baseline
algorithms. The results show that our algorithm outperforms
the baseline algorithms under a variety of workloads and
energy harvesting profiles.

1. Introduction

Many types of cyber-physical systems (CPS), such as smart
power grid, networks consisting of lab-on-chip nodes used
for monitoring large scale water distribution systems ([1])
and systems used for highway management, have highly
distributed and computationally intensive processing require-
ments. Further, due to longevity, cost, ecological and man-
agerial restrictions, these CPS applications will need to har-
vest environmental energy to achieve ”perpetual” operation.
A key technology for this class of CPS applications is a
new generation of Wireless Sensor Networks. Unlike current
WSN systems, this new generation must incorporate power-
ful and performance sensitive processing power with energy
harvesting. Given these, energy management techniques are
of paramount importance. This makes the combined use
of two energy saving techniques, Dynamic Voltage Scaling
(DVS) ([2]) and Dynamic Modulation Scaling (DMS) ([3]),
potentially quite attractive. The focus of this paper is to
present a joint scaling approach for perpetually operat-
ing, computationally intensive CPS applications using WSN
technology.

Due to the dynamic nature of environmental power and

potential fluctuations in CPS application workload, our ap-
proach is to develop an epoch-based strategy. Each epoch
is a time interval during which the amount of harvested
power can be reasonably predicted in advance, and remains
relatively constant. Such power prediction can be conducted
based on the knowledge of past harvesting records and
characteristics of environmental energy sources. In practice
we expect epochs to last anywhere from several minutes
to several hours. Each node then divides epoch time into a
number of frames of different types based upon a periodic
sensor-oriented task model.

Unlike the existing energy management approaches for
battery-powered WSNs which minimize the energy con-
sumption, we target maximizing the energy reserve of sensor
nodes with highly time-varying energy replenishment. The
benefit of this goal is that extra energy can be used to service
unexpected workloads or new CPS application tasks that
are introduced into the system, and to cover time periods
where the harvested power is less than expected. Since
such system uncertainties may cause interruption of services
and consequently failures in responding to critical events,
our goal is particularly important for mission-critical CPS
applications. This paper achieves the above goal with a joint
DVS-DMS strategy. The DVS technique saves computation
energy by simultaneously reducing the CPU supply voltage
and frequency. The DMS technique saves communication
energy by reducing the radio modulation level. In addition,
our approach guarantees that all application performance
requirements for computation and communication are met.
Current generations of WSN nodes, such as the iMote2,
possess DVS capabilities ([4]). Although commonly used
WSN radios do not typically offer DMS, we believe that as
the benefits of this technique become apparent future low
power radios will indeed offer that option.

Our contributions are summarized as follows: first, we
propose an epoch-based control approach to DVS and DMS.
As part of our approach we model three sensor tasks,
sensing, computation and communication and use a periodic
process model to explicitly provide support for the timely
completion of these tasks. We define an energy harvesting
problem that formally specifies the objective of maximizing
energy reserves while meeting performance requirements.
Though this specification appears to be a non-linear pro-
gram, we solve it using an optimal algorithm. We show



how to use our algorithm in two types of harvesting models,
one that allows concurrent energy harvesting and execution,
and one that does not. Additionally, our joint DVS-DMS
approach can be implemented on top of low-power duty
cycling mechanisms which are widely used in WSN systems.
Through simulation using solar energy harvesting profiles,
we show that our approach can dramatically increase the
level of reserved energy while still maintaining required
levels of CPS system performance.

2. Related work

The joint use of DVS and DMS in wireless embedded
systems has been explored in [5], [6]. In [5], Kumar et
al. addressed a system-level resource allocation problem
for minimizing energy consumption. They assume a system
containing a mixed set of computation and communication
tasks. [6] formulates the energy management problem as a
convex optimization problem, and addresses it using genetic
algorithms. Unlike our work, [5], [6] all assume battery-
powered systems without energy harvesting capability. Fur-
ther, the goal of their approaches is to prolong system life-
time by reducing energy consumption, without considering
issues such as ensuring perpetual operation through energy
harvesting or providing for energy reserve maximization.

Many existing studies explored the design of energy
harvesting WSNs. In [7], Moser et al. proposed the LSA
algorithm (Lazy Scheduling Algorithm) for scheduling real-
time tasks in the context of energy harvesting. LSA defers
task execution as late as possible in order to save energy.
Liu et al. ([8]) proposed EA-DVFS (Energy-Aware Dynamic
Voltage and Frequency Scaling) to improves the energy effi-
ciency of LSA algorithm by using DVS. Both LSA and EA-
DVFS manage only the CPU energy while ignoring radio
energy. Other related work includes [9], which describes a
probabilistic observation approach for solar energy harvest-
ing that attempts to minimize energy allocation variance.
Finally, works such as [10], [11] proposed to maximally
utilize the harvested energy in order to maximize the amount
of completed works, hence the system performance.

3. System model and assumption

Our work assumes that each sensor node consists of a
number of environmental sensors, a DVS-capable CPU, a
DMS-capable radio and an energy harvester. The sensor
nodes are assumed to run a CPS application that is both
computation and communication intensive. Each node senses
the target environment, processes the sensor reading, and
communicates data to other nodes. Ultimately the nodes
filter data up towards a base station.

3.1. Task model
Due to the simplicity in managing sensor activities and

energy usage, we organize the operations of a sensor node
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Figure 1. A sequence of frames of different types

as periodically invoked tasks. We model three basic sources
of energy consumption: sense, computation and communi-
cation. A sense operation measures a physical quantity and
generates raw reading. A compute operation may involve
processing the raw data, aggregating data from other nodes.
A communicate operation involves sending or receiving data
packets. We will denote each of these basic operations as a
subtask.

The above three subtasks are combined to form three task
types. We note that sense subtasks are performed periodi-
cally and most frequently in a sensor system, followed by
compute and then communicate. Based on this observation
the three task types are sense-only (SO), sense-compute
(SC), and sense-compute-communicate (SCC). We refer to
one invocation of task as a task instance. A new task instance
is invoked every S time units (i.e., with period S) and
its type is known when it arrives. The task instances are
executed on frame basis. ([12]). A frame refers to a time
interval of length S during which a task instance is invoked,
executed and completed. In order to maintain acceptable
system performance, each task instance must be completed
within the frame period S. For example, the jth task instance
is invoked at the beginning of the jth frame (i.e. at time
(j − 1) · S) and must complete its execution within that
frame (i.e. by time j · S). Since each frame contains only
one task instance, we will use the terms frame and task
instance interchangeably in the rest of the paper.

We use a tuple {Isen
j , Icp

j , Icm
j } to identify the type of

a frame j. The elements in the tuple are binary-valued
with 1 indicating the existence of the specified subtasks,
and 0 if not. For instance, a sense-compute frame with
frame type {1,1,0} consists of a sense subtask followed
by a compute subtask, but no communicate. We assume
the types of frames are determined by the application. Fig.
(1) illustrates a sequence of frames of different types. We
denote the workload in a frame as C for computation, M for
communication. In practice C is the number of CPU cycles
to be processed, M is the size of data to be transmitted.

We consider a DVS-enabled CPU with m discrete fre-
quencies fmin=f1<...<fm=fmax, and a DMS-enabled radio
with k discrete modulation levels, bmin=b1<...<bk=bmax.
We use the terms frequency and compute speed interchange-
ably. In practice, the modulation level represents the number
of bits encoded in one signal symbol ([3]). Each modulation



level bi is associated with a communicate speed di.

di = R · bi (1)

R is the symbol rate which is fixed. The execution time
of the compute and communicate subtasks in frame j
equal C/fj and M/dj respectively. We make a common
assumption that the effective transmission time dominates
the overall communication time while ignoring the carrier
sense time ([5], [6], [3]). We assume the sensing time is not
scalable and denoted as a constant tsen. The total execution
time texe

j in frame j of type {Isen
j , Icp

j , Icm
j } at compute

speed fj and communicate speed dj is given as:

texe
j = Isen

j · tsen + Icp
j · (C/fj) + Icm

j · (M/dj) (2)

3.2. Energy model
The DVS and DMS techniques enable scaling of the

compute and communicate energy. The compute energy is
a function of the compute speed f and supply voltage
Vdd ([2]). The communicate energy is a function of the
communicate speed d ([3]). We give the energy consumed
in a frame j, ec

j as:

ec
j = Isen

j · esen + Icp
j · e

cp
j + Icm

j · ecm
j (3)

esen is the sense energy which is constant. ecp
j and ecm

j are
the compute and communicate energy in frame j:

ecp
j = [αfjV

2
dd,j + P ind,cp] · (C/fj) (4)

ecm
j = [βR(2dj/R − 1) + P ind,cm] · (M/dj) (5)

α is the constant CPU switching capacitance. β is a constant
determined by the transmission quality and noise level ([3]).
The terms αfjV

2
dd,j and βR(2dj/R − 1) give the speed-

dependent power of CPU and radio which vary with fj , Vdd,j

and dj . P ind,cp and P ind,cm are two constants representing
the speed-independent power of CPU and radio. In DVS
technique, the supply voltage Vdd,j can be reduced linearly
alongside with fj to obtain energy saving, making the speed-
dependent CPU power essentially a cubic function of fj .
Finally, we consider that energy consumed by listening
radio channel activities is equivalent to transmit energy. Our
model assumes a sufficient level of coordinated sleeping and
transmission scheduling so that listening energy is not a
significant factor. This allows us to model communication
energy as the single value, i.e. ecm

j .

3.3. Energy harvesting and storage model
The sensor node is directly powered by an energy stor-

age device (e.g., battery or super-capacitor) with capacity
Γmax. The storage device receives power from the energy
harvester, and delivers power to the sensor node. Generally,
the harvested power is uncontrollable, but predictable based
on the harvesting history ([10]). To capture the time-varying
nature of the harvested power, time is divided into epochs

with equal length L. The harvested power is commonly
assumed as an epoch-varying function denoted as Ph

i (i
is the epoch number). Ph

i remains constant within each
epoch i, but varies over epochs. Thus, the time unit used
for harvesting prediction is one epoch, and we refer to the
prediction horizon as H = N · L. Precisely, Ph

i is the
received power at the storage device incorporating the loss
during the power transfer between the energy harvester and
storage. We assume the prediction of Ph

i for an epoch i is
known prior to the scheduling stage.

When a sensor node is executing tasks, it draws power
from the storage device. The drawn power is controllable
via DVS and DMS. The storage device stops discharging
as the energy level drops to zero, and stops charging as
the energy level approaches Γmax to avoid energy overflow.
[10] proposed the concept of energy neutrality which ba-
sically states that the energy consumed is no larger than
the energy available. This is a necessary condition for a
sensor node to operate perpetually. Depending on the types
of storage device, power usage and harvesting may happen
concurrently or non-concurrently. Several papers assumed
that concurrent usage and harvesting is commonly possible
([13], [10]). However, [14] pointed to the need for special
hardware mechanisms to separate charge and discharge
currents, which may be expensive for sensor nodes. In
such systems, energy cannot be consumed (i.e. no sensing,
computation, computation can take place) while harvesting.

4. Energy management with energy harvesting

In this work, we address an energy management problem
in the context of energy harvesting. Our motivation is to
improve the sensor nodes’ resilience to unexpected ser-
vice interruption caused by depleted energy storage, while
meeting the application’s timing requirements. Such energy
depletion might result from many system uncertainties, e.g.,
workload burst or misprediction of harvested power. Moti-
vated by this, we aim at maximizing the minimum energy
level observed over time. The increased energy reserve may
survives the sensor nodes when the system operates under
highly uncertain state. Through the orchestrated use of DVS
and DMS, along with the energy harvesting capability, we
manage the consumed and harvested energy while achieving
the application’s sense, computation and communication
requirements. The following sections will define and solve
the problem formally.

In an attempt to capture all the parameters of our problem,
we start with a couple of definitions. This will allow us to
formulate the problem in a precise manner. The energy level
at the end of epoch i is given by:

∀i ∈ [1, N ],Γi = Γinit +
i∑

k=1

Eh
k −

i∑
k=1

Ec
k (6)

where Γinit is the initial energy level in the horizon. Eh
k

and Ec
k are the harvested and consumed energy in epoch



k respectively. Starting with Γinit, Γi may increase or
decrease depending on the consumed and harvested energy
in intermediate epochs.

In our epoch-based approach, the jth frame of the epoch i
is denoted by the pair (i, j). Consequently, unless otherwise
stated, any frame-related variable (e.g. energy, time) xj

defined in the previous section automatically becomes xi,j

in the rest of the paper. Now, within an epoch i, the energy
level at the end of the frame j, is:

γi,j = Γi−1 +
j∑

k=1

eh
i,k −

j∑
k=1

ec
i,k (7)

In other words, starting with the ending energy level Γi−1

in epoch i − 1 (which is also the starting energy level in
epoch i), γi,j is determined by the harvested and consumed
energy in frame (i, j) and all its preceding frames, eh

i,k, ec
i,k,

k ∈ [1, j]. To ensure energy neutrality, we require Γi > 0
and γi,j > 0, ∀i, j.

Note that there are bL/Sc frames in an epoch. The
consumed energy in an epoch, Ec

i is given as:

Ec
i =

bL/Sc∑
j=1

ec
i,j (8)

ec
i,j is the energy consumption in frame (i, j) (Eq. (3)). The

harvested energy Eh
i is given as:

Eh
i =

bL/Sc∑
j=1

eh
i,j (9)

eh
i,j = Ph

i · thi,j (10)

eh
i,j is the harvested energy in frame (i, j). As mentioned

in the previous section, the harvested power Ph
i is a known

constant and fixed over all frames in epoch i. thi,j is the
effective energy harvesting time in frame (i, j). In concur-
rent harvesting model, the system can continuously harvest
power throughout a frame, hence:

thi,j = S (11)

On the other hand, in non-concurrent model, task execution
and harvesting cannot occur concurrently. Since texe

i,j is the
total execution time in frame (i, j) (Eq. (2)), we have:

thi,j = S − texe
i,j (12)

At this point, we are ready to formulate our objective as
an optimization problem. The objective is to maximize the
minimum energy level over all frames in a horizon, γmin =
min{γi,j | ∀i ∈ [1, N ], j ∈ [1, bL/Sc]}. The variables of
the problem are the compute and communicate speeds fi,j ,
di,j , used in any frame (i, j) in the horizon. Recall that
by managing fi,j and di,j , we can adjust the harvested and
consumed energy and hence regulate the energy levels. Thus,
we will need to determine the optimal speeds fi,j , di,j for

each frame (i, j) in the horizon that achieve our objective.
We will later show that the optimal communicate speed di,j

is unique for a given (entire) epoch (i.e. it does not change
from frame to frame). Similarly, it will turn out that for a
given epoch one needs to derive only two compute speeds
(one for SC and one for SCC frames, respectively).

Our optimization problem is called Energy Management
with Energy Harvesting (EMEH) and given as follows:

Max. γmin (13)
s.t. ∀i ∈ [1, N ], j ∈ [1, bL/Sc]

0 < γi,j ≤ Γmax (14)
texe
i,j ≤ S (15)
fmin ≤ fi,j ≤ fmax (16)
dmin ≤ di,j ≤ dmax (17)

The constraint (14) enforces that the energy level γi,j in
any frame is confined to the range (0,Γmax]. γi,j > 0
must hold in order to ensure energy neutrality. Also, we
require that γi,j ≤ Γmax to model the energy storage
capacity of the sensor node. The constraint (15) ensures
the timely completion of workloads in a given frame. The
constraints (16) and (17) give the lower and upper bounds
for compute and communicate speeds, respectively.

Notice that the problem EMEH is essentially a non-
linear program, because the frame energy level γi,j (Eq. (7))
depends on the non-linear energy consumption function, ec

i,j

(Eq. (3)). Our strategy to solve this problem will be as
follows. We will first focus on designing an energy man-
agement algorithm for any single, given epoch with known
initial energy level and harvested power. Then, we show that
by itertively invoking this algorithm for each epoch we can
solve the horizon-based problem EMEH optimally. We start
by proposing Theorem 1 as follows.

Theorem 1. Starting with arbitrary initial energy level in an
epoch i, iteratively maximizing the increment of energy level
of each frame (i, j), ∆γi,j = γi,j − γi,j−1, j ∈ [1, bL/Sc]
beginning with the first frame, maximizes the energy level at
the end of any frame in epoch i.

The proof for this theorem is given in the Appendix.
Since applying Theorem 1 maximizes γi,j ,∀j ∈ [1, bL/Sc]
in epoch i, the following corollary is easily justified.

Corollary 1. Iteratively maximizing the energy level incre-
ment in each frame (i, j), ∆γi,j , maximizes the minimum
energy level observed in any frame of epoch i.

Theorem 1 implies the existence of an algorithm which
maximizes the energy level at the end of any epoch i, Γi

by greedily accumulating energy over each frame in epoch
i. We refer to this optimal algorithm as DVMS.

Then, we give the following observation. Starting with
the initial energy level in the horizon, i.e., Γinit, the ending



energy level in epoch 1, Γ1 is maximized by invoking
algorithm DVMS for epoch 1, which in turn supplies the
maximum possible initial energy level for epoch 2. The
same reasoning would apply to the 2nd, 3rd,...,N th epochs
as well, as long as the new harvesting rate is fed into the
algorithm DVMS at the start of each new epoch. Therefore,
we conclude that by iteratively invoking algorithm DVMS for
each epoch, we can achieve the objective of problem EMEH
which maximizes the minimum energy level observed in any
frame of the horizon, γmin. The optimality of DVMS and
Corollary 1 also imply the following:

Corollary 2. If the algorithm DVMS cannot find a feasible
solution to a specific instance of the problem EMEH, then
that instance does not admit any feasible solution.

Finally, we note that the violation of the constraint
γi,j ≤ Γmax will never happen in practice, simply because
the energy harvester is assumed to stop charging the storage
device when the energy level approaches Γmax.

5. Epoch-based energy management

While maximization of energy increments over consecutive
frames is optimal as indicated by Theorem 1, we still need to
determine the optimal compute and communicate speeds to
achieve that objective. Since harvesting rate changes only
from epoch to epoch, a natural strategy is to solve the
problem for each epoch separately. Hence, in this section,
we focus on designing the single-epoch algorithm DVMS. As
mentioned in the previous section, the basic idea of DVMS is
to accumulate as much energy as possible in each frame of a
given epoch. This will lead to the maximum possible stored
energy at the end of the epoch. We achieve this objective
by iteratively solving a Single-Frame Energy Management
(SFEM) problem for each frame in the epoch.

The problem SFEM has effectively two variants. In our
analysis, we consider only the solution for the SCC frame
because it is the most general one; the SC type is a special
case of the SCC type where we have M = 0. Note that since
its energy consumption function is not controllable through
DVS and DMS, we do not include SO frames in our analysis.
Although one epoch contains bL/Sc frames, we claim that
the above problem needs to be solved only once for the first
SCC frame in each epoch, that is, the optimal compute and
communicate speeds derived can be fixed for all SCC frames
within the epoch. This claim is supported by the observation
that the harvested power and workloads are identical for all
SCC frames in one epoch. One parameter that may vary is
the initial energy level for different frames in the epoch.
At first, it looks like different starting energy levels may
result in different frame-level compute and communicate
speed assignments while trying to enforce the maximum
energy level constraint γi,j ≤ Γmax. However, recall that
the storage device automatically stops charging when the

energy level approaches Γmax, hence the maximum capacity
does not need to appear as a constraint in the frame level
energy management problem. The fixed speeds yields also a
benefit on the implementation side: in general, a sensor node
will need to notify its receiving neighbor of every change
in its modulation level b (communicate speed d); therefore,
fixing d within each epoch makes a practical implementation
possible. Finally, note that the compute speed f could be
different for the compute subtasks in SC and SCC frames,
since voltage scaling is the only energy management tool
for SC frames. The problem SFEM is specified as follows:

Max. ∆γi,j

s.t. texe
i,j ≤ S
fmin ≤ fi,j ≤ fmax

dmin ≤ di,j ≤ dmax

The objective is maximizing the energy level increment in
a frame, while satisfying the timing and speed constraints.

Now, we provide the solution to the frame-level problem
SFEM. Since we concentrate on a single frame, the epoch
and frame number (i, j) are removed from all the variables.
Note that ∆γ also equals to the difference of the harvested
energy and consumed energy, i.e., ∆γ = eh− ec (eh, ec are
given in Eq. (10) and (3)). In our solution, we consider both
concurrent and non-concurrent harvesting models separately.

(1). Concurrent harvesting model
In this case, the stored energy eh is constant (Eq. (10)

and (11)). Thus, maximizing ∆γ = eh − ec is equivalent to
minimizing ec which is a function of f and d (Eq. (3)). In
this case, the problem becomes:

Min. ec = esen + ecp(f) + ecm(d) (18)
s.t. tsen + C/f +M/d ≤ S (19)

fmin ≤ f ≤ fmax (20)
dmin ≤ d ≤ dmax (21)

The objective function can be seen to be convex due to the
convex compute and communicate energy functions. This
problem has two unknowns, f , d. It is denoted as SFEM-C.

(2). Non-concurrent harvesting model
In this case, the harvesting time th is variable with f and

d, i.e., th = S − tsen − (C/f) − (M/d) (Eq. (12)). Thus,
saving energy by reducing speeds will sacrifice harvesting
chance, and may lead to even smaller ∆γ. Hence, unlike
the concurrent case, minimum consumption does not imply
maximum energy level increment. In this case, the problem
becomes:

Max. eh − ec = thPh − [esen + ecp(f) + ecm(d)]
s.t. tsen + C/f +M/d+ th = S

0 ≤ th ≤ S
fmin ≤ f ≤ fmax

dmin ≤ d ≤ dmax



This problem has a concave objective, three unknowns, f ,
d, th. Since maximizing a concave objective function h()
is equivalent to minimizing a convex function −h(), this
problem leads to a convex program as well. We denote it as
SFEM-N.

5.1. Solution to frame-level energy management
In order to solve SFEM-C, we temporarily ignore con-

straint (19). By ignoring it, f and d can be scaled arbitrarily
within their ranges. Thus, the overall energy ec is minimized
by minimizing the CPU energy ecp and radio energy ecm

separately. The speeds f∗, d∗ which minimize ecp and ecm

can be found by equalizing the first derivatives of ecp, ecm

to zero. Now, we take constraint (19) into consideration. If
f∗, d∗ satisfy constraint (19), we consider two special cases:
• if fmin ≤ f∗ ≤ fmax, dmin ≤ d∗ ≤ dmax, then the

optimal solution is fopt = f∗, dopt = d∗.
• if f∗ < fmin and/or d∗ < dmin, then fopt = fmin

and/or dopt = dmin. This is because ecp and ecm are
monotonically-increasing in f ∈ [f∗,+∞] and d ∈
[d∗,+∞].

In [15], Aydin et al. derived f∗ under an equivalent energy
model and referred it as the energy-efficient frequency. Also,
d∗ can be called the energy-efficient communicate speed. If
f∗, d∗ violate constraint (19), the solution is more complex.
We note that problem SFEM-C can be rewritten as:

Min. esen + ecp(tcp) + ecm(tcm)
s.t. tsen + tcp + tcm ≤ S

C/fmax ≤ tcp ≤ C/fmin

M/dmax ≤ tcm ≤M/dmin

We use the compute and communicate time, tcp = C/f and
tcm = M/d as the new variables. This makes the problem
a separable optimization problem in form of:

Min.

n∑
k=1

Fk(xk)

s.t.

n∑
k=1

xk ≤ S

∀k, xk,min ≤ xk ≤ xk,max

In above, n is the number of variables. [15] and [16] show
that any problem with the above structure can be solved
in time O(n3) by manipulating the Kuhn-Tucker conditions
([17]). Since in problem SFEM-C, n = 2, it can be solved
in constant time. The same method can be used to solve
problem SFEM-N which is also a separable problem. The
detail of this method can be found in [15] and [16]. The
derived tcp, tcm are then used to compute the optimal speeds
fopt, dopt. Finally, fopt and dopt might not be available on
the target hardware with discrete speed levels. However, we
can use the lowest f and d which satisfy f ≥ fopt, d ≥ dopt,
to guarantee the timely completion of the workloads.

6. Performance evaluation

Though we have demonstrated the optimality of algorithm
DVMS for energy level maximization, we ran a set of exper-
iments to determine the actual improvement in stored energy
and γmin, compared to the schemes that use either no or one
of the voltage and modulation scaling techniques, under both
concurrent and non-concurrent harvesting models. The simu-
lations are conducted using TOSSIM, the widely-used WSN
simulator. In addition to the normal workload conditions
where the worst-case application demand is constant, we
also considered an emergency mode where there are sudden,
unexpected peaks in the demand. The emergency mode is
introduced to assess the schemes capacity to cope with run-
time uncertainties and minimize service interruptions.

6.1. Node architecture and workload model
We consider two types of workloads, normal and emer-

gency. The normal compute and communicate workloads are
generated randomly according to uniform distribution within
the ranges C=[1, 2000000] CPU cycles, and M=[1, 128]
bytes. The emergency mode is simulated by increasing the
workload of frames by u times, where u ranges in [1, 2].
We assume that the sensor node encountered v emergencies
in the horizon, each of which lasts w consecutive epochs. v
and w are both random integers in the range of [0, 10]. Our
simulations used SCC frames.

Our basic node consists of a DVS-enabled CPU, a DMS-
enabled radio, a sensor and an energy harvesting unit. We
assumed that the CPU is the Intel Xscale PXA27x CPU
([18]) which is used on widely available iMote-2 sensor
node. The specification of the PXA27x processor is given
in Table (I). The CPU power consumption given in the
Freq.(MHz) 104 208 312 416 520 624
Power(mW ) 116 279 390 570 747 925

Table 1. Specification of Intel Xscale Pxa27x
table is the overall power including both the frequency
dependent and independent parts. We assume that the DMS-
enabled radio has 4 modulation levels: b = {2, 4, 6, 8}.
The radio symbol rate is R = 62.5k symbols/sec. Ac-
cording to Eq. (1), the available communicate speeds are
d = {125, 250, 375, 500} (kbps). The radio energy function
is in the form of Eq. (5). Without loss of generality, based
on [19] and Eq. (5), we derive the radio speed-independent
power as P cm,ind = 26.5mW , and β = 2.74 × 10−8.
Again, without loss of generality we assumed a light sensor
TSL2561 with sense time of 12ms for each reading and
power usage of 0.72mW ([20]). We assume the harvested
energy is obtained from solar radiation, and use the solar
power harvesting trace over one day provided in [10] as
our harvesting profile. Solar energy can be harvested in
either concurrent or non-current mode. We use the results
in [10] to fix the harvesting cycle at H = 24hours. This
horizon is then divided into 96 epochs, each has a length



L = 15mins. We simulated the execution of each invoked
frame and set the frame period at S = 30ms. We assume
a rechargeable battery storing at most 4000Joules energy.
The initial energy level is Γinit = 2400Joules (60% full).

Although there are no existing schemes that are directly
comparable to our approach, we have defined three new
baseline schemes for comparison purposes. First, the NPM
(No-Power-Management) scheme fixes both frequency and
modulation level at the maximum across all epochs. Second,
the DVS scheme scales only the frequency optimally, while
fixing the modulation level at its maximum level. Third, the
DMS scheme scales the modulation level optimally, while
fixing the frequency at the maximum level. We use the
metric frame skip ratio to measure the schemes capacity to
cope with uncertainties, defined as the percentage of failed
frames (missed deadline) due to empty energy storage in
the horizon. Notice that this ratio also captures the scope
of service interruption time: the higher the frame skip ratio,
the longer the service interruption time.

For each of the experiments below, we ran 96 full epochs
1000 times. We then computed the average stored energy at
the end of each epoch and plotted it as a data point.

6.2. Impact of joint voltage and modulation scaling
In Fig. (2), we compare different schemes in stored energy

of a sensor node executing normal workload, while harvest-
ing concurrently. Among all the schemes, the energy level
increases in the daytime as the sunlight intensity increases,
and decreases in the evening due to the absence of sunlight.
In all schemes, the DVMS achieves the highest energy
level. At the γmin point (appeared around 8 : 00am), the
DVMS stores 1800 joules (45.0% full) which is significantly
higher than 1100 joules (27.5% full) for NPM, 1400 joules
(35% full) for both DVS and DMS. As opposed to DVS
or DMS schemes, the DVMS stores more energy since it
has wider power scaling range, and always selects the most
energy efficient speeds which yield the smallest energy
consumption. All schemes have zero frame skip ratio which
means no service interruption occurred.

In Fig. (3), we run the same experiment, but assuming
non-concurrent harvesting. Again, the DVMS stores more
energy than all other schemes. The γmin point (appeared at
midnight) is about 1200 joules (30.0% full) for DVMS which
is higher than 0 joule (empty) for NPM, 300 joules (7.5%
full) for DVS, and 800 joules (20.0% full) for DMS. The
DVMS stores the most energy as it uses the speeds which
optimally balancing energy consumption and harvesting.
Only NPM suffers 2.1% frame skip ratio.

In Fig. (4) and (5), we compare different schemes for
a node executing emergency workloads, while harvesting
concurrently and non-concurrently. The stored energy by all
schemes decreases significantly compared to Fig. (2) and
(3) due to the extra energy used by emergency workloads.
The DVMS beats all other schemes again in stored energy
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Figure 2. Normal mode, concurrent harvesting
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Figure 3. Normal mode, non-concurrent harvesting

and causes no service interruption. In Fig. (4), no schemes
suffers service interruption, while in Fig. (5) the DVS and
NPM have skip ratio of 4.2% and 10.4%.

In all the above figures, the DVMS scheme stores sig-
nificantly more energies than all other schemes, and never
suffers service interruption. Under emergency mode, some
schemes run out of energy in the middle of operation for up
to 10% time of service which potentially causes disasters to
mission-critical CPS applications. Our experiments indicate
the benefits of our algorithm in term of both stored energy
and resilience to system uncertainties.

7. Conclusion
This paper presented an epoch-based approach for energy
management in WSN-enabled CPS applications utilizing
energy harvesting combined with DVS and DMS. We for-
malized this goal as the Energy Management with Energy
Harvesting problem, and then derived an optimal algorithm
to solve it. We presented a series of performance evaluation
experiments. The results demonstrated that our optimal algo-
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Figure 5. Emergency mode, non-concurrent harvesting

rithm DVMS significantly improve energy storage compared
to other baseline approaches. We also show that the harvest-
ing architecture (concurrent vs. non-concurrent) has direct
impact on energy management policies and must therefore
influence how designers engineer harvesting systems.

Appendix
Proof of Theorem 1

Let γG
i,j and γA

i,j denote the ending energy levels in frame (i, j),
obtained by iteratively maximizng energy level increment of each frame,
and that obtained by an arbitrary scheme A. Similarly, we denote ∆γG

i,j

and ∆γA
i,j as the energy level increments in frame (i, j), obtained by our

iterative scheme and scheme A. The initial energy level in epoch i is denoted
as Γinit

i = Γi−1. We will prove the theorem by induction over the frame
sequence number, j.

Base case: If j=1, we have γG
i,1 = Γinit

i +∆γG
i,1, γA

i,1 = Γinit
i +∆γA

i,1.
Since ∆γG

i,1 ≥ ∆γA
i,1 is valid by definition, γG

i,1 ≥ γA
i,1 is justified.

Now, suppose the statement holds for j = 1, 2 . . . n − 1 frames in
epoch i. Based on our induction assumption, we have γG

i,n−1 ≥ γA
i,n−1.

We claim that Theorem 1 also holds in frame (i, n), i.e., γG
i,n ≥ γA

i,n. We
distinguish two cases:
• γG

i,n = Γmax: the energy level reaches Γmax at the end of frame

(i, n). Since the energy level achieved by any scheme A cannot
exceed Γmax, our claim holds.

• γG
i,n < Γmax: Note that if γG

i,n < Γmax, the optimal energy
increment obtained by G after considering the constant harvested
power and worst-case workload in frame (i, n) is not constrained
by the maximum capacity constraint (otherwise γG

i,n would be equal
to Γmax). This enables us to deduce that ∆γG

i,n ≥ ∆γA
i,n, since

regardless of the initial energy level at frame (i, n), G by definition
accumulates energy which is at least equal to that yielded by any other
schemeA during frame (i, n), as long as the constraint γG

i,n < Γmax

is not violated. Also recall that by induction assumption, we have
γG

i,n−1 ≥ γA
i,n−1. Therefore, we have γG

i,n = γG
i,n−1 + ∆γG

i,n ≥
γA

i,n−1 + ∆γA
i,n = γA

i,n. Thus, our claim holds as well.

Hence, we proved Theorem 1.
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ing in rechargeable energy-aware real-time systems,” J. Em-
bedded Comput., vol. 1, no. 2, pp. 271–283, 2005.

[13] X. Jiang, J. Polastre, and D. Culler, “Perpetual environmen-
tally powered sensor networks,” in IPSN, 2005.

[14] C. Park and P. Chou, “Power utility maximization for
multiple-supply systems by a load-matching switch,” in
ISLPED, 2004.

[15] H. Aydin, V. Devadas, and D. Zhu, “System-level energy
management for periodic real-time tasks,” in RTSS, 2006.

[16] H. Aydin, R. Melhem, D. Mosse, and P. Alvarez, “Optimal
reward-based scheduling for periodic real-time tasks,” IEEE
Trans. Comput., vol. 50, no. 2, pp. 111–130, 2001.

[17] C. M. S. M. Bazaraa, H. Sherali, Nonlinear Programming:
Theory and Algorithms, 3rd ed. Wiley, 2006.

[18] Intel, “Xscale pxa27x,” www.intel.com/design/intelxscale.
[19] Chipcon, “Cc2420,” docs.tinyos.net/index.php/CC2420, 2006.
[20] TAOs, “Tsl2561,” www.farnell.com/datasheets/49661.pdf.


