Two-view Transductive Support Vector Machines

A Multi-view Semi-supervised Learning Algorithm

Guangxia Li Steven C. H. Hoi Kuiyu Chang
Nanyang Technological University

Motivation
- Two SVM classifiers are created from each view of the same problem
- Each classifier is optimized to maximize the overall consensus of their predictions

\[f_1(x) - f_2(x) \leq \eta + \varepsilon \]

Semi-supervised Learning
- A novel multi-view semi-supervised learning algorithm — two-view transductive SVM that takes advantage of both
 - the abundant amount of unlabeled data
 - and their multiple representations
 - to improve the classification result

Experimental Results

Toy Dataset
- (a) Supervised SVM
- (b) CCCP TSVM
- (c) Two-view TSVM

WebKB Course Dataset
- Variation of Positive Class's F1-measure
- Variation of Negative Class's F1-measure

Product Review Dataset
- Classification results showing mean accuracy (in percentage)
- and its standard deviation (in brackets)

Our Approach: Two-view Transductive SVM
- A multi-view semi-supervised learning problem contains
 - A set of labeled examples \(\{(x_i, y_i)\}_{i=1}^n \)
 - A set of unlabeled examples \(\{x_i\}_{i=n+1}^m \in \mathbb{R}^d \)
- For each view, we aim to find a decision function \(f_i(x) \) as
 \[f_i(x) = w \cdot \Phi(x) + b \]
 where \((w, b) \) are the parameters of the model, and \(\Phi(x) \) in the feature map.

\[
\min_{w, b} \frac{1}{2} \left(\sum_{i=1}^{n} (y_i - w \cdot \Phi(x_i) - b)^2 \right) + C \sum_{i=1}^{n} H(\varepsilon - y_i)
\]

Multi-view Learning
- For some problems, there may exist multiple perspectives, so-called views, of each data sample

For text classification
- The typical view contains a large number of raw content features such as term frequency
- Another view may contain a small but highly informative number of domain-specific features
- Can we use the multiple representations of the same problem to improve the performance of classifiers?

SVM-2K, proposed by Farquhar et al. [Farquhar, 2005]